Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2024-3210
https://doi.org/10.5194/egusphere-2024-3210
18 Oct 2024
 | 18 Oct 2024

Observation and modelling of atmospheric OH and HO2 radicals at a subtropical rural site and implications for secondary pollutants

Zhouxing Zou, Tianshu Chen, Qianjie Chen, Weihang Sun, Shichun Han, Zhuoyue Ren, Xinyi Li, Wei Song, Aoqi Ge, Qi Wang, Xiao Tian, Chenglei Pei, Xinming Wang, Yanli Zhang, and Tao Wang

Abstract. HOX radicals (OH and HO2) are crucial oxidants that determine atmospheric oxidation capacity and the production of secondary pollutants; however, their sources and sinks remain incompletely understood in certain forest and maritime environments. This study measured HO2 and OH concentrations using a chemical ionisation mass spectrometer at a subtropical rural site in southern China from 12 November to 19 December 2022. The average peak concentrations were 3.50 ± 2.47 × 106 cm−3 for OH and 1.34 ± 0.93 × 108 cm−3 for HO2. Calculations based on an observation-constrained chemical model revealed an overestimation of HO2 and OH concentrations during warm periods of the field study. These inaccuracies resulted in overestimations of production rates in the model simulation by up to 98 % for ozone and 341 % for nitric acid. Our study highlights the need for further improving understanding of the sources/sinks of OH and HO2.

Competing interests: One author (Tao Wang) is a member of the editorial board of Atmospheric Chemistry and Physics. The authors have no other competing interests to declare.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download
Short summary
We measured ambient OH and HO2 concentrations at a subtropical rural site and compared our...
Share