Preprints
https://doi.org/10.5194/egusphere-2024-2423
https://doi.org/10.5194/egusphere-2024-2423
17 Oct 2024
 | 17 Oct 2024

Modifying the Abdul-Razzak & Ghan aerosol activation parameterization (version ARG2000) impacts simulated cloud radiative effects (shown in the UK Met Office Unified Model, version 13.0)

Pratapaditya Ghosh, Katherine J. Evans, Daniel P. Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon

Abstract. The representation of aerosol activation is a key source of uncertainty in global composition-climate model simulations of aerosol-cloud interactions. The Abdul-Razzak and Ghan (ARG) activation parameterization is used in several global and regional models that employ modal aerosol microphysics schemes. In this study, we investigate the ability of the ARG parameterization to reproduce simulations with a cloud parcel model, and find its performance is sensitive to the geometric standard deviations (widths) of the lognormal aerosol modes. We recommend adjustments to three constant parameters in the ARG equations, which improve the performance of the parameterization for small mode widths and its ability to simulate activation in polluted conditions. For the accumulation mode width of 1.4 used in the Met Office Unified Model (UM), our modifications decrease the mean bias in the activated fraction of aerosols compared to a cloud parcel model from -6.6 % to +1.2 %. We implemented our improvements in the UM and compared simulated global cloud droplet concentrations with satellite observations. The simulated cloud radiative effect changes by -1.43 Wm-2 and aerosol indirect radiative forcing over the industrial period changes by -0.10 Wm-2.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

11 Aug 2025
Assessing modifications to the Abdul-Razzak and Ghan aerosol activation parameterization (version ARG2000) to improve simulated aerosol–cloud radiative effects in the UK Met Office Unified Model (UM version 13.0)
Pratapaditya Ghosh, Katherine J. Evans, Daniel P. Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon
Geosci. Model Dev., 18, 4899–4913, https://doi.org/10.5194/gmd-18-4899-2025,https://doi.org/10.5194/gmd-18-4899-2025, 2025
Short summary
Pratapaditya Ghosh, Katherine J. Evans, Daniel P. Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-2423', Anonymous Referee #1, 28 Nov 2024
    • AC1: 'Reply on RC1', Pratapaditya Ghosh, 21 Mar 2025
  • RC2: 'Comment on egusphere-2024-2423', Anonymous Referee #2, 29 Jan 2025
    • AC2: 'Reply on RC2', Pratapaditya Ghosh, 21 Mar 2025

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-2423', Anonymous Referee #1, 28 Nov 2024
    • AC1: 'Reply on RC1', Pratapaditya Ghosh, 21 Mar 2025
  • RC2: 'Comment on egusphere-2024-2423', Anonymous Referee #2, 29 Jan 2025
    • AC2: 'Reply on RC2', Pratapaditya Ghosh, 21 Mar 2025

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Pratapaditya Ghosh on behalf of the Authors (21 Mar 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to minor revisions (review by editor) (08 Apr 2025) by Graham Mann
AR by Pratapaditya Ghosh on behalf of the Authors (14 Apr 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to technical corrections (24 Apr 2025) by Graham Mann
AR by Pratapaditya Ghosh on behalf of the Authors (02 May 2025)  Author's response   Manuscript 

Post-review adjustments

AA: Author's adjustment | EA: Editor approval
AA by Pratapaditya Ghosh on behalf of the Authors (04 Aug 2025)   Author's adjustment   Manuscript
EA: Adjustments approved (06 Aug 2025) by Graham Mann

Journal article(s) based on this preprint

11 Aug 2025
Assessing modifications to the Abdul-Razzak and Ghan aerosol activation parameterization (version ARG2000) to improve simulated aerosol–cloud radiative effects in the UK Met Office Unified Model (UM version 13.0)
Pratapaditya Ghosh, Katherine J. Evans, Daniel P. Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon
Geosci. Model Dev., 18, 4899–4913, https://doi.org/10.5194/gmd-18-4899-2025,https://doi.org/10.5194/gmd-18-4899-2025, 2025
Short summary
Pratapaditya Ghosh, Katherine J. Evans, Daniel P. Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon

Data sets

Improving the Abdul-Razzak & Ghan (2000) aerosol activation parameterization impacts simulated cloud radiative effects (shown in the Unified Model, version 13.0) Pratapaditya Ghosh, Katherine Evans, Daniel Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon https://doi.org/10.5281/zenodo.13112444

Model code and software

Improving the Abdul-Razzak & Ghan (2000) aerosol activation parameterization impacts simulated cloud radiative effects (shown in the Unified Model, version 13.0) Pratapaditya Ghosh, Katherine Evans, Daniel Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon https://doi.org/10.5281/zenodo.13112444

Interactive computing environment

Improving the Abdul-Razzak & Ghan (2000) aerosol activation parameterization impacts simulated cloud radiative effects (shown in the Unified Model, version 13.0) Pratapaditya Ghosh, Katherine Evans, Daniel Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon https://doi.org/10.5281/zenodo.13112444

Pratapaditya Ghosh, Katherine J. Evans, Daniel P. Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon

Viewed

Total article views: 827 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
589 213 25 827 75 17 38
  • HTML: 589
  • PDF: 213
  • XML: 25
  • Total: 827
  • Supplement: 75
  • BibTeX: 17
  • EndNote: 38
Views and downloads (calculated since 17 Oct 2024)
Cumulative views and downloads (calculated since 17 Oct 2024)

Viewed (geographical distribution)

Total article views: 804 (including HTML, PDF, and XML) Thereof 804 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 11 Aug 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The most popular algorithm for calculating cloud droplet number concentrations in climate models is sensitive to parameters that control simulated aerosol particle number concentrations at different sizes. We recommend small modifications to functions in the algorithm to improve its performance. Implementing our changes in the UK Met Office climate model reduced average bias in simulated global droplet number concentrations, leading to more reflected solar radiation and a net cooling effect.
Share