Dynamic precipitation phase partitioning improves modeled simulations of snow across the Northwest US
Abstract. While the importance of dynamic precipitation phase partitioning to get accurate estimates of rain versus snow amounts has been established, hydrology models rely on simplistic static temperature-based partitioning. We evaluate model skill changes for a suite of snow metrics between static and dynamic partitioning. We used the VIC-CropSyst coupled crop hydrology model across the Pacific Northwest US as a case study. We found that transition to the dynamic method resulted in a better match between modeled and observed (a) peak snow water equivalent (SWE) magnitude and timing (~50 % mean error reduction), (b) daily SWE in winter months (reduction of relative bias from -30 % to -4 %), and (c) snow-start dates (mean reduction in bias from 7 days to 0 days) for a majority of the observational snow telemetry stations considered (depending on the metric, 75 % to 88 % of stations showed improvements). However, there was a degradation in model-observation agreement for snow-off dates, likely because errors in modeled snowmelt dynamics—which cannot be resolved by changing the precipitation partitioning—become important at the end of the cold season. Additionally, the transition from static to dynamic partitioning resulted in an 8 % mean increase in the snowmelt contribution to runoff. These results emphasize that the hydrological modeling community should transition to incorporating dynamic precipitation partitioning so we can better understand model behavior, improve model accuracies, and better support management decision support for water resources.