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Reviewer #2 
Thank you for the feedback, suggestions for improvements, and for bringing the recent Wang 

et al. (2024) paper to our attention. Specific responses are provided in detail below and we 

have provided clarification related to the novelty of this work in comparison to other related 

work. 

 

Comment 1 

Singh et al. present a comprehensive analysis of changes to simulated snow cover evolution 

resulting from an updated dynamic rain-snow partitioning scheme in the VIC-CropSyst model 

in the Columbia River Basin (CRB) and other areas of the Pacific Northwest. They showed 

that a bivariate logistical regression method that predicts precipitation phase as a function of 

air temperature and relative humidity produces better simulated snow water equivalent (SWE) 

than the default VIC method that uses air temperature alone. The authors noted that improved 

snow outcomes led to a higher proportion of simulated streamflow coming from snowmelt 

versus the baseline case using the default VIC method. 

I commend the authors on the hard work they put into this paper. The methods are clearly 

described, and results are straightforward and easy to follow. However, there are a few major 

shortcomings that I believe preclude this article from publication in HESS. I detail these below. 

The first, and most important, issue is that the authors use the default VIC rain-snow 

partitioning scheme as the benchmark to which they compare the dynamic method. This 

default is a dual-threshold method with a lower, all-snow threshold of -0.5°C and an upper, 

all-rain threshold of 0.5°C, with mixed precipitation falling in between. Previous modeling work 

at multiple sites in the western US has shown this method to produce highly negative biases 

and low r2 values in both SWE and snow depth (Jennings and Molotch, 2019). More recent 

observational work from the Sierra Nevada in the western US further highlighted the poor 

performance of the default VIC method compared to visual reports of rain, snow, and mixed 

precipitation. It was the second-worst partitioning method, only correctly predicting rain, snow, 

and mixed precipitation 47.1% of the time (Jennings et al., 2023). In other words, the VIC 

method got over half of its precipitation phase predictions wrong. Thus, the premise of the 

research—that a modified rain-snow partitioning scheme incorporating humidity and air 

temperature would improve on the default VIC method—is not a particularly evocative one. In 

fact, the researchers would be hard pressed to find a worse rain-snow partitioning method 

than the VIC default. This has the unsatisfying effect of producing results that are practically 

pre-ordained. In my opinion, this makes the work more appropriate as a case study for a 

different journal. 

We appreciate the reviewer’s feedback and acknowledge that there are many partitioning 

methods and would like to clarify our choice of benchmark. While we acknowledge that the 

default VIC rain-snow partitioning method has known limitations, we deliberately selected it 

because it reflects current practices in hydrological modeling. Despite its documented 

shortcomings, the dual-threshold method remains widely used in many hydrological models, 
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including VIC, and is a standard approach in the field (Harpold et al., 2017). Therefore, 

comparing the dynamic method to the default VIC method remains highly relevant, as it 

reflects the methods most commonly employed in hydrological modeling studies today. 

Additionally, our intent was not to compare multiple partitioning methods, as in Jennings et al. 

(2023) or Jennings and Molotch (2019), but rather use this past comparison literature as a 

motivation, focus on a method that has been shown to work well in partitioning precipitation 

and evaluate whether and how using this method could improve the match between 

simulations and observations. In contrast to previous work, which has primarily focused on 

comparing the sensitivity of various snow and streamflow metrics to different partitioning 

methods, our goal was to select a partitioning method with a solid foundation in the literature 

and conduct a more thorough evaluation of the match between observations and simulations 

across a broader set of metrics than has been considered in prior studies. Following Reviewer 

1’s suggestion, we have expanded the analysis to include streamflow and the peak snow 

water equivalent (SWE)/annual average flow ratio metrics. Our aim was to understand where, 

when, and why we see improvements (or degradations) in the match between observations 

and simulations across a suite of metrics. 

Furthermore, we cannot assume that improvements are preordained given the benchmark we 

chose. In fact, while we observe general improvements for snow magnitude metrics across 

most locations (with a few exceptions) by transitioning to a more dynamic precipitation phase 

partitioning, we also identified certain metrics (not addressed in the existing literature) where 

the match between observations and simulations actually degrades across most locations 

(see Table R1).  

We can provide this  clarity on the intent and contributions of this paper in the revised 

manuscript (drawing on Table R1 below) to make a case that our work offers more than just 

a case study applying known information to the Pacific Northwest.  

Comment 2 

The second major shortcoming is the novelty of the work. Wang et al. (2024) recently 

demonstrated similar findings when implementing the VIC model with a new rain-snow 

partitioning scheme (wet bulb temperature, TW) and comparing the outcomes to the default 

dual-threshold method. They showed “improved performance of the TW scheme in simulating 

snowfall fraction (SF) and snow water equivalent (SWE) in relation to in situ observations and 

a gridded SWE product.” They also took the research a step further, analyzing the effect of 

method selection on simulated changes to snowpack and streamflow under future climate 

conditions. 

Thank you for bringing the Wang et al. (2024) paper to our attention. Since it was published 

around the same time as our submission, we unfortunately missed it during our literature 

review process. 
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As noted earlier, the focus of our work was on comparing model simulations to observations, 

rather than analyzing the sensitivity of model outputs (in historical or future contexts) to 

different partitioning methods. We intentionally focused on a comprehensive comparison 

between observations and simulations, evaluating a broader set of metrics and a larger 

number of locations than is typical in the existing literature. In terms of evaluating simulation-

observation matches, existing studies focused on a subset of  precipitation phase, SWE 

magnitude, and snow depth, often reporting a general improvement (with some exceptions) 

in the match between simulations and observations when using partitioning methods that 

account for relative humidity. 

In contrast, our study also includes several snow-timing-related metrics, where we found that 

the dynamic partitioning method led to a general degradation in the match between 

simulations and observations for some of the timing metrics in comparison with the default 

VIC approach. This highlights a situation where previous results were correct for the wrong 

reasons—improvements in precipitation-phase partitioning have revealed other model 

aspects that require further refinement. Additionally, given that Wang et al. (2024) primarily 

focused on the impact of the partitioning on future simulations, their discussion about 

observation-simulations comparisons are relatively limited while our work takes a more 

comprehensive look into that aspect. Also, while Wang et al. (2024) note observation-

simulation mismatches for annual mean SWE in high elevation regions in the Colorado River 

basin, our results in the Columbia River basin are different with mismatches spanning all 

elevation ranges. It would be interesting to compare the results across the regions and relate 

them to more explainable physiographic differences. 

We believe that our study offers insights beyond a simple case study of the Pacific Northwest 

and contributes new findings that go beyond reiterating previous work. To clarify how our 

research fits within the broader literature, we have provided a table that highlights key 

comparisons with existing studies and underscores the novel aspects of our work. 

We agree that Wang et al. (2024) and Jennings et al. (2023) should be cited in our study. 

Drawing on Table R1 below, we will revise the introduction and discussion sections to better 

clarify the specific contributions of our work and how it builds on prior research. 
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Table R1: Comparison of our paper and literature reference here  

Paper Geographic 
context 

Historical 
timeframe 

Metrics for 
observation-
simulation 

match 

Outcome of incorporating a 
RH-based dynamic 

partitioning on simulation-
observation match 

Jennings 

and 

Molotch, 

2019 

11 

experimental 

stations in 

Western US. 

2004-2011 daily SWE 

 

snow depth 

 

Mostly improvements.  

Jennings 

et al., 

2023 

Lake Tahoe 

region in 

California.  

 

2020-2021 

 

precipitation 

phase 

Mostly improvements.  

Wang et 

al., 

2024 

Colorado 

River basin  

(124 SNOTEL 

stations and 

a gridded 

observational 

product) 

1971-2018 

(varies by 

station; 

at least 

20 years 

needed) 

 

average annual 

snowfall 

fraction 

 

annual average 

SWE magnitude 

 

streamflow  at 

the basin 

outlet 

Mostly improvements except 

for annual average SWE in 

high elevations(>3500m). 

This 

paper 

Columbia 

River basin 

(164 SNOTEL 

stations) 

1996-2015 peak SWE 

magnitude 

 

peak SWE timing 

 

daily SWE 

 

snow start date 

 

snow off date 

 

snow duration 

 

streamflow * 

 

SWEpeak/Qannual * 
 

 

Mostly improvements for snow 

magnitude metrics with some 

exceptions. This is similar 

to Wang et al. (2024) except 

that our contexts for 

degradation in SWE magnitude 

match are unrelated to 

elevation unlike Wang et 

al.(2004). See Figure 9 in 

our paper. 

 

Mostly degradation in match 

for snow off and snow 

duration metrics (with some 

exceptions) which is not 

noted in the literature to 

the best of our knowledge. 

 

There is a mixed direction of 

response for the newly added 

SWE/Q ratio metric as well.  

* The last two metrics are newly added in response to reviewer #1’s comments so that 

we can have basin-scale simulation-observation comparison metrics. 

Comment 3 

 A minor issue I had with the work was the use of VIC-CropSyst versus VIC. It was never 

made clear the motivation for using the coupled crop model when focusing on the mountain 

regions of the CRB. The authors did note “While the study primarily focuses on snow dynamics 

simulated by the VIC component of the model, the full VIC-CropSyst model was used because 
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the streamflow calibration was performed on the coupled model version.” This sounds like 

maybe the baseline simulations using VIC-CropSyst were already on hand, so the authors 

used the same coupled setup for the dynamic method for easier comparisons. Additionally, 

the authors said the model was calibrated for “five soil parameters” despite their focus on 

snow outcomes. This is perplexing to me. 

Thanks for raising this lack of clarity. The sentence we had was a bit misleading in terms of 

why we used the VIC-CropSyst model. The use of VIC-CropSyst in this study, rather than the 

standalone VIC model, was a deliberate choice. Reviewer 1 raised a similar point and 

provided suggestions to revise Section 2.3 of the manuscript (VIC-CropSyst Model and 

Calibration) to help clarify why we chose the VIC-CropSyst model rather than the standalone 

VIC model. See related text in the following two paragraphs. 

This study is part of a larger, ongoing effort to understand the interplay between water supply, 

agricultural water availability, and the impacts of water shortages on agricultural productivity. 

The VIC-CropSyst model combines the VIC hydrology engine with the dynamic crop growth 

engine from the CropSyst model, enabling it to address both supply and demand sides of 

water usage in an integrated manner. This allows the model to capture how changes to water 

supply influence agricultural demand, and vice versa. 

While the specific modifications related to the rain-snow partitioning scheme will be the same 

whether implemented in the VIC model or the VIC-CropSyst model, and the simulated impacts 

on snow and streamflow will be identical if the CropSyst crop growth engine is not invoked, 

implementing our changes in the VIC-CropSyst model offers significant advantages. It will 

enable us to address both standalone water supply applications and those related to the 

complex interaction between water supply and demand in future studies. Accurate snow 

simulations are crucial for the coupled VIC-CropSyst model, as snowmelt estimates directly 

affect soil moisture, water availability, and, consequently, crop growth and water demand. 

We can update the manuscript to include this clarification. 

Regarding calibration, it is typical for hydrology model calibration to focus on just streamflow. 

Multi-objective calibration is of interest to us as a next step and we have commenced on it, 

but it is an involved effort as noted in the response to comment 4. 3 below and outside the 

scope of this work.  Similar to Wang et al. (2024) which also did not calibrate for snow metrics, 

we can clarify in the manuscript text that performance improvements noted in the study can 

be further enhanced via calibration of snow metrics. Performance degradations could 

potentially be alleviated as well. 

Comment 4 

I would again like to acknowledge the effort the authors put into this manuscript. It is not easy 

to wrangle this amount of data and write a straightforward, clearly described manuscript. While 

I don’t believe the paper in its current form is suitable for publication in HESS, I do think its 

appropriateness could be enhanced with a few modifications: 
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Thanks for the feedback and suggestions. We have responded to each point below. 

Comment 4.1 

There is a lot of work out there that makes large conclusions about hydroclimatology in the 

western US using VIC and its now demonstrably poor default rain-snow partitioning method. 

This work has been published in top-tier journals like Nature and Water Resources Research, 

to name just two. The authors may wish to reframe their paper around this issue. Have our 

previous VIC simulations misled us about the hydroclimatology of the Pacific Northwest? What 

does this mean for water resources modeling and hydrologic forecasting? Do we understand 

the potential impacts of climate change on snow cover evolution and streamflow? 

We agree that these are important questions.  This analysis is something we are currently 

working on and a manuscript is under preparation. However, as noted in the earlier comment, 

we believe that the comprehensive observation-simulation comparisons performed in this 

work provide new contributions worthy of publication.    

Comment 4.2  

Reconsider the use of VIC-CropSyst. If the purpose is to compare snow simulations in 

mountain regions, it is hard to justify the coupled model versus VIC alone.  

We agree that the motivation for using the VIC-CropSyst model was unclear. Please see our 

related response to comment 3 above.  

 

Comment 4.3 

Similarly, calibrate the model’s snow parameters and see what happens. 

Multi-objective calibration (for streamflow, snow, and evapotranspiration) is not common, is 

an important step and one we are exploring. This is an involved undertaking, given that the 

computational complexity is much larger. This is also why we are considering the VIC-

CropSyst model so that actual evapotranspiration from croplands can also be considered in 

snowmelt watersheds that have a predominant agricultural land-use. This is an ongoing effort 

and we will work on a related manuscript when the effort is complete.  

Comment 4.4 

Consider other rain-snow partitioning methods. Beating the default VIC method, as 

demonstrated above, is no challenge given its poor track record. What about spatially variable 

air temperature thresholds, wet bulb temperature thresholds, etc.? 

As noted in earlier responses, the motivation for our study was a comparison between 

observations and simulations. Rather than comparing multiple partitioning approaches, we 

focused on adopting a method suggested in the literature as performing well and concentrated 

on observation-simulation comparisons. While we are open to comparing different methods, 

we do not expect such comparisons to add significant value to the research question we are 

addressing as described below. 
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Regarding spatially-varying, temporally-constant temperature thresholds for rain-snow 

partitioning, we believe these approaches will likely be insufficient because they do not 

account for the temporal variability in relative humidity (Figure R1) and therefore surface air 

temperature thresholds for partitioning (Figure R2). 

Figure R2 isolates the temporal variation in the surface air temperature threshold for 

partitioning precipitation into 50% rain and 50% snow based on our reported results for each 

grid. Across all bins, there is clear temporal variation (though the range of temporal variation 

can vary by grid as shown in the box plot range), suggesting that spatially-varying but 

temporally-constant surface air temperature thresholds would not be an effective strategy. 

 

Figure R1: Frequency of grids with different temporal differences in RH (difference between 95th and 

5th percentile RH  across wet days (precipitation > 1mm) between November through April  and years). 

We can see that most grids have a temporal difference between 27% to 33% which is large enough 

difference to impact temporal differences in snow fraction estimates.  

 

Figure R2.  Temporal variation in the surface air temperature threshold for partitioning precipitation 

into 50% rain and 50% snow. For each grid and wet day (precipitation > 1 mm) during the snow period 

(November-April), the probability of snowfall is computed using binary logistic regression method 
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(Jennings et al., 2018). The 50-50 rain-snow temperature threshold is calculated annually for each grid 

by RH bins. Temporal variation in this threshold is then determined by calculating the difference 

between the 5th and 95th percentile threshold values across the years. Each boxplot shows the 

distribution of threshold differences across multiple grids. For example, in the (40,50] RH bin, the 

median grid shows a temporal variation in the 50-50 rain-snow threshold of approximately 1.6°C, 

based on the 5th and 95th percentile values. 

RH-based approaches like those implemented by Jennings et al. (2018), or using the wet-

bulb temperature (Tw) as in Wang et al. (2024), or utilizing static Tw thresholds, would account 

for both spatial and temporal heterogeneity providing solutions as noted in the literature. Our 

initial hypothesis was that observation-simulation matches across multiple snow and 

streamflow metrics would be similar across all these RH-based approaches, in line with the 

generally comparable performance of these methods in simulating precipitation phase, as 

shown in studies like Jennings and Molotch (2019) or others that compare numerous 

partitioning methods. Thus, our hypothesis was that our basic findings would likely remain 

consistent across any method that accounts for air temperature and relative humidity in some 

form. 

In response to this comment, we implemented a comparison between the wet-bulb 

temperature approach (Wang et al., 2024) and the approach used by Jennings et al. (2018), 

and as expected, we did not observe a major difference in performance for the metrics we 

considered (Figures R3, R4 and R5). The yellow and orange lines in these figures 

corresponding to the two RH-based methods are almost overlaid and similar. 

We can add these figures as an appendix to the manuscript and note the consistency in 

performance in the results/discussion section of the manuscript. 

 

Figure R3. Relative Model Performance (RMP) chart for peak SWE (a) magnitude, and (b) timing, 

comparing SRS (static rain-snow), DRS (dynamic rain-snow), and DRS_TW (dynamic rain-snow based 

on wet bulb temperature) partitioning methods. The Y-axis is the fraction of stations for which a 
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particular RMP is achieved, and the X-axis is the difference between each model's mean absolute bias 

(MAB) and the best-performing model's MAB. The closer a model’s curve is to the Y-axis and for longer, 

the better. The length of a model’s curve exactly on the Y-axis indicates how frequently the model is 

best performing, and the distance of the curve from the Y-axis indicates how much worse a model’s 

performance is relative to the best model. If the model under consideration is the best-performing one, 

the RMP value will be zero. If not, the RMP provides an indication of how far the model’s performance 

is from the best-performing model. 

 

Figure R4. Relative Model Performance chart comparing SRS , DRS , and DRS_TW partitioning methods 

for snow phenology metrics i.e., (a) snow-start, (b) snow-off, and (c) snow-duration . See Figure R3 

caption for more details on interpretation. 

 

Figure R5. Relative Performance chart for NSE of daily SWE (see Figure R3 caption for more details on 

interpretation),  comparing SRS , DRS , and DRS_TW partitioning methods. Model performance (NSE) 

of daily SWE for the snow season (November through April)  

Comment 4.5 

I thank the authors for their time and wish them luck with their manuscript! 
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Thank you for your feedback and for bringing Wang et al. (2024) and other suggestions to our 

attention. We appreciate the feedback. 
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