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Abstract. While the importance of dynamic precipitation phase partitioning to get accurate estimates of rain versus snow 

amounts has been established, hydrology models rely on simplistic static temperature-based partitioning. We evaluate model 

skill changes for a suite of snow metrics between static and dynamic partitioning. We used the VIC-CropSyst coupled crop 10 

hydrology model across the Pacific Northwest US as a case study.  We found that transition to the dynamic method resulted 

in a better match between modeled and observed (a) peak snow water equivalent (SWE) magnitude and timing (~50% mean 

error reduction), (b) daily SWE in winter months (reduction of relative bias from -30% to -4%), and (c) snow-start dates (mean 

reduction in bias from 7 days to 0 days) for a majority of the observational snow telemetry stations considered (depending on 

the metric, 75% to 88% of stations showed improvements). However, there was a degradation in model-observation agreement 15 

for snow-off dates, likely because errors in modeled snowmelt dynamics—which cannot be resolved by changing the 

precipitation partitioning—become important at the end of the cold season.  Additionally, the transition from static to dynamic 

partitioning resulted in an 8% mean increase in the snowmelt contribution to runoff. These results emphasize that the 

hydrological modeling community should transition to incorporating dynamic precipitation partitioning so we can better 

understand model behavior, improve model accuracies, and better support management decision support for water resources. 20 

1 Introduction 

Snow processes are critical for accurate hydrological modeling, especially in regions where snowmelt significantly contributes 

to streamflow, such as the western United States (Li et al., 2017). A key aspect is an accurate partitioning of precipitation into 

rain and snow. This is because of the effects of rain-snow partitioning on land hydrology and climate—snow acts as temporary 

storage for water, delaying its contribution to surface runoff, infiltration, and streamflow generation (Harpold et al., 2017). In 25 

contrast, rain contributes more rapidly to runoff and infiltration. Furthermore, variability in snow cover can influence the snow-

albedo feedback mechanism, amplifying surface warming as snow cover decreases (Hall, 2004; Hall and Qu, 2006). Hence, 

the misrepresentation of precipitation phase in hydrology models can propagate through to inaccuracies in snow dynamics and 

subsequently affect snow and streamflow forecasts (Wang et al., 2019). Given that hydrology models are used to assess the 

ability of the earth system to meet various demands such as irrigation, hydropower production, maintaining endangered fish 30 
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species, recreation, and navigation, the impacts of misrepresentation of the precipitation phase translate to these broad 

applications as well. 

This is also important in a climate change context where a shift in the precipitation phase from snow to rain is 

projected to occur with a warming climate (Abatzoglou, 2011; Klos et al., 2014). The transition from snow to rain leads to 

decreased snowpack (Kapnick and Hall, 2012; Mote et al., 2005; Pederson et al., 2011), impacts the streamflow magnitude 35 

and timings (Barnett et al., 2005; Fritze et al., 2011; Harpold and Brooks, 2018; Jepsen et al., 2016; Nayak et al., 2010), 

increases rain-on-snow flooding risk (McCabe et al., 2007; Musselman et al., 2018), and challenges our ability to make accurate 

water availability forecasts (Milly et al., 2008). Getting the precipitation partitioning right is essential to characterize these 

climate change implications as well. 

Many hydrology models utilize simplistic static temperature thresholds to partition precipitation into rain and snow 40 

(Harpold et al., 2017). Recent studies (Jennings and Molotch, 2019; Marks et al., 2013; Wang et al., 2019) have demonstrated 

that this simplistic partitioning is inaccurate due to the dynamic variability in the temperature thresholds for partitioning 

(Jennings et al., 2018) as a function of other environmental factors. Therefore, using static uniform air temperature thresholds 

cannot accurately represent rain-snow partitioning across large spatial extents (Cho et al., 2022; Harder and Pomeroy, 2014) 

and across time. A key environmental factor affecting the partitioning is relative humidity, with recent findings indicating that 45 

snowfall is more probable when precipitation is falling through an air mass with lower relative humidity due to evaporative 

cooling facilitated by latent heat flux (Froidurot et al., 2014; Gjertsen and Ødegaard, 2005; Jennings et al., 2018; Sun et al., 

2019). Surface air pressure also influences precipitation partitioning, though to a lesser degree than air temperature and 

humidity (Jennings et al., 2018). 

New partitioning methods have addressed these limitations. For example, Jennings et al. (2018) developed a bivariate 50 

rain-snow partitioning method as a function of relative humidity and air temperature. However, these methods are still not 

commonly integrated into hydrology models, and a large-scale evaluation of how this change in precipitation partitioning 

impacts modeled snow processes and agreement with observations is missing. Bridging this gap is important also because 

modeled snow metrics have high sensitivity to assumptions around precipitation phase partitioning (Sepúlveda et al., 2022; 

Singh et al., n.d.; Sun et al., 2019). Our overarching goal is to integrate dynamic precipitation partitioning temperature 55 

thresholds into a hydrology model and evaluate its impact on the simulated snow processes and the contribution of snowmelt 

to streamflow. Focusing on the transition from a static to dynamic precipitation partitioning, the specific research questions 

addressed are (a) Does this improve the match between modeled and observed snow magnitude and phenology, and by how 

much and where? and (b) How does the contribution of snowmelt to runoff change? 

To address our research questions, we utilize the VIC-CropSyst model (Malek et al., 2017), a coupled crop hydrology 60 

model where the hydrology aspects—including the snow model—come from a widely used land surface model,  Variable 

Infiltration Capacity (VIC model version 4.1.2.e; Liang et al., 1994). The VIC hydrology model has been used worldwide in 

applications ranging from streamflow forecasting (Anghileri et al., 2016; Mazrooei et al., 2021; Ossandón et al., 2022; Singh 

et al., 2023), snow modeling (Bhend et al., 2012; Li et al., 2017; Schreider et al., 1997; Tang and Lettenmaier, 2010), climate 
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change impact assessment (Dang et al., 2020; Guo et al., 2009; Hengade et al., 2018; Krysanova and Hattermann, 2017; Treesa 65 

et al., 2017), and land-use change impact assessment (Carvalho et al., 2022; Garg et al., 2017; Hengade et al., 2018). However, 

despite its widespread use, VIC model implementations still rely on static temperature thresholds for precipitation partitioning. 

While we utilize the VIC-CropSyst model as a case study, the results are expected to be relevant more broadly in the context 

of other hydrological models, which, although vary in level of complexity and model structure, share a common set of similar 

simplistic precipitation partitioning methods (Harpold et al., 2017 Table 2 comparing 24 hydrology models). Therefore, the 70 

insights from this study will be relevant in the broad hydrology modeling context.   

We utilize the Pacific Northwest US and Columbia River basin (CRB) as a case study region. This is an excellent 

model system for several reasons: (i) diverse climatic conditions ranging from arid, temperate, to cold climate classes (Beck 

et al., 2018), and (ii) exposure to a wide range of air temperature thresholds at which precipitation is equally split as rain and 

snow, increasing from 0.6°C near the Pacific Coast to over 3.8° C in the Rocky Mountains (Jennings et al., 2018). Therefore, 75 

the knowledge gained from this region should be transferable to a broader set of regions.  

2. Methodology 

2.1 Study domain 

We selected the Snow Telemetry (SNOTEL) stations in the Pacific Northwest region, encompassing the Columbia River Basin 

(CRB) and coastal areas in the United States. The SNOTEL network was chosen as it provides daily snow water equivalent 80 

(SWE) data—defined as the depth of water that would result if the entire snow column melted—at sites spanning a broad 

geographic range, has a moderately long-term record of several decades, relatively consistent observational approaches across 

measurements, and has been widely used in other snow modeling efforts (Lute et al., 2022). The CRB is a vast snow-dominated 

watershed spanning multiple states in the US (Figure 1). The region heavily relies on snowmelt for water supply—50 to 80% 

of the annual runoff is generated from the mountain snowpack (Li et al., 2017; Stewart et al., 2004), and has a diverse climate 85 

and topography. The area often experiences water scarcity, partly due to misalignment between water supply and demand 

timing (Hall et al., 2024), and there is high stakeholder interest in improved snow and streamflow forecasts. 
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Figure 1. Basin map of the Pacific Northwest, including the Columbia River basin (CRB) covering multiple states in the US and 

Canada. The black boundary corresponds to the CRB. Points show the location and elevation of the SNOTEL stations used in this 90 
study for snow process evaluation. The base map was created in QGIS v3.20.0  using the Google Terrain layer © Google Maps 2024. 

2.2 Input datasets 

We utilized the calibrated VIC-CropSyst model and input data from Hall et al., (2024). The model requires gridded 

meteorological inputs, soil and vegetation characteristics, topographic and land cover characteristics. The historical gridded 

meteorological input is derived from the gridMET observational data product (Abatzoglou, 2013), which provides high-95 

resolution (~4-km, 1/24th degree) daily meteorological variables for the contiguous United States from 1979 to the present. 

The gridMET data was spatially aggregated to 1/16th degree to align with the VIC-CropSyst model's resolution. Soil 

information was obtained from the STATSGO2 (Staff, 2014) soil survey database, which comes from the United States 

Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS). For crop characteristics, two sources 

were used: the Washington State Department of Agriculture's Land Use Layer for Washington State (WSDA, 2018) and the 100 

USDA National Agricultural Statistics Service's Cropland Data Layer (USDA-NASS, 2016) for the rest of the contiguous 

United States. The elevation and snow band information comes from Elsner et al. (2010) and Hamlet et al. (2010). 

2.3 VIC-CropSyst model and calibration 

The VIC-CropSyst model (Malek et al., 2017) is a coupled hydrology and agricultural model that integrates the VIC 

hydrological model (Liang et al., 1994) with the cropping systems model (CropSyst; Stockle et al., 1994; Stöckle et al., 2003). 105 

VIC-CropSyst runs at a 0.0625° spatial resolution and daily timestep considering water and energy balance to simulate the 

infiltration, snow accumulation and melt, baseflow, surface runoff, and evapotranspiration. It does not simulate the sub-grid 

lateral flow, as it is assumed to be negligible in large grid scales. There is a grid-level explicit representation of soil 

characteristics, weather, vegetation, and crop types. It also statistically accounts for variations within each grid cell by 
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associating fractions of areas within the grid with multiple elevation bands, vegetation, and crop types. Using multiple elevation 110 

bands within a grid accounts for large variations in topography within a grid that can affect snow dynamics. Fluxes like surface 

runoff, baseflow, and evapotranspiration, are calculated for each vegetation class and aggregated for each grid cell based on 

the area covered by each class. 

The snow sub-model calculates mass and energy balance to track snow accumulation and melting on the canopy and 

ground. Andreadis et al. (2009) provide a detailed explanation of these processes. The snow melts when the net energy balance 115 

is positive, and if the excess water surpasses the liquid water holding capacity of the surface or deep pack layer, it is released 

to the soil as snowpack outflow. Conversely, if the energy balance is negative, any liquid water present freezes. The rain-snow 

partitioning algorithm relevant to this work is explained in section 2.4. 

We utilized the VIC-CropSyst model calibrated as part of Hall et al. (2024). The model was calibrated for five soil 

parameters and automatically calibrated based on the multi-objective complex evolution (MOCOM-UA) global optimization 120 

method. Calibration was performed in a nested approach that starts with calibrating grids for upstream stations and progressing 

to downstream stations until the entire watershed was calibrated. For this study, crop irrigation was turned off in simulations 

to capture natural settings. While the study primarily focuses on snow dynamics simulated by the VIC component of the model, 

the full VIC-CropSyst model was used because the streamflow calibration was performed on the coupled model version. 

Overall, the evaluation of snow processes in the VIC-CropSyst model will be largely similar to that of the VIC model version 125 

integrated into the coupled model. 

2.4 Rain-snow partitioning algorithm 

In the VIC model, the precipitation partitioning into rain and snow is determined using a linear scaling method (Hamman et 

al., 2018), which we will refer to as the SRS (Static Rain-Snow) partitioning method throughout this study. This method sets 

a lower-bound temperature (-0.5°C), below which all precipitation is classified as snow, and an upper-bound temperature 130 

(0.5°C), above which all precipitation is classified as rain. If the air temperature falls between the two bounds, the precipitation 

will be divided into rain and snow based on a linear interpolation (Cherkauer et al., 2003). These temperature thresholds are 

assumed to be constant across both space and time. Such simplistic assumptions are typical in most hydrology models as 

compiled for twenty-four well-used models in Harpold et al. (2017). 

Within the VIC-CropSyst model, we implemented a bivariate rain-snow partitioning method (Jennings et al., 2018), 135 

which we will refer to as the DRS (Dynamic Rain-Snow) partitioning method in the rest of the paper. This method utilizes a 

binary logistic regression model to predict the probability of precipitation falling as snow or rain. The predictor variables in 

this model are 2-m air temperature (Ta, °C) and relative humidity (RH, %). The bivariate model is defined by the following 

logistic regression equation: 

 140 

𝑝𝑠𝑛𝑜𝑤 =  
1

1+ 𝑒(−10.04+1.41𝑇𝑎+0.09𝑅𝐻)         (1) 
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where 𝑝𝑠𝑛𝑜𝑤 is the probability of snow occurring. This model accounts for the non-linear relationship between air temperature, 145 

humidity, and precipitation phase, which is particularly critical near the freezing point where small changes in these variables 

can significantly affect whether precipitation falls as rain or snow.  

2.5 Snow telemetry (SNOTEL) 

Snow observations are from the Snow Telemetry (SNOTEL) network — a system of automated weather stations that provides 

real-time data on snowpack and meteorological variables in the Western United States. The network was developed by the US 150 

Department of Agriculture's Natural Resources Conservation Service to support water management and planning activities in 

regions where snowmelt is a significant source of water supply. The stations are equipped with sensors that measure snow 

depth, SWE , air temperature, precipitation, and other variables related to hydrology and climate. 

We compare SNOTEL observations with VIC-CropSyst simulated results.  In order to make the comparison as fair 

as possible,  we took a few steps. First, we only consider SNOTEL stations with an elevation difference between SNOTEL 155 

(point) and gridMET (grid) of less than ±150 meters to minimize elevation-related temperature biases. Second, the number of 

snowbands is set to one and its elevation is set to the SNOTEL station elevation. Finally, we excluded stations with more than 

10% missing values per year for the water years 1997-2015. This resulted in 164 stations for our analysis. 

2.6 Performance metrics 

We evaluated the model's ability to capture multiple aspects of snow processes. We have eight performance metrics in total, 160 

comparing results between static and dynamic precipitation partitioning. The notation, brief description, and mathematical 

formulation associated with each metric are detailed in Table 1. 

2.6.1 Peak SWE magnitude and timing 

First, we assess snow magnitude using the SWE metric, defined as the depth of water that would result if the entire snow 

column melted. This metric is crucial as it quantifies the amount of water stored in frozen form, which becomes available 165 

during spring melt. We assessed the peak SWE (maximum daily SWE in a water year) magnitude and timing.  

We calculated both absolute and relative biases to evaluate the performance of modeled peak SWE. Absolute bias 

measures the direct difference between simulated and observed values and can be expected to be higher in regions with 

substantial snow accumulation. We also calculated the relative bias to facilitate a meaningful comparison across regions with 

varying peak SWE levels. We report the difference in days per water year to assess peak SWE timing. 170 
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2.6.2 Performance of the modeled daily SWE time series 

To compare simulated daily SWE time series, we use two metrics: (i) Nash-Sutcliffe Efficiency (NSE) metric (Nash and 

Sutcliffe, 1970), a widely adopted standard for measuring the accuracy of hydrological models. (ii) percent relative bias (RB) 

for each location.  For each location, NSE is calculated for the snow season (November through April in our study area) as 

follows: 175 

𝑁𝑆𝐸 = 1 − 
∑ (𝑆𝑊𝐸𝑜𝑏𝑠,𝑖− 𝑆𝑊𝐸𝑠𝑖𝑚,𝑖)2𝑛

𝑖=1

∑ (𝑆𝑊𝐸𝑜𝑏𝑠,𝑖− 𝑆𝑊𝐸𝑜𝑏𝑠,𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑛
𝑖=1

         (2) 

where, n is the total number of observations, 𝑆𝑊𝐸𝑠𝑖𝑚 and 𝑆𝑊𝐸𝑜𝑏𝑠  are simulated and observed SWE respectively for a given 

day t, and 𝑆𝑊𝐸𝑜𝑏𝑠,𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean of all observed daily SWE values. The value of NSE ranges from −∞ to 1, with a value closer 

to 1 implying the best performance, and ≤ 0 implying that the prediction is worse than using the long-term mean as the 

prediction. 180 

We also calculated the relative bias (%) for daily SWE values on a monthly basis from November to April. The 

relative bias metric assesses the systematic deviation of the modeled SWE values from the observed SWE values. It is 

calculated as follows: 

%𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑎𝑠 =  
∑ (𝑆𝑊𝐸𝑠𝑖𝑚,𝑖− 𝑆𝑊𝐸𝑜𝑏𝑠,𝑖)𝑛

𝑖=1

∑ 𝑆𝑊𝐸𝑜𝑏𝑠,𝑖
𝑛
𝑖=1

 × 100       (3) 

Where 𝑆𝑊𝐸𝑠𝑖𝑚,𝑖  represents the simulated SWE value for the 𝑖th day and 𝑆𝑊𝐸𝑜𝑏𝑠,𝑖  represents the corresponding observed SWE 185 

value. A positive relative bias indicates an overestimation of SWE by the model as compared to observations, whereas a 

negative relative bias indicates an underestimation.  

2.6.3 Snow phenology 

We analyzed three snow timing variables, snow start (SI), snow-off (SO), and snow duration (SD). SI is the first day of the 

water year when the SWE is greater than or equal to 10 mm (Pan et al., 2003; Sobie and Murdock, 2022). This 10mm threshold 190 

avoids a false end corresponding to periods when SWE intermittently appears and melts due to temperature fluctuations at the 

start of the cold season. SO is the first day of 14 consecutive days when the SWE is zero. This condition avoids a false end. 

SD is calculated as the difference between SO and SI. These metrics are also calculated for simulations and observations. 

2.6.4 Snowmelt contribution to streamflow 

The contribution of snowmelt water to streamflow was quantified using a snowmelt tracking algorithm developed by Li et al. 195 

(2017). The algorithm monitors snowmelt water in surface water, soil, and the atmosphere. The fraction of streamflow 

originating from snowmelt (𝑓𝑄,𝑠𝑛𝑜𝑤) was determined using meteorological data, modeled surface, and subsurface runoff and 

baseflow fluxes, and water balance equations. The calculation of 𝑓𝑄,𝑠𝑛𝑜𝑤 is as follows: 

𝑓𝑄,𝑠𝑛𝑜𝑤 =  
∑ 𝑄𝑠𝑛𝑜𝑤

∑ 𝑄
            (4) 
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where 𝑄𝑠𝑛𝑜𝑤 represents the streamflow originating from snow, and Q denotes the total streamflow. Streamflow at each time 200 

step t is the sum of baseflow and surface runoff.  Given that this metric is not compared with SNOTEL observations, the 

simulations are performed for a longer time period (1979 to 2015). 

2.6.5 Relative model performance chart 

For all the metrics discussed above, we provide a relative model performance (RMP) chart. When multiple models are 

compared, RMP can be quantified for each simulation instance and the results aggregated into an RMP chart. This is commonly 205 

used in comparing machine learning models (e.g., Gharsallaoui et al. (2024); Thapa et al. (2024)). For any simulation instance, 

the RMP of a specific model is the difference in that model’s performance as compared to that of the best-performing model. 

If the model under consideration is the best-performing one, the RMP value will be zero. If not, the RMP provides an indication 

of how far the model’s performance is from the best-performing model.  RMP can be quantified for any performance metric 

and aggregated into an RMP chart where the X-axis corresponds to different RMP levels, and the Y-axis is the fraction of 210 

simulation instances with a particular RMP level. The closer a model’s RMP curve is to the Y-axis and for longer, the better. 

The length of a model’s curve exactly on the Y-axis (i.e., RMP equals zero) indicates how frequently the model is best 

performing, and the distance of the curve from the Y-axis indicates how much worse the model’s performance is relative to 

the best model. In our case, the two models compared are the SRS and DRS implementations of precipitation partitioning, and 

the comparison instance is average performance values (e.g., mean absolute bias or NSE) for each SNOTEL station. So, the 215 

Y-axis values indicate what fraction of SNOTEL stations have specific RMP values for SRS and DRS partitioning. 

Table 1. Evaluation metrics used in this study 

Notations Short descriptions Formulas 

Peak SWE 

The maximum amount of SWE on the 

ground per snow season (water year) max[daily SWE]  (mm) 

Day of peak SWE Day of water year when peak SWE occurs Date{max[daily SWE]}  

𝑓𝑄,𝑠𝑛𝑜𝑤 Snowmelt driven streamflow 
𝑓𝑄,𝑠𝑛𝑜𝑤 =  

∑ 𝑄𝑠𝑛𝑜𝑤

∑ 𝑄
 

Snow-start  Start of snow season (water year) min(Date{daily SWE > 10 mm}) 

Snow-off  End of snow season (water year) 

After snow-start, min(Date{SWE = 0 for 14 

consecutive days}) 

Snow-duration  Length of snow season Duration between snow-start and snow-off 
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3. Results 

3.1 Change in peak SWE magnitude by switching from SRS to DRS 

Modeled average peak SWE across the 164 SNOTEL stations increased from 435 mm (SRS) to 534 mm (DRS), with an 220 

average increase of 27% (range 4% to 153%). The largest changes were observed over the stations with average daily 

temperatures within the 0-3°C  range (Figure 2a). Within each temperature range, larger changes correspond to lower RH 

levels. Overall, the largest percent increase was observed when the average daily RH was between 60% - 70% and daily 

average temperature was between 1° and 3°C for wet days (precipitation > 1mm) between November and April. Lower RH 

values than 60% would have larger changes, but we have limited data over these RH categories outside of very cold 225 

temperatures (Table S1).  Spatially, the largest percentage changes were in the Cascades region (Figure 2b), where elevations 

are lower than the Rockies (Figure 1) and winter temperatures on days with precipitation are warmer, often falling within the 

0-3°C range. Lower changes in peak SWE are observed in the colder temperature ranges (-5 to 0°C) across all RH levels 

(Figure 2a) because precipitation is already partitioned as snow at these temperatures, even with SRS partitioning. 

 230 

Figure 2. Change in modeled peak SWE by switching from SRS to DRS partitioning method. (a) Change in peak SWE magnitude 

by average daily temperature and relative humidity categories for wet days (precipitation > 1mm) between November and April for 

all station-year combinations. The heat map only shows values in category groups with at least five station-years (see Table S1 in 

Supplementary Materials). Most data (~78%) are within the red box. (b) Spatial map showing each station's average change in peak 

SWE (% change). The color bar for part b is on a log scale for visual clarity. 235 

3.2 Effect of switching from SRS to DRS on model-observation comparisons for all snow metrics 

3.2.1 Annual peak SWE magnitude and timing 

The SRS partitioning resulted in widespread underestimation (as compared to SNOTEL observations) of peak SWE (Figure 

3a) with an average annual underestimation of 179 mm across stations. Switching to the DRS partitioning significantly reduced 

this underestimation by around 50% (179mm to 87mm). While there is spatial variability in biases (Figures 3a and 3b) and 240 

changes in bias (Figure 3d), the DRS partitioning (Figure 3b) shows more regions with lower bias compared to the SRS method 

(Figure 3a). A similar pattern is observed in the relative difference between modeled and observed peak SWE (Figure S1a and 
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S1b in supplementary materials), with an average underestimation of 28% for the SRS partitioning, which reduces to 12% for 

the DRS partitioning.  

In the Cascades range, there is a mix of over- and under-estimations of modeled SWE compared to observations with 245 

the DRS method. In contrast, the Rocky Mountain range shows more spatial consistency in the direction of the difference. The 

relative performance chart (Figure 3c) illustrates that the DRS method (black line) achieves better performance (for mean 

annual bias) than the SRS method (gray line) for 78% of the stations. The 22% of stations where the DRS partitioning worsened 

the agreement of modeled SWE with observations were those that had a high agreement to begin with, and the additional snow 

with DRS partitioning degraded the simulation agreement with observations, often resulting in an overestimation of peak SWE 250 

(darker shades of blue in Figure 3b). 

 

Figure 3. The average bias in peak SWE (modeled - observed) over SNOTEL stations and the changes in bias between SRS and DRS 

precipitation partitioning methods.  (a) and (b) Bias in peak SWE magnitude for  SRS and DRS partitioning, respectively. (c) Relative 

model performance (RMP) chart: The Y-axis is the fraction of stations for which a particular RMP is achieved, and X-axis is the 255 
difference between each model's mean absolute bias (MAB) and the best-performing model's MAB. The closer a model’s curve is to 

the Y-axis and for longer, the better. The length of a model’s curve exactly on the Y-axis indicates how frequently the model is best 

performing, and the distance of the curve from the Y-axis indicates how much worse a model’s performance is relative to the best 
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model. See methods section 2.6.5 for more details on interpretation. (d) Change in absolute bias (|DRS| – |SRS|). The negative values 

(red) indicate where DRS partitioning reduced the bias, and positive values (blue) indicate where the bias got worse with the 260 
implementation of DRS partitioning. 

DRS improves model performance on the timing of peak SWE compared with SRS (Figures 4a and 4b). When using SRS 

partitioning, the mean timings of simulated annual peak SWE are 16 days earlier than observations on average. However, 

implementing DRS partitioning reduces this difference to 8 days, improving the alignment of the timings of model-simulated 

peak SWE with observed data by about 50%. Approximately 86% of the stations showed improvement in the timings of peak 265 

SWE with the DRS method (Figure 4c). Even where the DRS method is not the best performing, its performance remains 

relatively close to that of the SRS method, with a median difference of 2 days and a maximum difference of 10 days. In 

contrast, when the SRS method is not best performing, it can be worse than the DRS by a median of 9 days and as large as 50 

days for some locations (Figure 4c), highlighting its potential limitations. 

 270 

Figure 4. The average bias in peak SWE timing (modeled - observed) over SNOTEL stations and the changes in bias between SRS 

and DRS partitioning. (a) and (b) Bias in peak SWE timing for SRS and DRS partitioning, respectively. (c) Relative model 

performance (RMP) chart. See Figure 3 caption and methods section 2.6.5 for more details on interpretation. (d) Change in absolute 

bias (|DRS| – |SRS|). The negative values (red) indicate where DRS partitioning reduced the bias, and positive values (blue) indicate 

where the bias got worse with the implementation of DRS partitioning. 275 
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3.2.2 Daily SWE magnitude 

DRS partitioning performs better for daily SWE, with an average NSE of 0.63, compared to 0.55 for SRS partitioning (Figures 

5a and 5b). Additionally, the DRS method achieved high accuracy (NSE ≥ 0.66) at half of the stations, compared to only one-

third for the SRS method. Overall, the DRS method improved results at 76% of stations, with an average NSE increase of 0.3 

(Figure 5c). The number of stations with negative NSE values reduced from 33 (SRS) to 20 (DRS) (Figures 5a and 5b gray 280 

points). 

 

 

Figure 5.  Model performance (NSE) of daily SWE for SRS and DRS partitioning for the snow season (November through April) 

and the difference in performance. (a) SRS method (b) DRS method. The gray color points in a) and b) indicate the stations with 285 
NSE smaller than 0. (c) Relative model performance (RMP) chart. See Figure 3 caption and methods section 2.6.5 for more details 

on interpretation. (d) Change in NSE (DRS – SRS). The negative value (red) color indicates where DRS method degraded the NSE, 

and positive value (blue) indicates where it improved the NSE. 

In terms of mean relative bias, similar to the NSE metric, there were substantial reductions (-30% to -4% bias) across the snow 

season (i.e., November-April) when transitioning from SRS to DRS partitioning. The bias with the DRS method is nearly zero 290 

during mid-winter (December to Feb). However, bias persists in the warmer shoulder months of November (start of snow 

season) and April (end of snow season). In November, the relative bias reduced from ~45% (SRS) to -9% (DRS) (Figure 6). 

In April, the relative bias reduced from -46% (SRS) to -23% (DRS). Overall, the DRS method reduced the relative bias in 

approximately 75% of the stations, with an average reduction of 19% across these stations.  
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 295 

Figure 6. Box plot of average percent relative bias of mean daily SWE over each winter-season month (November-April) for the SRS 

and DRS partitioning method. The lower and higher edges of the box represent the first (Q1) and third (Q3) quartiles, respectively, 

indicating the interquartile range (IQR). The black line inside the box represents the median value. The whiskers extend to 1.5 *IQR 

from the lower and upper quartiles, while outliers beyond this range are not shown. 

3.2.3 Snow phenology 300 

In examining the snow phenology metrics, we observed distinct differences in performance between DRS and SRS partitioning 

across metrics. In terms of snow-start, the mean bias is almost fully reduced from ~7 days (SRS) to ~0 days (DRS) (Figures 

7a and 7b). The RMP chart also shows that the DRS method outperforms SRS across 73% of stations (Figure 7c). However, 

the comparison switches for the snow-off metric with the mean error worsening from ~0 (SRS)  to ~11 days (DRS) (Figures 

7d and 7e). Note, however, that with SRS partitioning, very few stations have 0 average error, but positive and negative 305 

differences across stations cancel each other out to give an average mean error of ~0 (Figure 7d).  Since overall snow duration 

depends on snow-off and snow-start, the increased snow-off errors translate to higher snow-duration errors for the DRS 

method. The DRS method shows an average overestimation of 13 days (Figure 7h), whereas the SRS method indicates an 

underestimation of approximately 4 days (Figure 7g). 

https://doi.org/10.5194/egusphere-2024-2284
Preprint. Discussion started: 16 August 2024
c© Author(s) 2024. CC BY 4.0 License.



14 

 

 310 

Figure 7. The average bias and change in bias for snow phenology metrics (modeled - observed) for SRS and DRS partitioning. The 

columns represent the three-phenology metrics: snow-start (a, b, c), snow-off (d, e, f), and snow-duration (g, h, i). The spatial maps 

in the first row (a, d, g) and second row (b, e, h) show average bias in snow phenology metrics using SRS and DRS partitioning 

methods, respectively. The third row (c, f, i) shows the Relative Model Performance (RMP) Chart. See Figure 3 caption and methods 

section 2.6.5 for more details on interpretation. 315 

3.3 Contribution of snowmelt to streamflow 

We used the snowmelt tracking algorithm (Li et al., 2017) to analyze the impact of switching from SRS to DRS partitioning 

on the estimations of snowmelt contribution to streamflow (i.e. 𝑓𝑄,𝑠𝑛𝑜𝑤). The average snowmelt contribution increased from 

56% (SRS) to 64% (DRS) (Figures 8a and 8b). The difference map (Figure 8c) highlights that this direction of increase is 

largely consistent across all stations (blue values). The average increase in 𝑓𝑄,𝑠𝑛𝑜𝑤 values is approximately 8%, with some 320 

locations experiencing up to an 18% increase. The highest increase is observed in lower elevation, warmer areas, particularly 
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in the Cascades and the southern regions of the Rockies.  Given that observations of 𝑓𝑄,𝑠𝑛𝑜𝑤  do not exist, a model-observation 

agreement comparison is not possible. 

 

Figure 8. Spatial map of average 𝒇𝑸,𝒔𝒏𝒐𝒘 for the period 1979-2015 (a) SRS (b) DRS (c) change in 𝒇𝑸,𝒔𝒏𝒐𝒘 by switching to DRS from 325 

SRS method (i.e., 𝒇𝑸,𝒔𝒏𝒐𝒘,𝑫𝑹𝑺 – 𝒇𝑸,𝒔𝒏𝒐𝒘,𝑺𝑹𝑺). 

3.4 Drivers of changes in peak SWE error (model – observations) between SRS and DRS 

 

Figure 9. Percent bias in peak SWE and average temperature, elevation, and fraction of accumulative precipitation to peak SWE 

for bins of % change in bias in increments of 10% change in bias. Only bins with at least 8 stations are displayed and this corresponds 330 
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to 84% of the stations. Bins 1, 2, and 3 with negative changes in bias correspond to performance improvements with DRS. Bin 4, 

with a positive change in bias corresponds to degradation in performance with DRS. For each bin, the distribution of four aspects 

are provided across the stations within each bin. These include (a) biases of SRS and DRS methods, (b) average daily temperatures 

wet days (precipitation > 1mm) during the snow season (November-April), (c) elevation, and (d) the ratio of cumulative precipitation 

from October 1st until peak SWE has been attained and the peak SWE value from SNOTEL observations. This is to get a sense of 335 
potential precipitation undercatch issues.  

The 164 SONTEL stations were binned into groups based on their percent change in average peak SWE bias (in increments 

of 10%) when switching from SRS to DRS (|DRS %bias| - |SRS %bias|). Only bins with at least 8 stations were analyzed 

resulting in four bins (Figure 9).  Bins 1, 2, and 3 comprise stations with improvements in peak SWE performance with the 

DRS methods with decreasing levels of improvements (Figure 9a). They also have a decreasing pattern of average temperatures 340 

(Figure 9b), increasing pattern of elevations (Figure 9c), and decreasing patterns of the precipitation to SWE ratio (Figure 9d). 

Bin 4 comprises stations with degradation in performance. These stations had low errors to begin with even with the SRS 

method (Figure 9a), and additional snow with the DRS method resulted in an overestimation of peak SWE. While this set of 

stations had similar elevation ranges as Bin 1, where the performance improvements with DRS were highest, stations in Bin 4 

are relatively colder than Bin 1. 345 

Bin 1 comprises stations with relatively large biases with the SRS method and with the largest improvements with 

the switch to the DRS method. There are generally low-elevation stations (Figure 9c) with daily average snow-season 

temperatures in the 0-3 °C range and relatively larger precipitation to SWE ratios. Bin 3 comprises stations that had biases 

with the SRS method that could not be improved much with the DRS method. These are relatively colder (Figure 9b), high 

elevation (Figure 9c) areas where the SRS method itself should have handled the precipitation partitioning well. However, the 350 

ratio of precipitation to peak SWE is very low, indicating that this set of stations might have potential issues with precipitation 

observations and there is just not enough precipitation to translate to observed SWE values by any model. 

4. Discussion 

The dynamic partitioning resulted in more snow than the static method across all 164 SNOTEL stations analyzed, similar to 

previous findings across the western US  (Jennings and Molotch, 2019). The estimation increases in snow magnitude were 355 

more prominent when temperatures ranged between 0-3°C and in lower RH conditions. This temperature range is consistent 

with other work that has demonstrated that regions most impacted by changes in rain-snow partitioning are typically those 

with winter temperatures near freezing 0°C (Ding et al., 2014; Jennings et al., 2018; Nolin and Daly, 2006). More snow in low 

RH conditions also makes physical sense as falling snowflakes experience evaporative cooling in dry air, allowing it to remain 

frozen at higher temperatures (Harpold et al., 2017). 360 

Moreover, this additional snow (from dynamic partitioning) better aligned modeled SWE with observations in most 

cases. Jennings and Molotch, (2019) demonstrated that the DRS method resulted in better agreement of modeled daily SWE 

and snow depth for eleven research stations. This work demonstrates the same for a more comprehensive set of 164 SNOTEL 

stations across the western US and for a larger set of metrics: magnitude and timing of peak SWE, overall daily SWE, and 
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snow phenology). There are three exceptions that resulted in either a degradation of model performance or in a limited change 365 

in performance by switching from SRS to DRS partitioning. The first relates to degradation in estimates of  snow-off dates, 

which also resulted in a degradation of snow duration estimates. This is likely a result of the larger relative bias in simulated 

SWE in the shoulder month of April (Figure 6).  A possible explanation is that snowmelt plays a significant role in determining 

late-season SWE, and imperfections in the model melt dynamics — an aspect that would not be resolved by transitioning from 

a static to dynamic precipitation phase partitioning. The second exception is that even for the metrics that by and large see 370 

model performance improvements, degradations are observed in some stations (12% to 25% of stations, depending on the 

metric) (Figures 3c, 4c, 5c, and 7c). These are likely stations where the SRS partitioning itself was working well and additional 

snow with a switch to a DRS method resulted in overestimation of SWE (Figure 9a Bin4). The third exception is a set of 

stations with minimal changes in simulated metrics between SRS and DRS partitioning. These stations typically correspond 

to higher elevations—with colder winter temperatures (Figure 9b)—where winter precipitation is partitioned as snow in both 375 

methods. The likely reason for persistent larger errors in some of these stations are precipitation undercatch issues (Figure 9d) 

which are unrelated to precipitation phase partitioning.    

Discrepancies between modeled and observed SWE have been reported by multiple studies (Broxton et al., 2016; 

Cho et al., 2022; Hamlet et al., 2005; Islam and Déry, 2017; Pan et al., 2003; Wang et al., 2019). However, normally they have 

been attributed to errors in meteorological inputs due to issues such as precipitation undercatch (e.g., Cho et al., 2022; Hamlet 380 

et al., 2005; Islam and Déry, 2017; Pan et al., 2003). This work, however, demonstrates that model improvements in-and-of-

itself can reduce a large fraction of errors (e.g ~50% average improvements in peak SWE across 82% of stations with 

improvements).  Moreover, addressing this issue will help us better attribute the remaining error to other sources, including 

issues with meteorological data or other processes like snowmelt dynamics.  

The importance of accurate rain-snow partitioning in hydrological models becomes even more critical under climate 385 

change simulations, as the partitioning directly influences runoff generation, soil moisture, groundwater recharge, and snow 

albedo feedback (e.g., Harder and Pomeroy, 2014; Jennings and Molotch, 2019). SRS partitioning can lead to misleading 

interpretations of higher levels of reduction in snowpack with warming (Harpold et al., 2017). This is even more relevant in 

regions where decreasing trends in RH have been projected (Byrne and O’gorman, 2016; Harpold and Brooks, 2018) given 

that the differences in SWE estimated by SRS and DRS methods are larger under lower RH levels (Figure 2a).  Additionally, 390 

a higher contribution of snowmelt to runoff with DRS partitioning (8% average) (Figure 8c) could result in fewer projected 

transitions from snow-dominant to transitional or rain-dominant watersheds, though this would need further investigation.  

This transition is a key focus area of several studies (e.g., (Foster et al., 2016; Li et al., 2017; Schnorbus et al., 2014; Tohver 

et al., 2014)) and transitioning to a DRS partitioning can provide a more accurate picture of these impacts. 

Some limitations in our approach can affect interpretations.  A key aspect relevant to any work comparing modeled 395 

snow to point observations is a scale mismatch.  Coarser resolution of gridded input datasets to models fail to capture the fine-

scale variability seen in point measurements and may smooth out extremes and variability that are crucial for accurate snow 

modeling (Lundquist et al., 2015). Additionally, modeled processes are prioritized to be scale-appropriate (Archfield et al., 
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2015) and the key processes might be different at the observational point scale of SNOTEL stations. While we minimize the 

impact of scale mismatch by restricting our analysis only to grids where the elevations are close to the corresponding SNOTEL 400 

station, and running the model using the SNOTEL elevation, the comparison cannot be perfect.  

Moreover, the SNOTEL observations themselves have inaccuracies for multiple reasons. This includes precipitation 

undercatch, particularly during snowfall events (e.g., Pan et al., 2003; Scalzitti et al., 2016) resulting from wind effects and 

limitations of precipitation gauges, leading to an underestimation of precipitation and subsequently modeled SWE. Another 

source of error is snowdrift—which can cause snow to accumulate unevenly across landscape features (Meyer et al., 2012; 405 

Sun et al., 2019). Lack of appropriate maintenance at stations (e.g., keeping clear of vegetation) and extraneous influences like 

animal activity can also contribute to errors (Meromy et al., 2013). These issues with observations create challenges in 

attributing differences between modeled data and observations as model error.  

Finally, our dynamic partitioning approach only integrates the effect of the key driver, relative humidity. More 

comprehensive partitioning approaches that integrate other physical factors or region-specific modeling of relationships using 410 

physical and artificial intelligence approaches can help improve the partitioning further. 

5. Conclusions 

Our findings demonstrate that employing more dynamic representations of rain-snow partitioning temperature thresholds can 

lead to significant bias reductions in modeled snow magnitude and timing (~50% reduction on average), and align modeled 

output more closely with observations. Most hydrology model applications continue to rely on simple static precipitation phase 415 

partitioning. Our results underscore the need for the hydrology modeling community to adopt dynamic methods of precipitation 

partitioning (e.g., Jennings et al., (2018)) as a routine practice. As a key sensitive parameter of hydrology models with respect 

to snow processes (Sepúlveda et al., 2022; Singh et al., n.d.), this transition would be critical for a better understanding of 

model behavior, improvements in model accuracies,  and ultimately better support of water resources management. This is 

especially important also for realistic climate change assessments that quantify reductions in snowpack or transitions of 420 

watersheds from snow-dominant to rain-dominant regimes in a warming climate. 

 

Code availability. The VIC-CropSyst model code is available in the following GitHub repository 

(https://github.com/mingliangwsu/VIC-CropSyst-Package.git). The codes used in this study are available from the 

corresponding author upon reasonable request. 425 

 

Data availability. Input data are all from public sources that are referenced in the methodology section.  Any intermediate 

model output will be made available by the authors upon request. 
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