Preprints
https://doi.org/10.5194/egusphere-2024-1434
https://doi.org/10.5194/egusphere-2024-1434
31 May 2024
 | 31 May 2024

Global catalog of soil moisture droughts over the past four decades

Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, and Miroslav Trnka

Abstract. At the global scale, droughts can be described by many variables, expressing their extent, duration, dynamics and severity. To identify common features in global land drought events (GLDEs) based on soil moisture, we present a robust method for their identification and classification (cataloging). Gridded estimates of root-zone soil moisture from the SoilClim model and the mesoscale Hydrologic Model (mHM) were calculated over global land from 1980–2022. Using the 10th percentile thresholds of soil moisture anomalies and OPTICS clustering of the gridded data in a 10-day interval, a total of 775 GLDEs from SoilClim and 630 GLDEs from mHM were identified. By utilizing four spatiotemporal and three motion-related characteristics for each GLDE, we established threshold percentiles based on their distributions. This information enabled us to categorize droughts into seven severity categories (ranging from extremely weak to extremely severe) and seven dynamic categories (ranging from extremely static to extremely dynamic). Our global-scale synthesis revealed the highest relative proportions of extremely severe and extremely dynamic GLDEs in the South American region, followed by North America, while the single longest and most extensive GLDEs occurred in Eurasia. The severity and dynamic categories overlapped substantially for extremely severe and extremely dynamic droughts but very little for less severe/dynamic categories, despite some very small droughts that have occasionally been very dynamic. The frequency of GLDEs has generally increased in recent decades across different drought categories but is statistically significant only in some cases. Overall, the cataloging of GLDEs presents a unique opportunity to analyze the evolving features of spatiotemporally connected drought events in recent decades and provides a basis for future investigations of the drivers and impacts of dynamically evolving drought events.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, and Miroslav Trnka

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1434', Samuel Jonson Sutanto, 08 Jul 2024
    • AC1: 'Reply on RC1', Jan Řehoř, 23 Sep 2024
  • RC2: 'Comment on egusphere-2024-1434', Louise Mimeau, 17 Jul 2024
    • AC2: 'Reply on RC2', Jan Řehoř, 23 Sep 2024
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, and Miroslav Trnka
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, and Miroslav Trnka

Viewed

Total article views: 561 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
434 98 29 561 18 15 19
  • HTML: 434
  • PDF: 98
  • XML: 29
  • Total: 561
  • Supplement: 18
  • BibTeX: 15
  • EndNote: 19
Views and downloads (calculated since 31 May 2024)
Cumulative views and downloads (calculated since 31 May 2024)

Viewed (geographical distribution)

Total article views: 534 (including HTML, PDF, and XML) Thereof 534 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 17 Jan 2025
Download
Short summary
We present a robust method for identification and classification of global land drought events (GLDEs) based on soil moisture. Two models were used to calculate soil moisture and delimit soil drought over global land from 1980–2022, which was clustered into 775/630 GLDEs. Using four spatiotemporal and three motion-related characteristics, we categorized GLDEs into seven severity and seven dynamic categories. The frequency of GLDEs has generally increased in recent decades.