Preprints
https://doi.org/10.5194/egusphere-2024-1428
https://doi.org/10.5194/egusphere-2024-1428
17 May 2024
 | 17 May 2024

Warming effects of reduced sulfur emissions from shipping

Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Kenneth S. Carslaw

Abstract. The regulation introduced in 2020 that limits the sulfur content in shipping fuel has reduced sulfur emissions over global open oceans by about 80 %. This is expected to have reduced aerosols that both reflect solar radiation directly and affect cloud properties, with the latter also changing the solar radiation balance. Here we investigate the impacts of this regulation on aerosols and climate in the HadGEM3-GC3.1 climate model. The global aerosol effective radiative forcing caused by reduced shipping emissions is estimated to be 0.13 W m-2, which is equivalent to about 50 % of the positive forcing caused by the global reduction in all anthropogenic aerosols since late 20th century. Ensembles of global coupled simulations from 2020–2049 predict a global mean warming of 0.04 K averaged over this period. Our simulations are not clear on whether the global impact is yet to emerge or has already emerged because the present-day impact is masked by variability. Nevertheless, the impact of shipping emission reductions will have either already committed us to warming above the 1.5 K Paris target or will represent an important contribution that may help explain part of the rapid jump in global temperatures over the last 12 months. Consistent with previous aerosol perturbation simulations, the warming is greatest in the Arctic, reaching a mean of 0.15 K Arctic-wide and 0.3 K in the Atlantic sector of the Arctic (which represents greater than 10 % increase in the total anthropogenic warming since pre-industrial times).

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

11 Dec 2024
| Highlight paper
Warming effects of reduced sulfur emissions from shipping
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024,https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary Executive editor
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Strong reduction of sulfur emission from shipping since 2020 provides a rare opportunity to...
Short summary
Sulfur emissions from shipping has been reduced by about 80 % as a result of the new regulation...
Share