Preprints
https://doi.org/10.5194/egusphere-2024-1370
https://doi.org/10.5194/egusphere-2024-1370
03 Jun 2024
 | 03 Jun 2024

Estimation of seasonal methane fluxes over a Mediterranean rice paddy area using the Radon Tracer Method (RTM)

Roger Curcoll, Josep-Anton Morguí, Alba Àgueda, Lídia Cañas, Sílvia Borràs, Arturo Vargas, and Claudia Grossi

Abstract. The Ebro River Delta, in the northwestern Mediterranean basin, has an extension of 320 km2 and is mainly covered by rice fields. In the framework of the ClimaDat project, the greenhouse gases atmospheric station DEC was installed in this area in 2013. The DEC station was equipped, among others, with a Picarro G2301 instrument and an ARMON (Atmospheric Radon Monitor) to measure both CH4 and CO2, and 222Rn concentrations, respectively.

The variability of methane fluxes over this area and during the different phases of the rice production cycle was evaluated in this study by using the Radon Tracer Method (RTM). The RTM was carried out using: i) nocturnal hourly atmospheric measurements of CH4 and 222Rn between 2013 and 2019; and ii) FLEXPART-WRF back-trajectories coupled with radon flux maps for Europe with a resolution of 0.05º x 0.05º available thanks to the project traceRadon. Prior to the calculation of methane fluxes by RTM, the FLEXPART-WRF model and the traceRadon flux maps were evaluated by modelling atmospheric radon concentrations at DEC station and comparing them with observed data.

RTM based methane fluxes show a strong seasonality with maximums in October (13.9 mg CH4 m-2 h-1), corresponding with the period of harvest and straw incorporation in rice crop fields, and minimums between March and June (0.2 mg CH4 m-2 h‑1 to 0.6 mg CH4 m-2 h-1). The total estimated methane annual emission was about 262.8 kg CH4 ha‑1. These fluxes were compared with fluxes directly measured with static accumulation chambers by other researchers in the same area. Results show a stunning agreement between both methodologies, both having a very similar annual cycle and monthly mean absolute values.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

26 Jun 2025
Estimation of seasonal methane fluxes over a Mediterranean rice paddy area using the Radon Tracer Method (RTM)
Roger Curcoll, Alba Àgueda, Josep-Anton Morguí, Lídia Cañas, Sílvia Borràs, Arturo Vargas, and Claudia Grossi
Atmos. Chem. Phys., 25, 6299–6323, https://doi.org/10.5194/acp-25-6299-2025,https://doi.org/10.5194/acp-25-6299-2025, 2025
Short summary
Roger Curcoll, Josep-Anton Morguí, Alba Àgueda, Lídia Cañas, Sílvia Borràs, Arturo Vargas, and Claudia Grossi

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1370', Fabian Maier, 24 Jul 2024
    • AC1: 'Reply on RC1', Roger Curcoll Masanes, 15 Nov 2024
  • RC2: 'Comment on egusphere-2024-1370', Scott Chambers, 22 Aug 2024
    • AC2: 'Reply on RC2', Roger Curcoll Masanes, 15 Nov 2024
  • RC3: 'Comment on egusphere-2024-1370', Dafina Kikaj, 24 Sep 2024
    • AC3: 'Reply on RC3', Roger Curcoll Masanes, 15 Nov 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1370', Fabian Maier, 24 Jul 2024
    • AC1: 'Reply on RC1', Roger Curcoll Masanes, 15 Nov 2024
  • RC2: 'Comment on egusphere-2024-1370', Scott Chambers, 22 Aug 2024
    • AC2: 'Reply on RC2', Roger Curcoll Masanes, 15 Nov 2024
  • RC3: 'Comment on egusphere-2024-1370', Dafina Kikaj, 24 Sep 2024
    • AC3: 'Reply on RC3', Roger Curcoll Masanes, 15 Nov 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Roger Curcoll Masanes on behalf of the Authors (27 Dec 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (21 Jan 2025) by Chris Wilson
RR by Scott Chambers (31 Jan 2025)
ED: Reconsider after major revisions (11 Feb 2025) by Chris Wilson
AR by Roger Curcoll Masanes on behalf of the Authors (23 Mar 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (26 Mar 2025) by Chris Wilson
AR by Roger Curcoll Masanes on behalf of the Authors (29 Mar 2025)  Author's response   Manuscript 

Journal article(s) based on this preprint

26 Jun 2025
Estimation of seasonal methane fluxes over a Mediterranean rice paddy area using the Radon Tracer Method (RTM)
Roger Curcoll, Alba Àgueda, Josep-Anton Morguí, Lídia Cañas, Sílvia Borràs, Arturo Vargas, and Claudia Grossi
Atmos. Chem. Phys., 25, 6299–6323, https://doi.org/10.5194/acp-25-6299-2025,https://doi.org/10.5194/acp-25-6299-2025, 2025
Short summary
Roger Curcoll, Josep-Anton Morguí, Alba Àgueda, Lídia Cañas, Sílvia Borràs, Arturo Vargas, and Claudia Grossi
Roger Curcoll, Josep-Anton Morguí, Alba Àgueda, Lídia Cañas, Sílvia Borràs, Arturo Vargas, and Claudia Grossi

Viewed

Total article views: 891 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
439 202 250 891 59 29 36
  • HTML: 439
  • PDF: 202
  • XML: 250
  • Total: 891
  • Supplement: 59
  • BibTeX: 29
  • EndNote: 36
Views and downloads (calculated since 03 Jun 2024)
Cumulative views and downloads (calculated since 03 Jun 2024)

Viewed (geographical distribution)

Total article views: 850 (including HTML, PDF, and XML) Thereof 850 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 26 Jun 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
In this work, the methane emissions from the rice crops of the Ebro Delta were estimated with the Radon Tracer Method, using backtrajectories and radon and methane observations. Estimated fluxes show a strong seasonality with maximums in October, corresponding with the period of harvest and straw incorporation. The estimated annual methane emission was about 262.8 kg CH4 ha‑1. Results were compared with fluxes obtained with static chambers showing a stunning agreement between both methodologies.
Share