Preprints
https://doi.org/10.5194/egusphere-2024-1204
https://doi.org/10.5194/egusphere-2024-1204
05 Jun 2024
 | 05 Jun 2024

Exploring the Crucial Role of Atmospheric Carbonyl Compounds in Regional Ozone heavy Pollution: Insights from Intensive Field Observations and Observation-based modelling in the Chengdu Plain Urban Agglomeration, China

Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li

Abstract. Gaseous carbonyl compounds serve as crucial precursors and intermediates in atmospheric photochemical reactions, significantly contributing to ambient ozone formation. To investigate the impact of gaseous carbonyls on regional ozone pollution, simultaneous field observations and observation-based modelling of ambient carbonyls were conducted at nine sites within the Chengdu Plain Urban Agglomeration (CPUA), China during August 4–18, 2019, when three episodes of regional heavy ozone pollution occurred across eight cities within CPUA. Throughout the study, the total mixing ratios of 15 carbonyls ranged from 10.70 to 35.18 ppbv, in which formaldehyde (48.1 %), acetone (19.9 %), and acetaldehyde (17.5 %) were most abundant within the CPUA. Ambient levels of carbonyls and ozone showed some positive correlations in space (especially pronounced around Chengdu in both northern and southern directions) and in diurnal variations with higher concentrations of carbonyls during ozone pollution episodes. Photochemical reactivity analysis emphasized the significant contributions of carbonyls, especially formaldehyde and acetaldehyde, to ozone formation. The ozone formation sensitivity for sites experiencing severe ozone pollution were classified as VOCs-limited regime, while others were categorized as transitional regime. Local primary emissions, mutual air transportation among cities within the CPUA and photochemical secondary processes were recognized to contribute significantly to the production or the contamination of carbonyls in ambient air, with alkenes and alkanes being important secondary precursors of carbonyls. This study highlights the pivotal role of carbonyls in heavy ozone pollution within the CPUA, China, providing valuable scientific insights to guide the development of effective countermeasures for regional ozone pollution control in the future.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

12 Feb 2025
Atmospheric carbonyl compounds are crucial in regional ozone heavy pollution: insights from the Chengdu Plain Urban Agglomeration, China
Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li
Atmos. Chem. Phys., 25, 1899–1916, https://doi.org/10.5194/acp-25-1899-2025,https://doi.org/10.5194/acp-25-1899-2025, 2025
Short summary
Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1204', Rob MacKenzie, 22 Aug 2024
    • AC1: 'Reply on RC1', jiemeng Bao, 18 Sep 2024
  • RC2: 'Comment on egusphere-2024-1204', Anonymous Referee #2, 27 Sep 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1204', Rob MacKenzie, 22 Aug 2024
    • AC1: 'Reply on RC1', jiemeng Bao, 18 Sep 2024
  • RC2: 'Comment on egusphere-2024-1204', Anonymous Referee #2, 27 Sep 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by jiemeng Bao on behalf of the Authors (25 Oct 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to minor revisions (review by editor) (05 Nov 2024) by Rob MacKenzie
AR by jiemeng Bao on behalf of the Authors (15 Nov 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to technical corrections (13 Dec 2024) by Rob MacKenzie
AR by jiemeng Bao on behalf of the Authors (19 Dec 2024)  Author's response   Manuscript 

Journal article(s) based on this preprint

12 Feb 2025
Atmospheric carbonyl compounds are crucial in regional ozone heavy pollution: insights from the Chengdu Plain Urban Agglomeration, China
Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li
Atmos. Chem. Phys., 25, 1899–1916, https://doi.org/10.5194/acp-25-1899-2025,https://doi.org/10.5194/acp-25-1899-2025, 2025
Short summary
Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li
Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li

Viewed

Total article views: 806 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
291 98 417 806 44 28 26
  • HTML: 291
  • PDF: 98
  • XML: 417
  • Total: 806
  • Supplement: 44
  • BibTeX: 28
  • EndNote: 26
Views and downloads (calculated since 05 Jun 2024)
Cumulative views and downloads (calculated since 05 Jun 2024)

Viewed (geographical distribution)

Total article views: 785 (including HTML, PDF, and XML) Thereof 785 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 12 Feb 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Our research in the Chengdu Plain Urban Agglomeration (CPUA), China, reveals significant correlations between carbonyl compounds and ozone pollution, particularly in Chengdu. Formaldehyde, acetone, and acetaldehyde are key contributors to ozone formation. Urgent collaborative actions among cities are needed to mitigate carbonyl-related ozone pollution, stressing the control of NOx and VOCs emissions. Our study offers crucial insights for crafting effective regional pollution control strategies.
Share