1	Exploring the Crucial Role of Atmospheric Carbonyl
2	Compounds in Regional Ozone heavy Pollution: Insights
3	from Intensive Field Observations and Observation-
4	based modelling in the Chengdu Plain Urban
5	Agglomeration, China
6 7	Jiemeng Bao ^{1,2} , Xin Zhang ^{1,2} , Zhenhai Wu ¹ , Li Zhou ³ , Jun Qian ⁴ , Qinwen Tan ⁵ , Fumo Yang ³ , Junhui Chen ⁶ , Yunfeng Li ⁷ , Hefan Liu ⁵ , Liqun Deng ⁶ , Hong Li ^{1*}
8 9	¹ Chinese Research Academy of Environmental Sciences, State Key Laboratory of Environmental Benchmarks and Risk Assessment, Beijing 100012, China
10 11 12	² School of Environmental Science and Engineering of Peking University, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Joint Laboratory of Regional Pollution Control International Cooperation of the Ministry of Education, Beijing 100871, China
13	³ College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
14	⁴ Sichuan Radiation Environment Management and Monitoring Central Station, Chengdu 611139, China
15	⁵ Chengdu Academy of Environmental Sciences, Chengdu 610046, China
16	⁶ Sichuan Academy of Eco-Environmental Sciences, Chengdu 610042, China
17 18	⁷ School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
19	Correspondence to: Hong Li (lihong@craes.org.cn)
20	Abstract. Gaseous carbonyl compounds serve as crucial precursors and intermediates
21	in atmospheric photochemical reactions, significantly contributing to ambient ozone
22	formation. To determine whether the impact of carbonyl compounds on regional ozone
23	pollution is driven by their abundance or by specific secondary chemical processes,
24	simultaneous field observations and observation-based modelling of ambient carbonyls
25	were conducted at nine sites within the Chengdu Plain Urban Agglomeration (CPUA),
26	China during August 4-18, 2019, when three episodes of regional heavy ozone pollution
27	occurred across eight cities within CPUA. Throughout the study, the total mixing ratios
28	of 15 carbonyls ranged from 10.7±4.2 to 35.2±13.4 ppbv. The spatial distribution reveal
29	that regions with higher concentrations of carbonyl compounds, such as around

删除了:,

Chengdu, are also areas with more severe ozone pollution. Both the abundance and the

36 chemical reactivity of carbonyl compounds, especially formaldehyde and acetaldehyde, 37 play crucial roles in ozone formation in the CPUA. On ozone pollution days, carbonyl concentrations significantly increased by 22.8% to 66.2%. While the abundance of 38 carbonyls is an important factor, their significant role in heavy ozone pollution within 39 40 the CPUA is primarily driven by secondary chemical processes, particularly those 41 involving alkenes and BVOCs. Sites with higher average ozone concentrations during 42 observations were mainly in the VOCs-limited regime, while others were in the 43 transitional regime. Additionally, the mutual transport of carbonyl compounds between 44 cities in the CPUA suggests that regional collaboration is essential to address ozone 45 pollution effectively. These findings offer valuable insights for developing effective

46 strategies to control regional ozone pollution.

Keywords: Gaseous Carbonyls; Ozone Heavy Pollution; Pollution Characteristics; 47

48 Atmospheric Photochemical Reactivity; Source Analysis; The Chengdu Plain Urban

49 Agglomeration, China

1. Introduction

50

63

51 Atmospheric carbonyl compounds play a pivotal role in tropospheric chemistry, acting as crucial precursors to both ozone (O₃) and secondary organic aerosols (SOA), 52 53 a fact recognized for decades (Altshuller, 1993; Grosjean and Seinfeld, 1989). Their 54 importance has been confirmed by numerous studies over the years (Guo et al., 2004; 55 Hallquist et al., 2009; Wang et al., 2020; Ye et al., 2021; Coggon et al., 2019). 56 highlighting their significant contribution to atmospheric photochemistry and air pollution. Over the past two decades, severe air pollution in China has driven substantial 57 58 research efforts to understand the contributions of carbonyl compounds to these 59 environmental challenges. Studies have shown that photolysis of carbonyl compounds is a major source of ROx radicals (Grosjean and Seinfeld, 1989; Zhang et al., 2016). 60 61 These compounds can be photolyzed and react with OH radicals to form a large number 62 of HO2 and RO2 radicals, which increase the atmospheric oxidation capacity and 删除了: in which formaldehyde (48.1%), acetone (19.9%), and acetaldehyde (17.5%) were most abundant within the CPUA. Ambient levels of carbonyls and ozone showed some positive correlations in space (especially pronounced around Chengdu in both northern and southern directions) and in diurnal variations with higher concentrations of carbonyls during ozone pollution episodes. Photochemical reactivity analysis emphasized the significant contributions of carbonyls, especially formaldehyde and acetaldehyde, to ozone formation.

删除了: The ozone formation sensitivity for sites experiencing severe ozone pollution were classified as VOCslimited regime, while others were categorized as transitional regime.

删除了: Local primary emissions, mutual air transportation among cities within the CPUA and photochemical secondary processes were recognized to contribute significantly to the production or the contamination of carbonyls in ambient air, with alkenes and alkanes being important secondary precursors of carbonyls. This study highlights the pivotal role of carbonyls in heavy ozone pollution within the CPUA, China, providing valuable scientific insights to guide the development of effective countermeasures for regional ozone pollution control in the future.

设置了格式: 非突出显示

设置了格式: 非突出显示

设置了格式: 非突出显示

设置了格式: 非突出显示

设置了格式: 非突出显示

移动了(插入) [2]

删除了: Atmospheric carbonyl compounds are an important group of volatile organic compounds (VOCs) and are common precursors of ozone and secondary organic aerosols. this category of VOCs has become a research hotspot in the

删除了: Guenther et al., 2012;

删除了:Y

删除了:

删除了: The free radicals formed from carbonyl compounds can not only increase atmospheric oxidation, but also

删除了: Y.

participate in the NOx photochemical cycle, leading to ozone formation (Zhang et al.,

2016; Meng et al., 2017). Additionally, dialdehydes such as glyoxal and methylglyoxal undergo heterogeneous reactions with aqueous particulate matter, rapidly forming SOA (Lou et al., 2010; Xue et al., 2016; Yuan et al., 2012). Ambient carbonyl compounds not only affect the environment but also pose direct health risks to humans. They can harm ecosystems through deposition and adsorption processes (Yang et al., 2018). They also pose direct health risks to humans, including sensitization, carcinogenesis, and mutagenicity (Fuchs et al., 2017).

Recent research has increasingly focused on understanding the spatial and

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

Recent research has increasingly focused on understanding the spatial and temporal variability of carbonyl compounds in highly polluted regions, particularly in China, where rapid industrialization has led to severe air quality challenges. Xue et al. (2013) and Duan et al. (2012) reported typical ambient concentrations of carbonyl compounds ranging from a few µg·m⁻³ to tens of µg·m⁻³ in urban areas, depending on the specific compounds and regions studied. For example, formaldehyde concentrations in highly polluted areas can exceed 10 μg·m⁻³. Shen et al. (2013) and Fu et al. (2008) observed significant diurnal variation, with higher concentrations of carbonyl compounds during the daytime, particularly in the afternoon, driven by photochemical production. Concentrations can increase by as much as 50-100% during peak sunlight hours compared to nighttime levels. Pang and Mu (2006) and Rao et al. (2016) identified key sources of carbonyl compounds, including vehicular emissions, industrial activities, and secondary formation from VOC oxidation in the atmosphere. In urban environments, vehicular emissions are often a dominant primary source, while secondary formation contributes significantly during daytime due to photochemical processes. The results highlight severe and spatiotemporal variations of carbonyl pollution in China. High levels are found mainly in the North China Plain(NCP), the Yangtze River Delta(YRD), and the Pearl River Delta(PRD)(Duan et al., 2008; Shao et al., 2009; Tan et al., 2018; Wang et al., 2018; Xue et al., 2014, 2013; Yang et al., 2017). Urban areas generally exhibit higher carbonyl levels than suburban and rural areas due 删除了: The heterogeneous reaction of dialdehyde compounds (e.g., glyoxal and methylglyoxal) with aqueous particulate matters can rapidly form secondary organic aerosols

删除了:(

删除了:s)

删除了: In addition, ambient carbonyl compounds could also be removed through wet and dry deposition, and soil and ocean adsorption, thereby adversely affecting the ecological environment.

下移了 [1]: The sources of Atmospheric carbonyl compounds can be divided into primary source and secondary source. Primary sources mainly include incomplete combustion of fossil fuels and biomass, industrial emissions, catering business emissions, and plant releases, etc; And secondary source is mainly from the secondary formation of atmospheric photochemical oxidation of VOCs (Xue et al., 2013).

上移了 [2]: Atmospheric carbonyl compounds could be photolyzed and react with OH radicals to form a large number

删除了: In addition, toxic and harmful atmospheric carbonyl compounds could have potential hazards such as

删除了: The sources of Atmospheric carbonyl compounds can be divided into primary source and secondary source.

移动了(插入) [4]

删除了: (Xue et al., 2013; Duan et al., 2012).(Shen et al., 2013; Fu et al., 2008)(Pang and Mu, 2006; Rao et al., 2016)

设置了格式: 突出显示

移动了(插入) [5]

设置了格式: 非突出显示

上移了 [3]: (Xue et al., 2013; Duan et al., 2012).

上移了 [5]: (Duan et al., 2008; Shao et al., 2009; Tan et al., 2018; Wang et al., 2018; Xue et al., 2014, 2013; Yang et al.,

上移了 [4]: (Shen et al., 2013; Fu et al., 2008)

删除了: At present, there are many studies on the concentration, diurnal variation and sources of carbonyl

删除了:. In the meantime, carbonyl compounds levels in urban areas are generally higher than those in suburban and

to human activities(Xue et al., 2013), Despite the progress made, significant gaps

remain in understanding the spatiotemporal distribution and source apportionment of carbonyl compounds, particularly in urban agglomerations. Existing research has primarily focused on urban areas in rapidly developing regions like the NCP, YRD, and PRD. Moreover, studies have often emphasized the overall role of VOCs in ozone pollution, with less attention given to specific carbonyl compounds and their individual contributions to atmospheric oxidation capacity and ozone formation (Meng et al.,

2017).

Monitoring carbonyl compounds in the atmosphere is challenging due to their typically low concentrations (ppt-ppb levels), necessitating highly sensitive analytical methods. The diversity of carbonyl compounds, including multiple isomers, requires highly selective analytical techniques for differentiation. Current measurement technologies limit our understanding of the spatiotemporal distribution of carbonyl compounds, affecting the accurate assessment of their environmental behavior, sources, and transport (Xue et al., 2013; Sahu and Saxena, 2015). While numerous studies have explored the role of carbonyl compounds in ozone production, many focus on general mechanisms rather than specific compounds or regional variations (Atkinson and Arey, 2003; Monks et al., 2015).

Atmospheric carbonyl compounds originate from both primary and secondary sources (Pang and Mu, 2006; Rao et al., 2016). Primary sources include the incomplete combustion of fossil fuels and biomass, industrial emissions, emissions from the catering industry, and releases from plants. Secondary sources arise from the atmospheric photochemical oxidation of VOCs (Xue et al., 2013), particularly alkenes, aromatics, and isoprene, which typically dominate the secondary formation of carbonyls. However, distinguishing between primary and secondary contributions remains challenging. Existing source apportionment methods, such as characteristic species ratios and multiple linear regression, often lack the resolution to differentiate these sources accurately, especially for non-vehicular emissions and secondary formation. The limitations of these methods underscore the need for more advanced

设置了格式: 非突出显示

删除了:

设置了格式: 非突出显示

设置了格式: 突出显示

设置了格式: 非突出显示

approaches to better quantify the secondary formation mechanisms of carbonyl compounds and their regional impact on ozone formation. Despite significant advancements in studying atmospheric carbonyls, key gaps remain in understanding their precise spatiotemporal distribution and source apportionment. Specifically, there is a need for studies that examine how carbonyls vary across different environments—urban, suburban, and rural—and during varying pollution events. Without such targeted analysis, our understanding of the behavior of carbonyl compounds and their contribution to ozone pollution remains incomplete, particularly in regions experiencing severe pollution.

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

This study focuses on atmospheric carbonyl compounds and their roles in photochemical pollution within the Chengdu Plain Urban Agglomeration (CPUA) of China. The CPUA includes eight cities: Chengdu, Mianyang, Deyang, Leshan, Meishan, Yaan, Suining, and Ziyang. This region has a developed economy and a high degree of internationalization. The CPUA is located on the western edge of the Sichuan Basin, surrounded by mountain ranges, which easily block airflow. The unique climatic environment of the CPUA features low wind speeds year-round, high frequency of static winds, short hours of sunshine, frequent winter inversions, and a pronounced heat island effect in summer. These climatic characteristics significantly impact the variations in air pollutant concentrations, making the region prone to ozone pollution in summer and haze pollution in winter, (Li et al., 2013; Hu et al., 2017; Zhang et al., 2010). Although previous studies have shown that ozone formation in urban Chengdu is primarily VOCs-limited (Tan et al., 2018), with aromatic hydrocarbons and alkenes contributing significantly to ozone generation in summer (Xu et al., 2020), these studies mainly focus on single cities and overall VOCs. There is still limited understanding of whether the significant roles of carbonyl compounds in ozone formation are primarily due to their abundance or whether specific chemical reactions involving carbonyls drive this process. This study aims to address these gaps by investigating the spatial distribution, sources, and specific chemical pathways of carbonyl compounds across

删除了: At present, the analysis methods for the sources of carbonyl compounds mainly include characteristic species ratio, source tracer proportion, multiple linear regression, parameterization method based on photochemical age, and acceptor model. There are usually differences in the source classifications obtained in different studies, due to the different methods of source analysis employed. But generally, for formaldehyde and acetaldehyde with high reactivities, their sources vary significantly across studies: and for acetone with low reactivity, the sources are relatively similar. However, current knowledge of the sources of carbonyl compounds is far from providing scientific support for air quality improvements. Meanwhile, most of the research on their health effects has focused on indoor carbonyl compounds (Yuan et al., 2013). Research on the health effects of atmospheric carbonyl compounds should be strengthened.

删除了: The Chengdu Plain Urban Agglomeration (CPUA) of China is centered

删除了: with Chengdu and includes eight cities at and above the prefecture level, including CDHKY, MY, DY, LS, MS, YA, SN and ZY, with a developed economy and a high degree of internationalization. The CPUA is located on the western edge of the Sichuan Basin, surrounded by mountain ranges, thus the airflow is easily blocked by the high mountains in the west. The CPUA has a unique climatic environment with low wind speeds year-round, high frequency of static winds, short hours of sunshine, many

删除了: In the autumn of 2016, Peking University and Chengdu Academy of Environmental Sciences carried out a comprehensive observation experiment of photochemical pollution at one urban site and three suburban sites, and found that the local ozone formation belonged to the VOC

删除了: based on the observation-based model (OBM)

删除了:

删除了: Chenxi Xu et al

删除了: analyzed the online observation data of VOCs in Chengdu from June to September 2019 and found that the aromatic hydrocarbons and alkenes in VOCs contributed greatly to the formation of ozone in Chengdu in summer.

the entire CPUA and assessing their contributions to regional ozone pollution and intercity air transport mechanisms.

To address these research gaps, this study involves an intensive field observation experiment conducted by the Sichuan Academy of Environmental Sciences, Peking University, Sichuan University and Chinese Academy of Environmental Sciences. Atmospheric carbonyl compounds were observed at nine sites in eight cities within the CPUA for 15 days during a period of heavy ozone pollution in August 2019. Samples were analyzed using 2,4-dinitrophenylhydrazine solid phase adsorption/high performance liquid chromatography (HPLC). The study aims to characterize the atmospheric carbonyl compounds in the CPUA, assess their influence on photochemical pollution, identify key carbonyl compounds that may play crucial roles in heavy ozone pollution in the CPUA, and evaluate the contribution of primary emissions, air pollution transport, and secondary generation to key carbonyl compounds through a combination of multivariate linear regression modeling and Observation-Based Modeling (OBM). This research aims to provide technical support for controlling carbonyl compounds pollution in the CPUA and to reduce their contributions to ozone pollution.

2. Materials and methods

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

2.1 Observation Sites Profile

In this study, a total of 9 off-line sampling sites for atmospheric carbonyl compounds were set up in 8 cities in the CPUA from August 4th to 18th, 2019(table S1). Considering that this study focused on the pollution characterization of carbonyl compounds in urban areas, one urban site was selected in each city. In addition, in order to compare and study the pollution characteristics of carbonyl compounds in the suburbs, a suburban site was set up in Xinjin County, Chengdu. For the selection of urban sites in each city, priority is given to those choices of set-up in the vicinity of the state-controlled site, and the perimeter of the sites should be open, unobstructed and no

删除了: However, the previous studies on the causes and sources of ozone pollution in the CPUA mainly focused on the contribution and sources of ozone formation by VOCs other than carbonyl compounds in Chengdu urban area. And there is a lack of research on the overall atmospheric levels of atmospheric carbonyl compounds in the CPUA and their effect on ozone formation during the same period.

删除了: In order to study the multi-dimensional causes of atmospheric ozone pollution and its management and prevention system in the CPUA, Sichuan Academy of Environmental Sciences

删除了: jointly carried out an intensive field observation experiment on the formation mechanisms of photochemical pollution in summer in the CPUA.

删除了: In this study, atmospheric carbonyl compounds were observed at 9 sites in 8 cities in the CPUA for 15 days

删除了:

删除了:

删除了: The purpose of this study is

删除了: and their influence on the formation of

删除了: to

删除了: the

删除了: have the potential to

删除了: the formation of

删除了: to

删除了: assess

删除了: the

删除了: ation

删除了: the

删除了: the

删除了: OBM

删除了:, so as to provide technical support for the control

删除了: J

删除了: County

删除了: City

obvious pollution sources, with convenient transportation and power supply. The distribution of specific sites is shown in Fig. 1._

Ozone concentrations were measured using the UV absorption method with a Thermo O₃ analyzer (Model 49i), with data sourced from national control stations near each sampling site. Nitrogen dioxide (NO₂) was measured by chemiluminescence following chemical conversion to nitric oxide (NO) using a molybdenum catalyst; however, this method is known to have interferences from other NOz species. Carbon monoxide (CO) was measured via infrared absorption with a Thermo instrument (Model 20). All Thermo instruments were carefully maintained and calibrated daily at 01:00 to ensure measurement accuracy. Measurements for ozone, NO₂, and CO were collected with a time resolution of one hour. Simultaneously, meteorological parameters—temperature, relative humidity (RH), wind speed, and direction—were recorded at each observation site using an automatic weather station (PC-4, JZYG, China), also at a one-hour resolution.

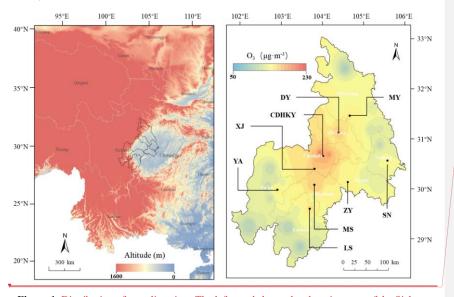
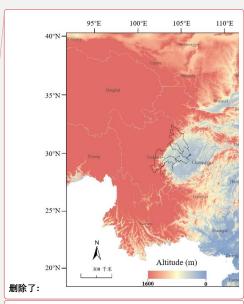



Figure 1. Distribution of sampling sites. The left panel shows the elevation map of the Sichuan Basin, highlighting the geographical features of the region, with elevation data sourced from the Geospatial Data Cloud (https://www.gscloud.cn/#page1/2). The right panel presents the spatial distribution of ozone concentrations in the CPUA during the observation period (August 4–18,

√设置了格式: 下标

删除了: Sampling sites distribution.

设置了格式:字体:(中文)宋体,五号

设置了格式:字体:(中文)宋体,五号

设置了格式:字体:(中文)宋体,五号

2019), with ozone data obtained from national control stations near each sampling site. Black dots represent the locations of the sampling sites, labeled as follows: MY (Mianyang), DY (Deyang), CDHKY (Chengdu Environmental Science Research Institute), XJ (Xinjin), SN (Suining), ZY (Ziyang), MS (Meishan), YA (Ya'an), and LS (Leshan). The color bar in the top left corner corresponds to interpolated ozone concentrations, with each color representing a concentration gradient.

2.2 Samples Collection

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

The sampling of atmospheric carbonyl compounds mainly referred to the TO-11A standard of the United States Environmental Protection Agency (US EPA) and the Chinese environmental protection standard HJ 683-2014 High Performance Liquid Chromatography Method for the Determination of Atmospheric Carbonyl Compounds, and the sampling was carried out by using silica gel sampling tubes (IC-DN3501 from Tianjin Bonna-Agela) coated with DNPH (2,4-dinitrophenylhydrazine). In this study, an automatic sampler for carbonyl compounds (Zhang et al., 2019) was used to continuously collect atmospheric carbonyl compounds. From August 4th to 18th, 2019, air samples were collected every 2 hours with a sampling flow rate of 0.8 L;min. In addition, in order to prevent the impact of ozone and rainwater in the atmospheric air on sample collection, a potassium iodide ozone removal column (KI 140 from Tianjin Bonna-Agela) was installed and a water removal agent made by ourselves (Bao et al., 2022; Wang et al., 2020) was added at the front end of the sample tube. Two blank samples were collected before and after the sampling, and blank samples were also collected for different batches of sampling tubes. The samples were frozen at -18°C and analyzed within one month.

Atmospheric VOCs were sampled using SUMMA tanks, stainless steel tanks with electropolished and silanized inner walls, manufactured by Entech in the United States, with a sampling volume of 3.2 liters. The sampling was controlled by a constant current integral sampler to sampling for an average of 1 hour. From August 4th to 18th, 2019, two VOCs samples were collected each day at each site, at 8:00-9:00 and 14:00-15:00 (no samples were taken under special weather conditions, such as rain). On August 11th, 12th and 16th, six samples were collected per day to capture diurnal variations under

删除了:/

设置了格式: 上标

设置了格式: 上标

设置了格式: 上标

删除了: The sampling time was from August 4th to 18th,
2019, and 2 VOCs samples were collected per day at each site
(not collected under special weather conditions such as rain),
and each sample was collected for 1 hour controlled by a
cross-flow integration sampler. One sample was collected
from 8:00 to 9:00, and one sample was collected from 14:00
to 15:00, of which 6 samples were collected per day o

设置了格式: 非上标/ 下标, 非突出显示

ozone pollution events, at the following times: 8:00-9:00, 10:00-11:00, 12:00-13:00,

490 <u>14:00-15:00, 16:00-17:00, and 18:00-19:00</u>

2.3 Samples Analysis

489

491

492

493

494 495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

The carbonyl compounds samples were qualitatively and quantitatively analyzed by using High Performance Liquid Chromatography (HPLC) (LC-20AD, Shimadzu, Japan) and an ultraviolet detector (SPD-20A, Shimadzu, Japan), mainly based on the US EPA TO-11A standard and the Chinese HJ 683-2014 standard. The DNPH sampling column after sampling was slowly eluted into a volumetric flask using acetonitrile (chromatographically pure, Thermo Fisher Scientific China) to 5.0 mL. Then 1.5 mL of the sample was transferred into, an HPLC sample bottle, and sealed and stored in a refrigerator at <4 °C to complete the pre-treatment. Prior to sample analysis, a standard solution of the concentration gradient was prepared using TO-11A standard solution (Supelco, USA) and used as the external standard. The correlation coefficient (R²) of the standard curve was greater than 0.995. The detection limit of the device was 0.56~5.57 ng·mL⁻¹ and the quantification limit was 1.87~18.56 ng·mL⁻¹ (Table S2). Then 20 µL of the pretreated sample was extracted through the autosampler and injected into the HPLC/UV system, detected by a UV detector with a wavelength of 360 nm, qualified by retention time value, quantified by peak area value, and the qualitative and quantitative analysis data of carbonyl compounds were obtained after conversion. The HPLC conditions referred to Chinese environmental protection standard HJ 683-2014: binary gradient washing was performed using acetonitrile and water, 60% acetonitrile was held for 20 mins, acetonitrile was increased linearly from 60% to 100% within 20-30 mins, and acetonitrile was reduced to 60% again within 30-32 mins and held for 8 mins; the column oven was kept at 40 °C. It should be noted that while the sampling and analysis method was effective for most carbonyl compounds, ketones, including methyl vinyl ketone (MVK), were not well sampled during the field observations. As a result, data for MVK and other ketones were missing. During the observation period, DNPH cartridges and HPLC analysis technique were used to detect a total of 15 删除了: (8:00-9:00, 10:00-1:00, 12:00-13:00, 14:00-15:00, 16:00-17:00, and 18:00-19:00).

删除了: sample was taken into

删除了: The limit of detection of the device was

设置了格式: 非突出显示

删除了:ng/mL

删除了: the limit of quantification

删除了:/

设置了格式: 非突出显示

设置了格式: 上标

设置了格式: 非突出显示

carbonyl compounds (Table S2).

The atmospheric VOCs were analyzed using the TO-14 and TO-15 methods, which are recommended by the US EPA. These methods involve frozen preconcentration coupled with gas chromatography and mass spectrometry (GC-MS). TO-15 is a method for detecting and quantifying a wide range of VOCs from air samples. The VOCs were pre-concentrated by the Entech7100 system at a low temperature, then quantified by an Agilent GC-MS. During the sample analysis, four internal standard gases (bromochloromethane, 1,4-difluorobenzene, chlorobenzene-d5, and 4-bromofluorobenzene) were used. A multi-point calibration curve was created using a standard gas containing 118 VOCs, including PAMS compounds, TO-15 target analytes, and carbonyl compounds. PAMS (Photochemical Assessment Monitoring Stations) compounds are a subset of hydrocarbons known to contribute to ozone formation, such as ethane, ethylene, propane, and others.

2.4 Data Analysis

2.4.1 Ozone pollution assessment criteria

According to the Technical Regulation on Ambient Air Quality Index (on trial), National Environmental Protection Standard of the People's Republic of China HJ 633—2012, days with an ozone pollution index (IAQI) of 100 or higher during the observation period were designated as pollution days, while days with an IAQI below 100 were considered clean days. This study compared the pollution characteristics of carbonyl compounds between pollution days and clean days. Additionally, the concentrations of formaldehyde, acetaldehyde, and acetone observed during the summer of 2009-2013 in economically developed and industrialized areas such as Beijing, Shanghai, and Guangzhou in China, as well as locations in South America (Brazil), Asia (Thailand), Europe (France), and North America (United States), were selected and compared.

2.4.2 Ozone formation sensitivity

删除了:

删除了: recommended by the US EPA, that is,

删除了: frozen preconcentration coupled with gas chromatography and mass chromatography.

删除了: The sample was

设置了格式:字体: 非加粗

设置了格式:字体: 非加粗

删除了: the VOCs components were quantified by Agilent gas chromatography coupled with mass spectrometry instrument (GC-MS). The concentrated samples were separated by gas chromatography and then entered mass spectrometry for detection. A hydrogen flame ionization detector (FID) was used to detect 5 substances: ethane, ethylene, acetylene, propane, and propylene. During the sample analysis, four internal standard gases bromochloromethane, 1,4-difluorobenzene, chlorobenzene-d5 and 4-bromofluorobenzene were used. With a standard gas containing 118 substances such as PAMS, TO-15 and carbonyl compounds, a multi-point calibration standard working curve was established using 6 concentration gradients....

删除了: Ambient levels comparison

删除了: Ozone formation sensitivity inferring

Previous studies have shown that the formaldehyde to NO_2 ratio (FNR) can be used to determine the sensitivity of O_3 -NOx-VOCs (Schroeder et al., 2017; Tonnesen and Dennis, 2000; Vermeuel et al., 2019). Most studies used satellite remote sensing-based FNR, but the FNR column concentration ratios inverted by satellite remote sensing mainly represented the average photochemical of the troposphere, and the concentration distributions of HCHO and NO_2 in the vertical direction were inconsistent (Hong et al., 2022; Schroeder et al., 2017). So, there is a large uncertainty to develop ground-level ozone pollution prevention and control measures. In this study, sensitivity analysis of ground-level ozone formation was carried out based on the ratio of ground-level HCHO to NO_2 during the observation period at the 9 sites of 8 cities in the CPUA. FNR < 0.55 ± 0.16 and FNR > 1.0 ± 0.3 were defined to VOCs-limited and NOx-limited, respectively, and FNR ratio ranged from 0.55 ± 0.16 to 1.0 ± 0.3 defined to NO_X and VOCs co-limited (Liu et al., 2021; Zhang et al., 2022).

2.4.3 Exploration of Secondary Formation Mechanisms

(1) Atmospheric chemical reactivity

In this study, the contribution of atmospheric chemical reactivity of carbonyl compounds to ozone formation was evaluated using the OH free radical consumption rate (L_{OH}) and ozone formation potential (OFP):

$$L_{OH} = [OVOC]_i \times \underline{k}_i(OH)$$
 (1)

Where, [OVOC]_i was the observed concentration of the ith (i=1 to n) carbonyl compound, in molecule cm⁻³; k_i(OH) was the rate constants of the ith carbonyl compound reacting with OH radicals, in cm³ (molecule·s)⁻¹. The unit of L_{OH} is s⁻¹, representing the rate of OH radical consumption. The selected k_i(OH) values were from literature (Atkinson and Arey, 2003).

$$OFP = MIR_i \times [OVOC]_i$$
 (2)

Where, MIR was the maximum incremental reactivity of the ith carbonyl compound, in g O₃·(g VOC)⁻¹ (grams of ozone formed per gram of volatile organic

删除了: Secondary formation mechanism investigation

删除了: K

删除了:/

删除了: Ki

设置了格式: 上标

删除了:/

设置了格式: 上标

删除了:;t

删除了: Ki

设置了格式: 上标

compound), and the MIR values of each species were from California Code of Regulations (https://govt.westlaw.com); [OVOC]_i was the mass concentration of the ith carbonyl compound, in µg:m;³. The unit of OFP is µg·m;³, representing the potential ozone formation.

删除了: / 设置了格式: 上标 设置了格式: 字体: 非加粗 设置了格式: 上标

设置了格式: 下标 设置了格式: 下标

设置了格式: 下标

(2) Observation-based model (OBM)

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

The Observation-Based Model (OBM) is a box model that uses actual observational data to evaluate the sensitivity of secondary pollutant formation mechanisms to their precursor emissions. By constraining the model with atmospheric observation data, typical secondary pollutants and parameters such as NO_X, SO₂, CO, VOCs, temperature, humidity, pressure, and JNO₂ are input into the model as hourly observational data to calculate the chemical formation and consumption of secondary pollutants and free radicals. In this study, the OBM model used the Master Chemical Mechanism (MCM) (v3.3.1, mcm.leeds.ac.uk), which is a nearly detailed chemical mechanism that describes the chemical processes of 143 VOC species from emission to degradation in the atmosphere, including approximately 6,700 species and 17,000 inorganic and organic reactions. In this version of the MCM, a total of 19 carbonyl compounds are included, comprising 9 aldehydes and 10 ketones. Of these, 9 carbonyl compounds were measured in this study, including formaldehyde, acetaldehyde, acetone, propionaldehyde, crotonaldehyde, butyraldehyde, isovaleraldehyde, valeraldehyde, and hexaldehyde. The MCM chemical mechanism can simulate atmospheric photochemical reaction processes under near-real conditions and calculate the concentrations of highly reactive species, quantifying the reaction rates of all species involved. For VOCs, especially carbonyls, that were not directly measured, the MCM uses estimated values derived from emission inventories, literature data, and assumptions based on similar species to provide estimates for their concentrations and reaction rates.

设置了格式: 非突出显示
设置了格式: 字体: 非加粗
设置了格式: 非突出显示
设置了格式: 非突出显示
设置了格式: 字体: 非加粗

设置了格式:字体: 非加粗

Relative Incremental Reactivity (RIR) was first used by Cardelino and Chameides

635

636 637

638 639

> 640 641

642 643

644

645 646

> 647 648

649 650

651

652 653

654

655

656

657

658 659

660

661

13

using box model calculations. RIR was calculated by assuming that the concentration of a given carbonyl compound precursor decreased by a certain proportion could cause the change of the concentration of the carbonyl compound, so as to further judge the effect of VOCs on the formation of carbonyl compounds. Combining the concentrations and activity levels of 15 carbonyl compounds during the observation period, this study focused on formaldehyde, acetaldehyde, and acetone as the primary research targets. The impacts of various AVOCs (anthropogenic VOCs), including alkanes, alkenes, alkynes, and aromatic hydrocarbons, as well as BVOCs (biogenic VOCs) like isoprene,

(1995) to simulate the response of ozone to precursor changes through scenario tests

on the formation of formaldehyde, acetaldehyde, and acetone were assessed using observation-based OBM classification. Specific species of anthropogenic source VOCs (alkanes, alkenes, alkynes, and aromatic hydrocarbons) and biogenic VOCs (isoprene) are detailed in Table S3.

VOCs observations, conventional gases (NO2, CO and SO2) and meteorological parameters (temperature, relative humidity and pressure) were imputed into the model. It was assumed that the pollutants are well mixed. Under the constraints of the measured hourly concentration data of pollutants, the atmospheric chemical process was simulated to obtain the source-effect relationship of the measured pollutants. By assuming the reduction of the source effect, the RIRs of different carbonyl compounds precursors were calculated, and the sensitivities of carbonyl compounds to different pollutants were obtained, and then the secondary formation mechanism of carbonyl compounds was determined. The formula to calculate the RIR is as follows:

$$RIR(X) = \left[\frac{\Delta P_Y(X)/P_Y(X)}{\Delta S(X)/S(X)}\right]$$
 (3)

$$P_Y = Y_{\text{net formation}} - Y_{\text{net consumption}} \tag{4}$$

Where X was a specific species; $P_Y(X)$ was the net formation rate of species y; S(X) was the total amount of emissions of species X in a certain period, i.e., the source effect of species X. $\Delta S(X)$ was the change in total emissions of X caused by the hypothetical change in source effect, $\Delta P_Y(X)$ was the change in $P_Y(X)$ after the change

删除了: The relative incremental activity

删除了: (RIR)

删除了:

删除了:

in source effect S(X), and RIR(X) was the relative incremental reactivity of species X. The species Y in this study were formaldehyde, acetaldehyde and acetone, respectively, and pollutant X was reduced by 20%.

The absolute RIR of the precursor reflects the sensitivity of carbonyl compounds formation to the precursor. The higher the absolute RIR, the more sensitive the carbonyl compounds formation to the precursor. A positive RIR value indicates that reducing the species can reduce the formation rate of species Y, and a negative RIR value indicates that reducing the species can increase the formation rate of species Y.

2.4.4 Sources Analysis

(1) Multi-linear regression model

There is a good correlation between concentrations of compounds of the same or similar source in the atmosphere. Based on this property, it was assumed that the primary and secondary sources of carbonyl compounds were linearly correlated with the selected tracers, and then a quantitative source model was established by multiple linear statistical regression analysis (Kanjanasiranont et al., 2016a; Li et al., 2010; Ling et al., 2017; Luecken et al., 2012; Lui et al., 2017; Wang et al., 2017). In general, CO is the marker product of typical anthropogenic combustion source emissions, mainly from vehicle exhaust emissions and coal combustion. Ozone, as an indicator of photochemical smog, is a typical secondary formation pollutant. In this study, CO and ozone were selected as the tracers of primary source and secondary source of carbonyl compounds, respectively. The formula is as follows:

$$[carbonyl] = \beta_0 + \beta_1[CO] + \beta_2[O_3]$$
 (6)

Where [carbonyl], [CO] and [O₃] represented the observed mixing ratios of carbonyl compounds, CO and ozone, respectively, in ppbv. β_0 , β_1 and β_2 were coefficients obtained by multiple linear regression fitting model, in ppbv/ppbv. β_0 represented the background concentration of a given carbonyl compound, β_1 represented the emission ratio of the carbonyl compound relative to CO. β_1 [CO] and

β₂[O₃] represented the concentrations of carbonyl compound in primary emission and
 secondary formation, respectively, in ppbv.

In addition, the relative contribution of primary emissions, secondary formation and background concentrations of carbonyl compounds can be calculated using the following formula:

698
$$P_{primary} = \frac{\beta_1[CO]_i}{(\beta_0 + \beta_1[CO]_i + \beta_2[O_3]_i)} \times 100\%$$
 (7)

699
$$P_{secondary} = \frac{\beta_2[o_3]_i}{(\beta_0 + \beta_1[co]_i + \beta_2[o_3]_i)} \times 100\%$$
 (8)

700
$$P_{background} = \frac{\beta_0}{(\beta_0 + \beta_1 [CO]_i + \beta_2 [O_3]_i)} \times 100\%$$
 (9)

Where, $P_{primary}$ represented the contribution of the primary emission of a given carbonyl compound, %; $P_{secondary}$ represented the contribution of the secondary formation of the carbonyl compound species, %; $P_{background}$ represented the contribution of the carbonyl compounds species from sources other than primary emissions and secondary formation, %.

(2) Backward trajectory model

The effects of long-distance air mass transport on the pollution of carbonyl compounds in the CPUA were studied using MeteoInfo software and TrajStat plug-in http://www.meteothink.org/downloads/index.html) In this model, meteorological data were relevant meteorological data from the global date assimilation system (GDAS) database (http://arlftp.arlhq.noaa.gov/pub/archives/gdasl). A trajectory simulation height of 500 m above ground level (AGL) was selected. The duration of backward trajectory was 48 h. The daily start time was 00:00 UTC. The analog frequency was 2 h. The backward trajectory diagram was calculated. Meanwhile, the clustering method in TrajStat software and the Euclidean distance algorithm were used to cluster the airflow trajectory to the CPUA. And then the statistical analysis was carried out in combination with the corresponding pollutant mass concentration characteristics.

删除了:

删除了: A trajectory simulation height of 500 m was selected....

3. Results and Discussion

3.1 Overview of air quality during observation period

722

723

724

725 726

727

728

729

730

731

732

733

734735

736

737

738739

740 741

742

743

744

745

746

747

748

749

Due to the influence of cooling and precipitation caused by cold air intrusion, the early observation period (from August 4th to 6th, 2019) in the Chengdu Plain Urban Agglomeration (CPUA) experienced slightly lower temperatures (25.1°C) and higher humidity (87.6%). These conditions were unfavorable for ozone formation. Although ozone itself is not easily removed by rain, precipitation reduces ozone pollution by washing away its precursors, such as nitrogen oxides (NOx) and polar volatile organic compounds (VOCs), such as aldehydes, ketones, and others, decreasing sunlight exposure, and enhancing atmospheric dispersion. However, as temperatures increased and humidity dropped in the subsequent days, more favorable conditions for ozone formation emerged, leading to heavy and persistent regional ozone pollution in the CPUA. By August 12th, the mean temperature had gradually increased to 29.1°C, while it averaged 27.7°C from August 13th to 14th. During this time, cumulative precipitation reached 975 mm, resulting in temporary alleviation of ozone pollution. Subsequently, temperatures rose again from August 15th to 18th, with the mean temperature persisting above 28.4°C for several days, accompanied by a decrease in humidity to a minimum of 64.8% on August 17th. Overall, during the observation period (from August 4th, 2019, 0:00 to August 18th, 2019, 24:00), three episodes of severe ozone pollution occurred, namely EP1 (August 7th to 9th), EP2 (August 10th to 13th), and EP3 (August 15th to 18th), as depicted in Fig. 2.

Fig.3 illustrates the temporal and spatial variations of ozone and NO₂ concentrations, as well as temperature and humidity at each site during the observation period. After observing the spatial distribution of ozone concentration during EP1, it's evident that the severity of pollution reached heavily polluted levels, with Chengdu recording an MDA8 concentration of 297 μg·m⁻³ on August 7th. This distribution demonstrated a radial decrease from Chengdu to the surrounding areas. However, the subsequent episodes, EP2 and EP3, exhibited even broader ranges of ozone pollution and more pronounced spatial movements. During the early stages of EP2 and EP3 (from

设置了格式: 非突出显示

删除了: These conditions were not conducive to ozone formation. However, as

删除了: temperatures rose and humidity decreased thereafter, favorable conditions for ozone generation emerged

设置了格式: 突出显示

删除了: O3-8h

删除了:/

设置了格式: 上标

August 10th to 11th and from August 14th to 15th, respectively), high ozone concentrations were observed in the Chengdu-Deyang-Mianyang region. In the middle stages (August 12th and from August 16th to 17th, respectively), influenced by northerly airflow, regions with high ozone concentrations expanded to the central (Meishan, Ziyang, and Suining) and southwestern (Leshan and Ya'an) parts of the CPUA. In the later stages (August 13th and August 18th), under the influence of northwesterly airflow, regions with high ozone concentrations (Meishan and Leshan) moved southward again, while ozone pollution in other areas of the CPUA gradually weakened. On August 11th to 12th and August 16th to 17th, ozone concentrations in the eight cities of the CPUA reached light pollution levels or higher, with the heaviest pollution recorded on August 12th. Specifically, Deyang, Mianyang, Suining, and Meishan reached moderate pollution levels, while Chengdu reached heavy pollution with a concentration of 324 μg₂m⁻³.

删除了:/

设置了格式: 上标

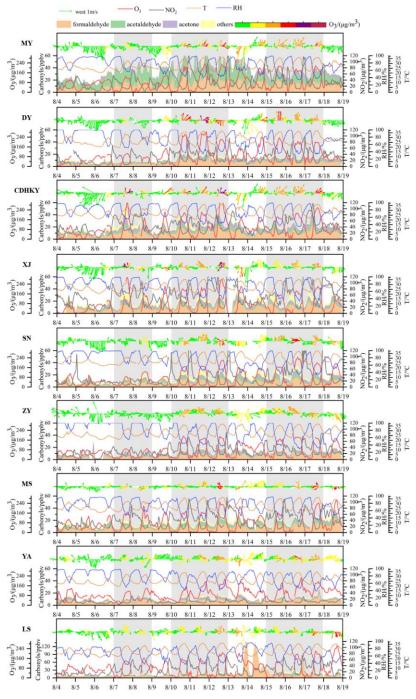
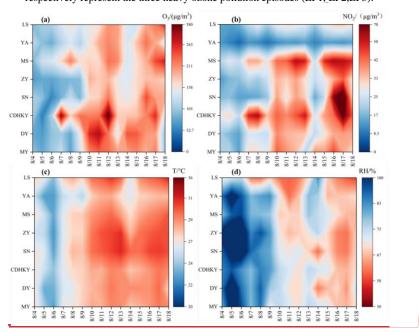



Figure 2. Overview of air quality at each site during the observation period. The gray shaded parts

respectively represent the three heavy ozone pollution episodes (EP1, EP2, EP3).

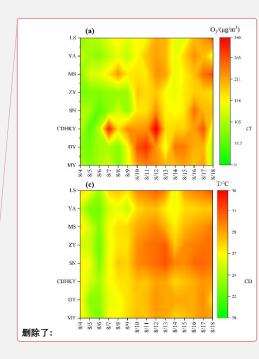


Figure 3. Temporal and spatial variations of (a) ozone concentration, (b) NO₂ concentration, (c) temperature and (d) humidity in the CPUA during the observation period.

3.2 Comparative characterization of carbonyl compounds

3.2.1 Ambient levels

During the observation period, we utilized 2,4dinitrophenylhydrazine (DNPH) cartridge and high-performance liquid chromatography (HPLC) analysis technique to quantify 15 carbonyl compounds. The concentrations and relative proportions of these compounds are summarized in Table 1. The average total concentration of the 15 carbonyls in the CPUA was 17.4 ± 5.3 ppb. Overall, areas with elevated concentrations of carbonyl compounds were primarily concentrated in and around Chengdu in both northern and southern directions. MY site, located to the north of Chengdu, exhibited the highest concentration of carbonyl compounds (35.2 ± 13.4 ppb), while YA site, situated southwest of Chengdu, showed the lowest concentration (10.7 ± 4.2 ppb).


```
删除了: species
删除了: 35
删除了: 1
删除了: 18
删除了: 37
删除了: 0
```

Table 1. Daily mean ± standard error of carbonyl compound mixing ratios (ppbv) at each site in
 the CPUA during the observation period. Sum: the total sum of carbonyl compound mixing ratios
 across all compounds at each site.

Carbonyls	MY	DY	CDHKY	XJ	SN	ZY	MS	YA
formaldehyde	12.8±6.5	6. <u>1</u> ±2.8	10. <u>1</u> ±4.2	8. <u>9</u> ±4. <u>4</u>	7.0±3.6	5.8±2. <mark>7.</mark>	8. <u>5</u> ±4. <u>2</u>	6. <u>4</u> ±2
acetaldehyde	16. <u>7</u> ±7. <u>4</u>	1.5±0.8	3. <u>7</u> ±2. <u>2</u>	2.3±1.1	2.6±1.7	1.4±0.6	3.2±1.6	0. <u>9</u> ±0. <u>7.</u>
acetone	4. <u>4</u> ±1.7	2.8±1. <mark>2.</mark>	4.5±2.3	3.7±1.2	3.1±1.7	3.2±1.7	2. <u>2</u> ±1.1	2. <u>2</u> ±1.
propionaldehyde	0.4±0.2	0.2±0.1	0. <u>4</u> ±0. <u>3</u>	0. <u>4</u> ±0. <u>2</u>	0.3±0.2	0. <u>3</u> ±0.1	0.4±0.2	0.2±0. 2
crotoraldehyde	0.2±0.2	0.1±0.1	0.2±0.3	0. <u>1</u> ±0. <u>1</u>	0.2±0. <u>1</u>	0. <u>2</u> ±0. <u>3</u>	0. <u>2</u> ±0.2	0. <u>4</u> ±0
butyaldehyde	0.2±0.5	0.2±0.3	0.4±0. <mark>6</mark>	0.9±1. <mark>7</mark>	0. <u>3</u> ±0. <u>2</u>	0. <u>1</u> ±0. <u>2</u>	0.4±0. <u>5</u>	0. <u>3</u> ±0
benzaldehyde	0.0±0.0	0.0±0. <u>1</u>	0.0±0.1	0.2±0.2	0. <u>1</u> ±0.1	0.0±0.0	0.0±0.0	0.0±0
isovaleraldehyde	0.0±0.1	0.0±0. <u>1</u>	0. <u>1</u> ±0.1	0. <u>1</u> ±0.1	0. <u>1</u> ±0.1	0.0±0. <u>1</u>	0. <u>7</u> ±0.4	0.0±0
valeraldehyde	0.0±0.0	0. <u>3</u> ±0. <u>1</u>	0.3±0. <u>6</u>	0.6±0. <u>4</u>	0. <u>9</u> ±0. <u>7</u> ,	0.0±0.0	0. <u>0</u> ±0.0	0.0±0
o-Tolyaldehyde	0. <u>5</u> ±0.5	0. <u>4</u> ±0. <u>3</u>	0. <u>5</u> ±0. <u>2</u>	0.0±0.0	0.0±0.0	0.2±0. <mark>2</mark>	0.4±0.3	0. <mark>2</mark> ±0
m-Tolualdehyde	0.0±0.0	0.0±0.1	0.0±0. <u>1</u>	0. <u>2</u> ±0. <u>2</u>	0.3±0.1	0.0±0.0	0.0±0.0	0.0±0
p-Tolualdehyde	0.0±0.0	0.0±0. <u>1</u>	0.0±0.0,	0.0±0.0	0.0±0.0	0.0±0.0	0.0±0.0	0.0±0
hexaldehyde	0.0±0.0	0.3±0. <u>3</u>	0.4±0. <mark>7.</mark>	0. <u>6</u> ±0. <u>5</u> ,	<u>1.0</u> ±0. <mark>7.</mark>	0.0±0. <mark>2.</mark>	0. <mark>&</mark> ±0. 6 ,	0.0±0
2,5-	0.0±0.0	0.0±0.0	0.0±0.0	0. <u>1</u> ±0.1	0.0±0.0	0.0±0.0	0.0±0.0	0.0±0
diemthybenzaldehyde MACR	0 <u>0</u> ±0.2	0.1±0. <u>2</u>	0. <u>3</u> ±0.3	1. <u>1</u> ±1.1	0. <u>3</u> ±0.2	0. <u>2</u> ±0. <u>2</u>	0.4±0. <u>4</u>	0.2±0
Sum	35. <u>2</u> ±13. <u>4</u>	12. <u>2</u> ±4.8	20.8±8. <u>9</u>	19 <u>0</u> ±8.1	16. <u>1</u> ±7.7	11. <u>5</u> ±4. <u>9</u> ,	17. <mark>2</mark> ±7.6	10.7±4

删除了: 09...4.21 删除了: 87...4.439 删除了: 6.98...3.656 删除了: 4...2.769 (... 删除了: 47...4.215 删除了: 36...2.40 <u>...</u> 删除了:55...3.435 删除了: 65...7.438 删除了 4...0.877 删除了; 65...2.215 删除了: 3...1.107 删除了: 2...1.74 删除了: 0...0.61 删除了: 4...1.60 ... 删除了: 88...0.768 删除了 3...1.32 ... 删除了; 36...1.70 删除了: 0...1.219 ... 删除了: 1...2.325 删除了: 0...1.21 <u>...</u> 删除了: 4...1.70 删除了: 3...1.73 <u>...</u> 删除了: 15...1.14 删除了: 18...1.108 <u>...</u> 删除了: 1...1.63 删除了: 1...0.22 删除了: 4...0.14 删除了: 39...0.327 删除了: 39...0.217 删除了: 4...0.22 删除了: 28...0.14 删除了: 1...0.18 ... 删除了: 0...0.125 删除了: 1...0.216 ... 删除了: 0...0.21

<u>...</u>

...

<u>...</u>

删除了: 0...0.11

删除了: Daily mean mixing ratio of carbonyl compounds a

删除了: 2...6.52 删除了: 06...2.82

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

Fig.S1 illustrates the relationship between ozone concentration and carbonyl compounds concentration at each site during the observation period. It is evident that the spatial distribution of carbonyl compound concentrations is similar to that of ozone concentration. Regions with severe ozone pollution tend to exhibit higher concentrations of carbonyl compounds. The variation in carbonyl compound concentrations is primarily attributed to anthropogenic emissions and prevailing summer wind directions in the CPUA. Chengdu is the most economically developed city in the CPUA, with notably higher GDP and industrial production values than other regions. Chengdu's major industries include coal-fired power plants, chemical plants, metallurgy and building materials plants, and high concentrations of carbonyls were observed in here. The unique basin climate of the CPUA, characterized by intense sunlight and stable atmospheric conditions, facilitates the accumulation of pollutants. Large amount of industrial emissions and strong photochemical reaction contributes to ozone pollution. Additionally, during the summer, prevailing northerly winds in the CPUA facilitate the downwind transport of pollutants from upwind sources, leading to regional pollution. It is noteworthy that the concentration of carbonyl compounds at the MY site significantly exceeds that at the CDHKY site. Mianyang, with its industrial roots, consistently maintains its position as the second-highest GDP contributor in Sichuan Province. The electronics information industry stands as Mianyang's primary economic driver, constituting approximately half of the city's total output value. Studies investigating the volatile organic compound (VOC) source profile in Chengdu(Zhou et al., 2021) reveal that ethanol and carbonyls predominantly characterize electronics manufacturing emissions.

3.2.2 Compositional characteristics

According to the composition characteristics of 15 carbonyl compounds in the ambient air of each city during the observation period (Table S4) Formaldehyde was

删除了: Y

设置了格式: 非突出显示

删除了:

the most abundant <u>carbonyl</u> found in these sites followed by acetone and acetaldehyde, which is widely observed in previous studies. The <u>measured</u> ratios of formaldehyde, acetone, and acetaldehyde across different sites ranged from 36.4% to 59.4% (average 48.1%), 12.4% to 28.1% (average 19.9%), and 8.2% to 47.3% (average 17.5%), respectively. In this study, the total <u>measured</u> of formaldehyde, acetaldehyde, and acetone (FAT) account for over 78% of the total carbonyls concentrations. At the MY and ZY sites, this proportion even exceeded 90%. It is noteworthy that isobutyraldehyde (MACR) ranks fourth in the volume concentration of 15 carbonyls <u>measured</u> in the ambient air surrounding XJ, accounting for 5.3%. MACR, a characteristic product of isoprene photooxidation from biogenic sources, possibly originates from the abundant vegetation surrounding XJ. It reflects the period's relatively active photochemical reactions, with substantial contributions from secondary formation to the <u>measured</u> carbonyls composition.

The observed levels of FAT in different areas were influenced by various factors including sampling period, geographic location, meteorological conditions, chemical removal, and source emissions(Z. Zhang et al., 2016). Despite these influences, comparisons remain valuable in providing an overview of ambient carbonyl levels in the CPUA. During the summer of 2010, a national wide survey of ambient monocarbonyl compounds were conducted simultaneously in nine sites (Ho et al., 2015)found that the total FAT concentration was highest in Chengdu (14.96 ppb), followed by Beijing (11.83 ppb), and Wuhan (11.70 ppb). Beijing, as the capital of China, and Wuhan, being one of the top ten most populous cities in China, played significant roles in this comparison. In our study, the CDHKY site within CPUA exhibited the highest FAT concentration, with values of 18.25 ppb, surpassing those recorded in 2010. Furthermore, the total FAT concentrations observed at the CPUA and XJ sites, with values of 14.99 ppb and 14.90 ppb respectively in our study, closely resemble those reported in August 2010 in Chengdu. The consistently high levels of carbonyl compounds observed in Chengdu, both in 2010 and our current study, indicate

删除了: specie

删除了: concentration

删除了: concentrations

that the city likely experiences higher concentrations of these pollutants compared to other regions across the country. However, more extensive temporal data would be beneficial to fully validate this pattern at a national scale, Comparing our findings to international studies, the FAT concentrations at the CDHKY site were lower than those reported in Rio De Janeiro, Brazil(da Silva et al., 2016), during July to October 2013 (35.43 ppb), but higher than those in Bangkok, Thailand(Kanjanasiranont et al., 2016b), Orleans, France(Jiang et al., 2016), and the United States(Murillo et al., 2012), with values of 9.05 ppb, 6.12 ppb, and 5.76 ppb, respectively.

删除了: This suggests that elevated concentrations of carbonyl compounds in Chengdu have been a longstanding issue on a national scale.

3.3 Temporal variations of carbonyl compounds

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

13181319

1320

1321

1322

1323

1324

The diurnal variation of the total mixing ratio of ambient carbonyl compounds and ozone concentration around each site in the CPUA during the observation period is shown in Fig. 4. According to the observation results, the diurnal trend of ozone concentration at each site showed a "unimodal" variation characteristic, that was, it gradually increased from the morning to the peak of one day at noon, and then decreased. The diurnal variation of the total mixing ratio of carbonyl compounds at each site generally showed a characteristic of high during the daytime and low at night. The concentration of carbonyl compounds during the day (6:00-16:00) was 48.8% higher than that at night (18:00-4:00) at the XJ site. This indicated that the concentration of carbonyl compounds increased by photochemical production during the daytime. Additionally, deposition processes, particularly dry deposition at night, likely contribute to the observed diurnal variation in carbonyl levels. The diurnal variation characteristics of each site were different. For example, the diurnal variation characteristics of carbonyl compounds concentration at CDHKY, XJ and SN sites were consistent with those of ozone. The diurnal variation of carbonyl compounds concentrations at other sites showed "double peaks", peaking at 10:00-12:00 and 18:00-20:00, respectively. The concentrations of carbonyl compounds at night were also higher at MY, DY and LS sites. The diurnal minimum values of the total concentration of carbonyl compounds and ozone concentration appeared at similar time, usually at

4:00 a.m. or 6:00 a.m. The first peak of the total mixing ratio of carbonyl compounds occurred earlier than the maximum ozone concentration of the day. The first peak of the total mixing ratio of carbonyl compounds mostly occurred between 10:00 and 12:00. And the maximum ozone concentration mostly occurs between 14:00 and 16:00. This was related to the fact that carbonyl compounds were important precursors of ozone.

1328

1329

1330

1331

1332

1333

1334

1335

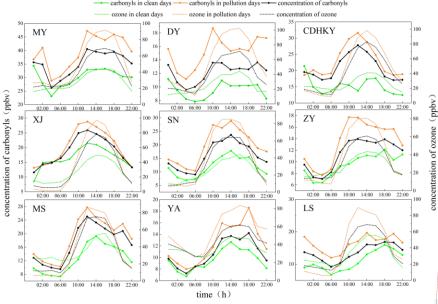
1336

1337

1338

1339

1340


1341

1342

1343

1344

In general, the diurnal variation of the total concentration of carbonyl compounds on pollution days and clean days was high during the daytime and low at night. The total mixing ratio of carbonyl compounds on pollution days was 22.8%-66.2% higher than that on clean days. At the same time, the increase of concentration of carbonyl compounds during the daytime on pollution days was higher than that on clean days. This suggested that the increase in the concentration of carbonyl compounds during the daytime contributed to ozone pollution.

Figure 4. Diurnal variations of carbonyl compounds and ozone concentrations at each site in the CPUA during the observation period

3.4 Atmospheric photochemical reactivity of carbonyl compounds

During the observation period, the total OH radical consumption rate (LoH) and

ambient carbonyl compounds on weekdays and weekends in the eight cities of the CPUA is shown in Fig. S2. The total concentration of carbonyl compounds at each site on weekends was higher than that on weekdays, and the increase in carbonyl compounds at 0:00 (36.3%), 10:00 (16.3%) and 18:00-22:00 (17.6%) on weekends was higher than that on weekdays. Except for the XJ site, the increase in the concentration of carbonyl compounds at 0:00 on weekends was significantly higher than that on weekdays, which was mainly related to the increase of acetaldehyde, propionaldehyde and acetone on weekends. At 10:00, the higher increase at DY, CDHKY and SN sites was mainly related to the increase of propionaldehyde, acetaldehyde and formaldehyde concentrations. From 18:00 to 22:00, the higher increase at DY and YA sites was mainly related to the increase in the concentrations of propionaldehyde, acetone and acetaldehyde. Acetaldehyde, acetone and propionaldehyde were mainly from vehicle exhaust. In particular, when ethanol gasoline and biodiesel were used as alternative fuels, the content of acetaldehyde and acetone in the exhaust gas would be significantly increased. Therefore, the increase in the concentration of carbonyl compounds on weekends might be related to the increase in traffic at 10:00 and at night. In addition, the peak concentration of carbonyl compounds on weekends (10:00) was earlier than that on weekdays (12:00-14:00) at CDHKY, XJ and SN sites, and the diurnal trend of carbonyl compounds concentrations on weekdays and weekends had little difference at other sites.

删除了: The diurnal variation of the mixing ratio of

total ozone formation potential (OFP) of the 15 carbonyl compounds at each site are depicted in Fig.5. The ranking of total LOH and total OFP at each site is consistent, except for the YA and ZY sites with lower concentrations of carbonyl compounds, where the atmospheric photochemical reactivity ranking also aligns with the concentration. Among all sites, the MY and CD sites display the highest reactivity, while the YA and ZY sites exhibit the lowest reactivity. During the observation period, carbonyl compounds significantly contributed to ozone formation. The contributions to total VOCs (alkanes, alkenes, alkynes, aromatics, and carbonyl compounds) OFP at the MY, SN, ZY, YA, and LS sites ranged from 19.5% to 48.6%. Formaldehyde and acetaldehyde were identified as the most reactive species in the atmosphere, surpassing other carbonyl compounds in reactivity due to their higher concentrations and inherent reactivity, especially formaldehyde. However, acetone exhibited high inertness and a prolonged atmospheric lifetime, leading to its accumulation in ambient air with concentrations higher than other carbonyl compounds except for formaldehyde and acetaldehyde. Thus, despite its elevated concentration, acetone's reactivity remained relatively low.

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

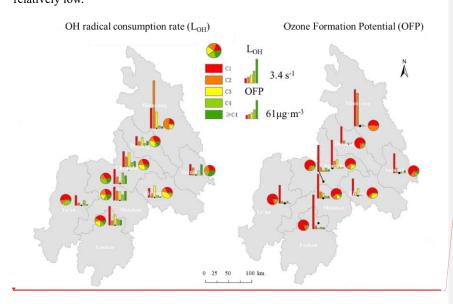



Figure 5. $L_{\rm OH}$ and OFP of carbonyl compounds at each site in the CPUA during the observation

删除了: Contrasting the LoH and OFP during clean and polluted periods reveals higher values during ozone pollution periods than clean days. LoH and OFP during different pollution periods show a strong positive correlation with the severity of ozone pollution; the heavier the ozone pollution, the higher the LoH and OFP at the sites. Regardless of clean or polluted periods, the LoH and OFP at the MY site are higher than other sites. However, despite this, the average ozone concentration at the MY site ranks lower among the nine sites observed. This might be associated with higher concentrations of aldehyde compounds at the MY site.

1405 period

3.5 Sensitivity analysis of ozone formation based on formaldehyde to NO2 ratio (FNR)

The change of O₃ formation sensitivity of each site in the CPUA during the observation period is shown in Fig. 6, As can be seen from the Fig. 6, most sites remain in the VOCs-limited regime during the cleaning period and EP1 to EP3. Economically developed city such as Chengdu, Meishan, with high levels of formaldehyde and NO₂, remain in the VOCs-limited regime. Ya'an as a city with the lowest GDP ranking in the CPUA, with low levels of formaldehyde and NO₂, remain in the transitional regime.

40

MY

ODY

VOCs-limited

FNR=0.55

NO_X-limited

FNR=1.00

NO_X-limited

HCHO(ppb)

1413

1414

1415

1406

1407

1408

1409

1410

1411

1412

Figure 6. The change of O_3 formation sensitivity of each site in the CPUA during the observation period. The arrows represent time step from clean period to EP1 to EP2 to EP3.

The daily variation of O₃ formation sensitivity and ozone concentration at each

site in the CPUA during the observation period is shown in Fig. S4. The mean FNR of each site ranged from 0.48 to 1.29 during the observation period. The FNRs were lower than 0.55±0.16 at XJ, DY, ZY, CDHKY, and MS, and higher than 1.0 at LS, SN, YA and MY. At the same time, the mean ozone concentration at each site was between 138 and 192 µg m⁻³. The mean ozone concentration in XJ, DY, CDHKY and MS was 166-

1422

1420

1421

192 μg·m⁻³, it was 150-164 μg·m⁻³ in LS, SN, YA and MY. Therefore, it could be seen

1423

that most of the sites with high mean ozone concentrations during the observation

删除了: 3.9

删除了:5

删除了:/

设置了格式: 上标

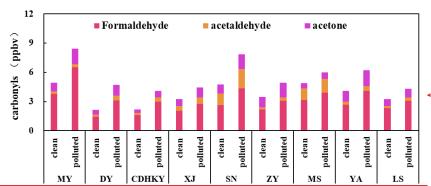
删除了: μg/m³

删除了: μg/m³

period, like CDHKY, XJ, MS and Deyan sites, were in the VOCs-limited regime, and most of the stations with low mean ozone concentrations during the observation period such as YA, SN, MY and LS were in the transitional regime. It was worth noting that the mean ozone concentration at ZY site (only 138 µg·m⁻³) during the observation period was much lower than that of other sites, but most of the ZY site was in VOCs-limited regime, which was mainly related to the low concentration of formaldehyde. In addition, the FNR value of the MY site was also relatively high, which was mainly caused by the high concentration of formaldehyde.

Based on the ratio of formaldehyde to NO₂ mixing ratio, most sites remain in the VOCs-limited regime during the observation period. And the sites with heavy ozone pollution were in the VOCs-limited regime, and the sites with light ozone pollution were in the transitional regime. Photochemical reactivity (*L*_{OH} and OFP) analysis showed that formaldehyde and acetaldehyde contributed significantly to the enhancement of atmospheric oxidation and ozone formation potential. Therefore, when heavy ozone pollution occurs in the CPUA, special attention should be paid to the control of VOCs, especially formaldehyde and acetaldehyde in carbonyl compounds, under the coordinated control of NOx and VOCs. Overall, this study reveals the important contribution of carbonyl compounds to ozone pollution in the CPUA, and provides scientific support for the establishment of ozone pollution prevention and control measures.

3.6 Source Analysis of carbonyl compounds


3.6.1 Quantitative source analysis of key carbonyl compounds

The table S7 provides a summary of the background and primary emissions concentrations of formaldehyde, acetaldehyde, and acetone at nine sites across the eight cities of the CPUA, along with the proportion of secondary formation contributing to their concentrations. Background concentrations and primary emissions of formaldehyde, acetaldehyde, and acetone ranged from 50% to 80%, 46% to 83%, and

删除了: μg/m³

45% to 78%, respectively. Secondary formation accounted for 20% to 50%, 17% to 54%, and 22% to 55% of their concentrations, respectively. Notably, in SN and YA, the secondary formation of formaldehyde contributed half of the observed concentration, indicating it as the predominant source, while acetaldehyde's secondary formation also prevailed in these sites. Conversely, acetone, with lower reactivity, primarily originated from background concentrations and primary emissions at other sites except YA. Moreover, background concentrations and primary emissions were identified as the main contributors to carbonyl compounds in XJ and LS.

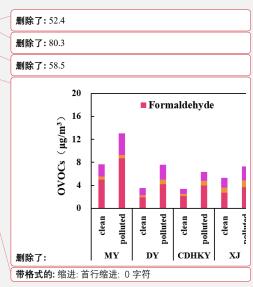

Fig.7 illustrates the secondary formation concentrations of formaldehyde, acetaldehyde, and acetone at each site in the CPUA under both clean and polluted conditions. Under polluted conditions, the secondary concentrations of formaldehyde, acetaldehyde, and acetone exceeded those in clean conditions by 58.8%, 54.6%, and 57.6%, respectively. The most significant increases in secondary concentrations were observed at the SN site, while relatively smaller increases were observed at LS and XJ.

Figure 7. Concentrations of formaldehyde, acetaldehyde and acetone in secondary formation under different pollution conditions at each site in the CPUA during the observation period

3.6.2 Exploration of secondary formation mechanism of key carbonyl compounds

In this study, we utilized VOC data collected on August 11, 12, and 16, when all eight cities in the CPUA were experiencing mild to severe ozone pollution. We calculated the Relative Incremental Reactivity (RIR) of formaldehyde, acetaldehyde,

删除了: Investigation

删除了: The effects of anthropogenic source VOCs and plant source VOCs on the formation of formaldehyde, acetaldehyde and acetone at MY, SN, ZY,YA and LS sites were researched during a regional ozone pollution period when all 8 cities of the CPUA had mild or above ozone pollution (August 11th, 12th and 16th)

设置了格式: 非突出显示

and acetone at the MY, SN, ZY, YA, and LS sites on these days. The OBM analysis allowed us to assess the impact of anthropogenic VOCs (alkanes, alkenes, alkynes, aromatics) and biogenic VOCs (e.g., isoprene) on carbonyl compound formation in the context of regional ozone pollution events (Fig.8). Overall, the sensitivities of different anthropogenic source and plant source VOCs to formaldehyde, acetaldehyde and acetone was consistent among sites. For formaldehyde, reducing alkenes in anthropogenic source VOCs and plant VOCs was the most effective way to control formaldehyde concentration, while reducing alkenes in anthropogenic source VOCs was also beneficial to reduce the formation of acetaldehyde. For acetone with low reactivity, the alkanes in anthropogenic source VOCs were the most sensitive to the formation of acetone, followed by alkenes and BVOCs. Only the RIR value of alkanes were greater than zero, and the RIR values of both alkenes and BVOCs were less than zero, indicating that reducing alkanes could reduce the formation of acetone, while reducing alkenes and BVOCs was not conducive to acetone concentration control.

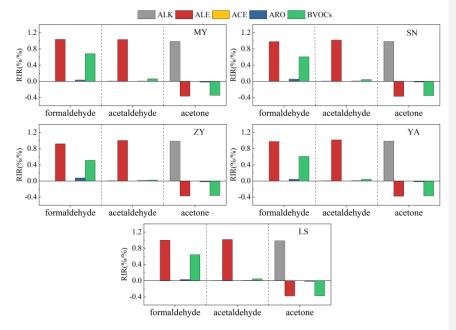


Figure 8. Mean RIRs of formaldehyde, acetaldehyde and acetone to different anthropogenic source VOCs (alkanes (ALK), alkenes (ALE), alkynes(ACE), aromatics (ARO)) and biogenic,

删除了: source

设置了格式: 非突出显示

1508

1509

1510

1511

15121513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

3.6.3 Influence of regional transportation contribution

The TrajStat trajectory model was used to calculate and cluster the 24-hour backward trajectories of air quality at the sampling sites. The backward trajectory during sampling is shown in Fig.S.5. During the observation period, the pollution of carbonyl compounds in the cities of the CPUA was affected by the mutual transport among cities in Sichuan Province, especially along the MY-DY-CDHKY route. In addition, the surrounding provinces and cities of Sichuan Province (Gansu and Chongqing) also contributed to the carbonyl compounds of the CPUA.

The potential sources of carbonyl compounds at different pollution stages at the CDHKY during the observation period are shown in Fig. 9. It can be seen from the figure that there are differences in the potential sources of carbonyl compounds among different pollution stages at the CDHKY site. The concentration of local carbonyl compounds in CDHKY was high during the early observation period and EP1, which existed local sources, and was also affected by the northern airflow, and carbonyl compounds was also affected by the transport from MY, DY and other northern regions. Under the effect of the continuous northern airflow, the local source emissions decreased during EP1, and the potential source of carbonyl compounds changed to from the junction between CDHKY and ZY. During EP3, under the combined influence of the western airflow, the contribution of transport from SN and ZY to carbonyl compounds increased, while emissions from local sources also increased.

删除了:6

删除了: The potential sources of carbonyl compounds at different pollution stages at the Chengdu Institute of Environmental Sciences site during the observation period are shown in Fig. 9. It can be seen from the figure that there are differences in the potential sources of carbonyl compounds among different pollution stages at the CDHKY site. The concentration of local carbonyl compounds in CDHKY was high during the early observation period and EP1, which existed local sources, and was also affected by the northern airflow, and carbonyl compounds was also affected by the transport from MY, DY and other northern regions. Under the effect of the continuous northern airflow, the local source emissions decreased during EP1, and the potential source of carbonyl compounds changed to from the junction between CDHKY and ZY. During EP3, under the combined influence of the western airflow, the contribution of transport from SN and ZY to carbonyl compounds increased, while emissions from local sources also increased.

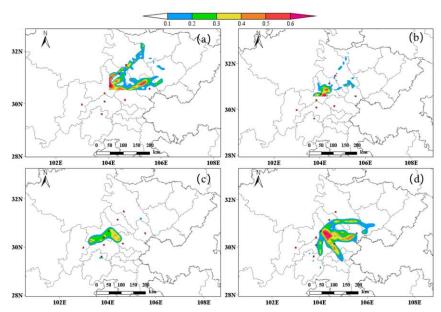


Figure 9. Analysis of potential sources of carbonyl compounds at different periods at the CDHKY site during the observation period (a) August 4th-6th (b) August 7th-9th (c) August 10th-13th (d)

August 15th-18th

4. Conclusions

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

During a comprehensive atmospheric observation campaign conducted at ninesites across the CPUA from August 4th to 18th, 2019, three regional heavy ozone pollution episodes (EP1 to EP3), were observed. This study extensively examines the concentration variations, atmospheric chemical reactivity, and sources of carbonyls during this period. The average total concentrations of 15 carbonyl compounds across the nine sites within eight cities of the CPUA were measured at 17.4 ± 5.3 ppb. Spatial analysis indicated that areas with higher carbonyl concentrations were concentrated around Chengdu, extending both north and south. Notably, regions with elevated carbonyl compound concentrations also tended to experience more severe ozone pollution. Formaldehyde (36.4%-64.3%), acetone (12.4%-28.1%), and acetaldehyde (8.2%-47.3%) constituted the predominant species by volume concentration. Chengdu

删除了: 删除了: 删除了:

带格式的:缩进:首行缩进:2字符

删除了: During a concurrent atmospheric observation campaign conducted at nine sites in

删除了:, labeled EP1 to EP3,

删除了:

删除了:35

删除了:1

删除了: Spatial analysis revealed a positive correlation between carbonyl levels and ozone concentrations, particularly concentrated around Chengdu in both northern and southern directions.

删除了: Intriguingly,

设置了格式: 非突出显示

exhibited FAT concentrations surpassing national and international levels, indicating heightened levels compared to other regions.

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

Compared to clean days, carbonyl compound concentrations were significantly higher on ozone pollution days, with increases ranging from 22.8% to 66.2%. Between 19.5% and 48.6% of the total volatile organic compound (VOC) ozone formation potential (OFP) was attributed to the 15 carbonyl compounds, highlighting their substantial contribution to ozone formation, particularly formaldehyde and acetaldehyde. While primary emissions are the main sources of these compounds, secondary formation processes contributed over 30% on average to the concentrations of formaldehyde, acetaldehyde, and acetone. Under ozone pollution conditions, the secondary formation concentrations of these three compounds were notably higher than on clean days, with increases of 58.8%, 54.6%, and 57.6%, respectively, emphasizing the critical role of secondary processes in exacerbating regional ozone pollution. OBM modeling revealed that formaldehyde and acetaldehyde primarily originated from the secondary formation of alkenes and BVOCs, while acetone mainly stemmed from the secondary formation of alkanes. These findings highlight that while the concentration of carbonyl compounds is important, their significant impact on ozone formation is primarily driven by secondary chemistry. Specifically, the secondary formation of these compounds from alkenes and biogenic BVOCs plays a key role in this process.

Ground-level observations of the formaldehyde to NO₂ ratio (FNR) were utilized to assess the sensitivity of ground-level ozone formation. Analysis of FNR revealed that sites experiencing heavy ozone pollution exhibited lower FNRs, indicating a VOCs-limited regime, while sites with lighter ozone pollution were categorized into a transitional regime. Furthermore, it is recommended to establish a scientific control mechanism for both NOx and VOCs, with special attention to formaldehyde, acetaldehyde, and acetone, and their alkenes precursors. Additionally, considering the regional nature of pollution, this study suggests that carbonyl compound pollution is influenced by mutual transport among cities within the CPUA, notably along the MY-

删除了:

删除了: Diurnal variations showed peaks during the day and lows at night, with notable spikes on ozone pollution days. A distinctive "weekend effect" was observed, particularly evident in carbonyl compounds associated with motor vehicle emissions, such as acetaldehyde and acetone, peaking during morning rush hours and nighttime on weekends. This suggests significant contributions from both daytime photochemical processes and nighttime vehicular emissions to carbonyl compounds. At the MY site,

设置了格式: 非突出显示

设置了格式: 非突出显示

删除了: 48.6% of the total volatile organic compounds (VOCs) ozone formation potential (OFP) was attributed to the 15 carbonyl compounds, emphasizing their substantial impact on ozone formation, especially formaldehyde and Ground-level observations of FNR were utilized to assess the sensitivity of ground-level ozone formation. FNR from ground-level observations were used to determine the sensitivity of ground-level ozone formation. Analysis of FNR revealed that sites experiencing heavy ozone pollution exhibited lower FNRs, indicating a VOCs-limited regime, while sites with lighter ozone pollution were categorized into a transitional regime. Carbonyl compound sources include primary emissions and secondary formation proc Multivariate linear regression quantitatively analyzed formaldehyde, acetaldehyde, and acetone sources. Secondary formation contributed over 30% on average to formaldehyde, acetaldehyde, and acetone, despite primary emissions being

设置了格式: 非突出显示

primary sources.

删除了:

1635 DY-CDHKY route. Establishing a collaborative prevention and control mechanism 1636 among cities within the CPUA and neighboring provinces and cities is crucial to 1637 effectively address carbonyl compounds and ozone pollution in the region in the future. 1638 1639 Data availability. Observational data including meteorological parameters and air 1640 pollutants used in this study are available from the corresponding authors upon request 1641 (lihong@craes.org.cn). 1642 1643 Author contributions. Hong Li and Jiemeng Bao designed this study. Xin Zhang, 1644 Zhenhai Wu, Jiemeng Bao, Li Zhou, Qinwen Tan, and Fumo Yang coordinated the 1645 selection of field observation sites, including locations for both VOCs and carbonyls grid sampling. Qinwen Tan and Hefan Liu supported the collection of carbonyls at one 1646 1647 site. Zhenhai Wu and Xin Zhang assisted in carbonyls sampling; Xin Zhang and 1648 Yunfeng Li assisted in carbonyls sample analysis and data collection. Li Zhou and Hefan Liu organized the analysis of VOCs measurements. Jun Qian, Junhui Chen, and 1649 Liqun Deng provided support in project funding application. Jiemeng Bao performed 1650 1651 the data analysis and wrote the paper with contributions from all co-authors; Hong Li 1652 reviewed the paper, provided comments and finalized it. 1653 1654 Competing interests. The contact author has declared that none of the authors has any 1655 competing interests. 1656 Acknowledgments. The authors would like to express their sincere appreciation to 1657 1658 Keding Lu and Xin Li of Peking University for their organization of the intensive field 1659 observation experiment on the formation mechanisms of photochemical pollution in 1660 summer in the CPUA of China. They also want to show their deep gratitude to Yulei 1661 Ma, Tianli Song, Xiaodong Wu, Ning Wang, and He Zijun Liu of Sichuan University,

as well as Xin Zhang (female) and Hefan Liu of Chengdu Academy of Environmental

1662

1663	Protection Sciences for their help in sampling. They are also grateful to Liping Liu of	
1664	Sichuan Agricultural University in Ya'an City, Kaiyao Lv of Mianyang High-tech Zone	
1665	Management Committee, Yong Xiao of Deyang Municipal Education Bureau, Ying Ni	
1666	of Meishan Ecological Environment Bureau, Aihua Zou of Leshan Ecological	
1667	Environment Bureau, and Chuhan Wang of the Chinese Academy of Environmental	
1668	Sciences for their substantial support during field observations. Special thanks to Zhen	
1669	He and Manfei Yin of the Chinese Academy of Environmental Sciences for their	
1670	assistance in analyzing samples from the XJ site.	
1671		
1672	Financial support. This research has been supported by the Research Project on	
1673	Analysis of Multiple Causes of Atmospheric Ozone Pollution in Urban Agglomerations	
1674	of Chengdu Plain and Development of Management, Prevention, and Control System	
1675	of Sichuan Academy of Environmental Sciences (No. 510201201905430).	
1676		
1677	References	
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688	Altshuller, A. P. (1993). Atmospheric chemistry of VOCs and NOx: Implications for ozone formation. Environmental Science & Technology, 27(6), 1104–1117. doi:10.1021/es00043a001 Atkinson, R., Arey, J., 2003. Atmospheric Degradation of Volatile Organic Compounds. Chem. Rev. 103, 4605–4638. https://doi.org/10.1021/cr0206420 Bao, J., Li, H., Wu, Z., Zhang, X., Zhang, H., Li, Y., Qian, J., Chen, J., Deng, L., 2022. Atmospheric carbonyls in a heavy ozone pollution episode at a metropolis in Southwest China: Characteristics, health risk assessment, sources analysis. Journal of Environmental Sciences 113, 40–54. https://doi.org/10.1016/j.jes.2021.05.029 Cardelino, C., Chameides, W., 1995. An observation-based model for analyzing ozonesprecursor relationships in the urban atmosphere. J. Air Waste Manage. Assoc.	带格式的: 正文, 缩进: 左侧: 0 厘米, 悬挂缩进: 3 字符, 1 行缩进: -3 字符
1690 1691	45, 161–180. Coggon, M. M., Veres, P. R., Yuan, B., et al. (2019). Emissions of organic carbonyl	带格式的: 正文, 缩进: 左侧: 0 厘米, 悬挂缩进: 7.2 字符
1692	compounds from biomass burning: A global source of reactive carbon to the	
1693 1694	atmosphere. <i>Environmental Science & Technology</i> , 53(20), 11401–11412. da Silva, D.B.N., Martins, E.M., Corrêa, S.M., 2016. Role of carbonyls and aromatics	
1695	in the formation of tropospheric ozone in Rio de Janeiro, Brazil. Environ Monit	
1696	Assess 188, 289. https://doi.org/10.1007/s10661-016-5278-3	

- Duan, J., Guo, S., Tan, J., Wang, S., Chai, F., 2012. Characteristics of atmospheric carbonyls during haze days in Beijing, China. Atmospheric Research 114–115, 17–27. https://doi.org/10.1016/j.atmosres.2012.05.010
- Duan, J., Tan, J., Yang, L., Wu, S., Hao, J., 2008. Concentration, sources and ozone
 formation potential of volatile organic compounds (VOCs) during ozone
 episode in Beijing. Atmospheric Research 88, 25–35.
 https://doi.org/10.1016/j.atmosres.2007.09.004
- Fu, T.-M., Jacob, D.J., Wittrock, F., Burrows, J.P., Vrekoussis, M., Henze, D.K., 2008.
 Global budgets of atmospheric glyoxal and methylglyoxal, and implications for
 formation of secondary organic aerosols. Journal of Geophysical Research:
 Atmospheres 113. https://doi.org/10.1029/2007JD009505
- Fuchs, H., Tan, Z., Lu, K., Bohn, B., Broch, S., Brown, S.S., Dong, H., Gomm, S., Häseler, R., He, L., Hofzumahaus, A., Holland, F., Li, X., Liu, Y., Lu, S., Min, K.-E., Rohrer, F., Shao, M., Wang, B., Wang, M., Wu, Y., Zeng, L., Zhang, Yinson, Wahner, A., Zhang, Yuanhang, 2017. OH reactivity at a rural site (Wangdu) in the North China Plain: contributions from OH reactants and experimental OH budget. Atmospheric Chemistry and Physics 17, 645–661. https://doi.org/10.5194/acp-17-645-2017

1716

1717

- Grosjean, D., & Seinfeld, J. H. (1989). Parameterization of the formation potential of secondary organic aerosols. *Atmospheric Environment*, 23(8), 1733–1747. doi:10.1016/0004-6981(89)90058-9.
- Guo, H., Wang, T., Simpson, I.J., Blake, D.R., Yu, X.M., Kwok, Y.H., Li, Y.S., 2004.

 Source contributions to ambient VOCs and CO at a rural site in eastern China.

 Atmospheric Environment 38, 4551–4560.

 https://doi.org/10.1016/j.atmosenv.2004.05.004
- Hallquist, M., Wenger, J. C., Baltensperger, U., et al. (2009). The formation, properties,

 and impact of secondary organic aerosol: Current and emerging issues.

 Atmospheric Chemistry and Physics, 9, 5155–5236. doi:10.5194/acp-9-51552009
- Ho, K.F., Ho, S.S.H., Huang, R.-J., Dai, W.T., Cao, J.J., Tian, L., Deng, W.J., 2015.
 Spatiotemporal distribution of carbonyl compounds in China. Environmental
 Pollution 197, 316–324. https://doi.org/10.1016/j.envpol.2014.11.014
- Hong, Q., Zhu, L., Xing, C., Hu, Q., Lin, H., Zhang, C., Zhao, C., Liu, T., Su, W., Liu,
 C., 2022. Inferring vertical variability and diurnal evolution of O3 formation
 sensitivity based on the vertical distribution of summertime HCHO and NO2 in
 Guangzhou, China. Science of The Total Environment 827, 154045.
 https://doi.org/10.1016/j.scitotenv.2022.154045
- Hu, J., Wang, P., Ying, Q., Zhang, H., Chen, J., Ge, X., Li, X., Jiang, J., Wang, S., Zhang,
 J., Zhao, Y., Zhang, Y., 2017. Modeling biogenic and anthropogenic secondary
 organic aerosol in China. Atmospheric Chemistry and Physics 17, 77–92.
 https://doi.org/10.5194/acp-17-77-2017
- 1738 Jiang, Z., Grosselin, B., Daële, V., Mellouki, A., Mu, Y., 2016. Seasonal, diurnal and

带格式的: 正文, 缩进: 左侧: 0厘米, 悬挂缩进: 7.2字符

删除了:

Guenther, A.B., Jiang, X., Heald, C.L.,
Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., Wang,
X., 2012. The Model of Emissions of Gases and Aerosols
from Nature version 2.1 (MEGAN2.1): an extended and
updated framework for modeling biogenic emissions.
Geoscientific Model Development 5, 1471–1492.
https://doi.org/10.5194/gmd-5-1471-2012

带格式的: 正文, 缩进: 左侧: 0厘米, 悬挂缩进: 7.2字符

- nocturnal variations of carbonyl compounds in the semi-urban environment of Orléans, France. Journal of Environmental Sciences, Changing Complexity of Air Pollution 40, 84–91. https://doi.org/10.1016/j.jes.2015.11.016
- Kanjanasiranont, N., Prueksasit, T., Morknoy, D., Tunsaringkarn, T., Sematong, S., 1750 Siriwong, W., Zapaung, K., Rungsiyothin, A., 2016a. Determination of ambient 1751 1752 air concentrations and personal exposure risk levels of outdoor workers to 1753 carbonyl compounds and BTEX in the inner city of Bangkok, Thailand. 1754 Atmospheric Pollution Research 7, 268-277. 1755 https://doi.org/10.1016/j.apr.2015.10.008
- Kanjanasiranont, N., Prueksasit, T., Morknoy, D., Tunsaringkarn, T., Sematong, S., 1756 1757 Siriwong, W., Zapaung, K., Rungsiyothin, A., 2016b. Determination of ambient air concentrations and personal exposure risk levels of outdoor workers to 1758 1759 carbonyl compounds and BTEX in the inner city of Bangkok, Thailand. 1760 Atmospheric Pollution Research 7, 268-277. 1761 https://doi.org/10.1016/j.apr.2015.10.008
- Li, N., Fu, T.-M., Cao, J., Lee, S., Huang, X.-F., He, L.-Y., Ho, K.-F., Fu, J.S., Lam, Y. F., 2013. Sources of secondary organic aerosols in the Pearl River Delta region
 in fall: Contributions from the aqueous reactive uptake of dicarbonyls.
 Atmospheric Environment, Improving Regional Air Quality over the Pearl
 River Delta and Hong Kong: from Science to Policy 76, 200–207.
 https://doi.org/10.1016/j.atmosenv.2012.12.005
- Li, Y., Shao, M., Lu, S., Chang, C.-C., Dasgupta, P.K., 2010. Variations and sources of ambient formaldehyde for the 2008 Beijing Olympic games. Atmospheric Environment 44, 2632–2639. https://doi.org/10.1016/j.atmosenv.2010.03.045
- Ling, Z.H., Zhao, J., Fan, S.J., Wang, X.M., 2017. Sources of formaldehyde and their
 contributions to photochemical O3 formation at an urban site in the Pearl River
 Delta, southern China. Chemosphere 168, 1293–1301.
 https://doi.org/10.1016/j.chemosphere.2016.11.140
- Liu, J., Li, X., Tan, Z., Wang, W., Yang, Y., Zhu, Y., Yang, S., Song, M., Chen, S., Wang,
 H., Lu, K., Zeng, L., Zhang, Y., 2021. Assessing the Ratios of Formaldehyde
 and Glyoxal to NO2 as Indicators of O3–NOx–VOC Sensitivity. Environ. Sci.
 Technol. 55, 10935–10945. https://doi.org/10.1021/acs.est.0c07506
- 1779 Lou, S., Holland, F., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C.C., Fuchs, H., 1780 Häseler, R., Kita, K., Kondo, Y., Li, X., Shao, M., Zeng, L., Wahner, A., Zhang, 1781 Y., Wang, W., Hofzumahaus, A., 2010. Atmospheric OH reactivities in the Pearl 1782 River Delta - China in summer 2006: measurement and model results. 1783 Atmospheric Chemistry Physics 10, 11243-11260. 1784 https://doi.org/10.5194/acp-10-11243-2010
- Luecken, D.J., Hutzell, W.T., Strum, M.L., Pouliot, G.A., 2012. Regional sources of atmospheric formaldehyde and acetaldehyde, and implications for atmospheric modeling. Atmospheric Environment 47, 477–490.
 https://doi.org/10.1016/j.atmosenv.2011.10.005

- Lui, K.H., Ho, S.S.H., Louie, P.K.K., Chan, C.S., Lee, S.C., Hu, D., Chan, P.W., Lee,
 J.C.W., Ho, K.F., 2017. Seasonal behavior of carbonyls and source
 characterization of formaldehyde (HCHO) in ambient air. Atmospheric
 Environment 152, 51–60. https://doi.org/10.1016/j.atmosenv.2016.12.004
- Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., ... & Williams, M. L. (2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. *Atmospheric Chemistry and Physics*, 15(15), 8889-8973.
- Murillo, J.H., Marín, J.F.R., Román, S.R., 2012. Determination of carbonyls and their sources in three sites of the metropolitan area of Costa Rica, Central America. Environ Monit Assess 184, 53–61. https://doi.org/10.1007/s10661-011-1946-5
- Pang, X., Mu, Y., 2006. Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air. Atmospheric Environment 40, 6313–6320. https://doi.org/10.1016/j.atmosenv.2006.05.044
- Rao, Z., Chen, Z., Liang, H., Huang, L., Huang, D., 2016. Carbonyl compounds over urban Beijing: Concentrations on haze and non-haze days and effects on radical chemistry. Atmospheric Environment, Air Pollution in the Beijing Tianjin Hebei (BTH) region, China 124, 207–216. https://doi.org/10.1016/j.atmosenv.2015.06.050
- 1808 Sahu, L. K., & Saxena, P. (2015). High time-resolved volatile organic compounds

 1809 measurements at an urban location in India: Sources, variability, and role in

 1810 ozone formation. Environmental Science and Pollution Research, 22(5), 3975
 1811 3986.
- Schroeder, J.R., Crawford, J.H., Fried, A., Walega, J., Weinheimer, A., Wisthaler, A.,
 Müller, M., Mikoviny, T., Chen, G., Shook, M., Blake, D.R., Tonnesen, G.S.,
 2017. New insights into the column CH2O/NO2 ratio as an indicator of near-surface ozone sensitivity. Journal of Geophysical Research: Atmospheres 122,
 8885–8907. https://doi.org/10.1002/2017JD026781
- Shao, M., Lu, S., Liu, Y., Xie, X., Chang, C., Huang, S., Chen, Z., 2009. Volatile organic
 compounds measured in summer in Beijing and their role in ground-level ozone
 formation. Journal of Geophysical Research: Atmospheres 114.
 https://doi.org/10.1029/2008JD010863
- Shen, X., Zhao, Y., Chen, Z., Huang, D., 2013. Heterogeneous reactions of volatile organic compounds in the atmosphere. Atmospheric Environment 68, 297–314. https://doi.org/10.1016/j.atmosenv.2012.11.027
- Tan, Z., Lu, K., Jiang, M., Su, R., Dong, H., Zeng, L., Xie, S., Tan, Q., Zhang, Y., 2018.
 Exploring ozone pollution in Chengdu, southwestern China: A case study from
 radical chemistry to O3-VOC-NOx sensitivity. Science of The Total
 Environment 636, 775–786. https://doi.org/10.1016/j.scitotenv.2018.04.286
- Tonnesen, G.S., Dennis, R.L., 2000. Analysis of radical propagation efficiency to assess ozone sensitivity to hydrocarbons and NO x : 2. Long-lived species as indicators of ozone concentration sensitivity. Journal of Geophysical Research:

(带格式的: 正文, 缩进: 左侧: 0 厘米, 悬挂缩进: 7.2 字符

「帯格式的: 正文, 缩进: 左侧: 0 厘米, 悬挂缩进: 7.2 字符

- 1831 Atmospheres 105, 9227–9241. https://doi.org/10.1029/1999JD900372
- 1832 Vermeuel, M.P., Novak, G.A., Alwe, H.D., Hughes, D.D., Kaleel, R., Dickens, A.F.,
- 1833 Kenski, D., Czarnetzki, A.C., Stone, E.A., Stanier, C.O., Pierce, R.B., Millet,
- D.B., Bertram, T.H., 2019. Sensitivity of Ozone Production to NOx and VOC
- 1835 Along the Lake Michigan Coastline. Journal of Geophysical Research:
- Along the Lake Michigan Coastline. Journal of Geophysical Research
 Atmospheres 124, 10989–11006. https://doi.org/10.1029/2019JD030842
- Wang, C., Huang, X.-F., Han, Y., Zhu, B., He, L.-Y., 2017. Sources and Potential Photochemical Roles of Formaldehyde in an Urban Atmosphere in South China. Journal of Geophysical Research: Atmospheres 122, 11,934-11,947. https://doi.org/10.1002/2017JD027266
- Wang, Y., Guo, H., Zou, S., Lyu, X., Ling, Z., Cheng, H., Zeren, Y., 2018. Surface O3
 photochemistry over the South China Sea: Application of a near-explicit
 chemical mechanism box model. Environmental Pollution 234, 155–166.
 https://doi.org/10.1016/j.envpol.2017.11.001
- Wang, Y., Wang, H., Zhang, X., et al. (2020). Formation of secondary organic aerosols
 from carbonyl compounds: Insights from field observations and simulations.
 Atmospheric Chemistry and Physics, 20, 6177–6189.
- Xue, L., Gu, R., Wang, T., Wang, X., Saunders, S., Blake, D., Louie, P.K.K., Luk,
 C.W.Y., Simpson, I., Xu, Z., Wang, Z., Gao, Y., Lee, S., Mellouki, A., Wang, W.,
 Oxidative capacity and radical chemistry in the polluted atmosphere of
 Hong Kong and Pearl River Delta region: analysis of a severe photochemical
 smog episode. Atmospheric Chemistry and Physics 16, 9891–9903.
 https://doi.org/10.5194/acp-16-9891-2016
- Xue, L.K., Wang, T., Gao, J., Ding, A.J., Zhou, X.H., Blake, D.R., Wang, X.F., Saunders,
 S.M., Fan, S.J., Zuo, H.C., Zhang, Q.Z., Wang, W.X., 2014. Ground-level ozone
 in four Chinese cities: precursors, regional transport and heterogeneous
 processes. Atmospheric Chemistry and Physics 14, 13175–13188.
 https://doi.org/10.5194/acp-14-13175-2014
- Xue, L.K., Wang, T., Guo, H., Blake, D.R., Tang, J., Zhang, X.C., Saunders, S.M., Wang,
 W.X., 2013. Sources and photochemistry of volatile organic compounds in the
 remote atmosphere of western China: results from the Mt. Waliguan
 Observatory. Atmospheric Chemistry and Physics 13, 8551–8567.
 https://doi.org/10.5194/acp-13-8551-2013
- 1864 Xue, L., Wang, T., Louie, P. K. K., Luk, C. W. Y., Blake, D. R., Gao, J., & Lee, S. H. 1865 (2013). Increasing external effects negate local efforts to control ozone air pollution: A case study of Hong Kong and implications for other Chinese cities.

 1867 Environmental Science & Technology, 47(17), 10299-10305.
- Yang, X., Xue, L., Wang, T., Wang, X., Gao, J., Lee, S., Blake, D.R., Chai, F., Wang,
 W., 2018. Observations and Explicit Modeling of Summertime Carbonyl
 Formation in Beijing: Identification of Key Precursor Species and Their Impact
 on Atmospheric Oxidation Chemistry. Journal of Geophysical Research:
 Atmospheres 123, 1426–1440. https://doi.org/10.1002/2017JD027403

带格式的: 正文, 缩进: 左侧: 0厘米, 悬挂缩进: 7.2字符

带格式的: 正文, 缩进: 左侧: 0厘米, 悬挂缩进: 7.2字符

- Yang, X., Xue, L., Yao, L., Li, Q., Wen, L., Zhu, Y., Chen, T., Wang, X., Yang, L., Wang,
 T., Lee, S., Chen, J., Wang, W., 2017. Carbonyl compounds at Mount Tai in the
 North China Plain: Characteristics, sources, and effects on ozone formation.
 Atmospheric Research 196, 53–61.
 https://doi.org/10.1016/j.atmosres.2017.06.005
- 1878 Ye, Z., Xie, S., Wu, Y., et al. (2021). Characterization of carbonyl compounds and their contributions to ozone and secondary organic aerosol formation in a megacity.

 1879 Environmental Science & Technology, 55(14), 9465–9474.
- Yuan, B., Chen, W., Shao, M., Wang, M., Lu, S., Wang, Bin, Liu, Y., Chang, C.-C.,
 Wang, Boguang, 2012. Measurements of ambient hydrocarbons and carbonyls
 in the Pearl River Delta (PRD), China. Atmospheric Research, Remote Sensing
 of Clouds and Aerosols: Techniques and Applications Atmospheric Research
 116, 93–104. https://doi.org/10.1016/j.atmosres.2012.03.006
- Zhang, X., Chen, Z.M., Zhao, Y., 2010. Laboratory simulation for the aqueous OHoxidation of methyl vinyl ketone and methacrolein: significance to the in-cloud SOA production. Atmospheric Chemistry and Physics 10, 9551–9561. https://doi.org/10.5194/acp-10-9551-2010
- Zhang, X., Wu, Z., He, Z., Zhong, X., Bi, F., Li, Y., Gao, R., Li, H., Wang, W., 2022.
 Spatiotemporal patterns and ozone sensitivity of gaseous carbonyls at eleven urban sites in southeastern China. Science of The Total Environment 824,
 153719. https://doi.org/10.1016/j.scitotenv.2022.153719
- Zhang, Y., Wang, X., Wen, S., Herrmann, H., Yang, W., Huang, X., Zhang, Z., Huang,
 Z., He, Q., George, C., 2016. On-road vehicle emissions of glyoxal and
 methylglyoxal from tunnel tests in urban Guangzhou, China. Atmospheric
 Environment 127, 55–60. https://doi.org/10.1016/j.atmosenv.2015.12.017
- Zhang, Z., Zhang, Y., Wang, X., Lü, S., Huang, Z., Huang, X., Yang, W., Wang, Y.,
 Zhang, Q., 2016. Spatiotemporal patterns and source implications of aromatic
 hydrocarbons at six rural sites across China's developed coastal regions. Journal
 of Geophysical Research: Atmospheres 121, 6669–6687.
 https://doi.org/10.1002/2016JD025115
- Zhou, Z., Tan, Q., Deng, Y., Lu, C., Song, D., Zhou, X., Zhang, X., Jiang, X., 2021.
 Source profiles and reactivity of volatile organic compounds from
 anthropogenic sources of a megacity in southwest China. Science of The Total
 Environment 790, 148149. https://doi.org/10.1016/j.scitotenv.2021.148149

「帯格式的: 正文, 缩进: 左侧: 0 厘米, 悬挂缩进: 7.2 字符