Preprints
https://doi.org/10.5194/egusphere-2024-1075
https://doi.org/10.5194/egusphere-2024-1075
12 Apr 2024
 | 12 Apr 2024

Ensemble reconstruction of missing satellite data using a denoising diffusion model: application to chlorophyll a concentration in the Black Sea

Alexander Barth, Julien Brajard, Aida Alvera-Azcárate, Bayoumy Mohamed, Charles Troupin, and Jean-Marie Beckers

Abstract. Satellite observations provide a global or near-global coverage of the World Ocean. They are however affected by clouds (among others), which severely reduce their spatial coverage. Different methods have been proposed in the literature to reconstruct missing data in satellite observations. For many applications of satellite observations, it has been increasingly important to accurately reflect the underlying uncertainty of the reconstructed observations. In this paper, we investigate the use of a denoising diffusion model to reconstruct missing observations. Such methods can naturally provide an ensemble of reconstructions where each member is spatially coherent with the scales of variability and with the available data. Rather than providing a single reconstruction, an ensemble of possible reconstructions can be computed, and the ensemble spread reflects the underlying uncertainty. We show how this method can be trained from a collection of satellite data without requiring a prior interpolation of missing data and without resorting to data from a numerical model. The reconstruction method is tested with chlorophyll a concentration from the Ocean and Land Color Instrument (OLCI) sensor (onboard the satellites Sentinel- 3A and Sentinel-3B) on a small area of the Black Sea and compared with the neural network DINCAE (Data-Interpolating Convolutional Auto-Encoder). The spatial scales of the reconstructed data are assessed via a variogram, and the accuracy and statistical validity of the produced ensemble reconstructed are quantified using the continuous ranked probability score and its decomposition into reliability, resolution and uncertainty.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

02 Dec 2024
Ensemble reconstruction of missing satellite data using a denoising diffusion model: application to chlorophyll a concentration in the Black Sea
Alexander Barth, Julien Brajard, Aida Alvera-Azcárate, Bayoumy Mohamed, Charles Troupin, and Jean-Marie Beckers
Ocean Sci., 20, 1567–1584, https://doi.org/10.5194/os-20-1567-2024,https://doi.org/10.5194/os-20-1567-2024, 2024
Short summary
Alexander Barth, Julien Brajard, Aida Alvera-Azcárate, Bayoumy Mohamed, Charles Troupin, and Jean-Marie Beckers

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1075', Anonymous Referee #1, 22 May 2024
    • AC1: 'Reply on RC1', Alexander Barth, 02 Aug 2024
  • RC2: 'Comment on egusphere-2024-1075', Anonymous Referee #2, 07 Jun 2024
    • AC2: 'Reply on RC2', Alexander Barth, 02 Aug 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1075', Anonymous Referee #1, 22 May 2024
    • AC1: 'Reply on RC1', Alexander Barth, 02 Aug 2024
  • RC2: 'Comment on egusphere-2024-1075', Anonymous Referee #2, 07 Jun 2024
    • AC2: 'Reply on RC2', Alexander Barth, 02 Aug 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Alexander Barth on behalf of the Authors (02 Aug 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (02 Aug 2024) by Matjaz Licer
RR by Anonymous Referee #1 (23 Aug 2024)
ED: Publish as is (10 Oct 2024) by Matjaz Licer
AR by Alexander Barth on behalf of the Authors (11 Oct 2024)

Journal article(s) based on this preprint

02 Dec 2024
Ensemble reconstruction of missing satellite data using a denoising diffusion model: application to chlorophyll a concentration in the Black Sea
Alexander Barth, Julien Brajard, Aida Alvera-Azcárate, Bayoumy Mohamed, Charles Troupin, and Jean-Marie Beckers
Ocean Sci., 20, 1567–1584, https://doi.org/10.5194/os-20-1567-2024,https://doi.org/10.5194/os-20-1567-2024, 2024
Short summary
Alexander Barth, Julien Brajard, Aida Alvera-Azcárate, Bayoumy Mohamed, Charles Troupin, and Jean-Marie Beckers
Alexander Barth, Julien Brajard, Aida Alvera-Azcárate, Bayoumy Mohamed, Charles Troupin, and Jean-Marie Beckers

Viewed

Total article views: 685 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
467 185 33 685 20 20
  • HTML: 467
  • PDF: 185
  • XML: 33
  • Total: 685
  • BibTeX: 20
  • EndNote: 20
Views and downloads (calculated since 12 Apr 2024)
Cumulative views and downloads (calculated since 12 Apr 2024)

Viewed (geographical distribution)

Total article views: 686 (including HTML, PDF, and XML) Thereof 686 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 02 Dec 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Most satellite observations have gaps, for example, due to clouds. This paper presents a method to reconstruct missing data in satellite observation of the chlorophyll a concentration in the Black Sea. Rather than giving a single possible reconstructed field, the discussed method provides an ensemble of possible reconstructions using a generative neural network. The resulting ensemble is validated using techniques from numerical weather prediction and ocean modelling.