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Abstract. Satellite observations provide a global or near-global coverage of the World Ocean. They are however affected by

clouds (among others), which severely reduce their spatial coverage. Different methods have been proposed in the literature

to reconstruct missing data in satellite observations. For many applications of satellite observations, it has been increasingly

important to accurately reflect the underlying uncertainty of the reconstructed observations. In this paper, we investigate the

use of a denoising diffusion model to reconstruct missing observations. Such methods can naturally provide an ensemble of5

reconstructions where each member is spatially coherent with the scales of variability and with the available data. Rather than

providing a single reconstruction, an ensemble of possible reconstructions can be computed, and the ensemble spread reflects

the underlying uncertainty. We show how this method can be trained from a collection of satellite data without requiring a

prior interpolation of missing data and without resorting to data from a numerical model. The reconstruction method is tested

with chlorophyll a concentration from the Ocean and Land Color Instrument (OLCI) sensor (onboard the satellites Sentinel-10

3A and Sentinel-3B) on a small area of the Black Sea and compared with the neural network DINCAE (Data-Interpolating

Convolutional Auto-Encoder). The spatial scales of the reconstructed data are assessed via a variogram, and the accuracy and

statistical validity of the produced ensemble reconstructed are quantified using the continuous ranked probability score and its

decomposition into reliability, resolution and uncertainty.

1 Introduction15

At any given time, about 75% of the ocean surface is covered by clouds (Wylie et al., 2005) which are opaque to electromag-

netic radiation in the visible and infrared spectrum. Many satellite sensors rely on this part of the spectrum to measure, for

example, sea surface temperature and ocean color. Besides clouds, other reasons for missing data include atmospheric dust,

sun glint contamination, limited swath width, and high sensor-zenith angle (Feng and Hu, 2016; Mikelsons and Wang, 2019;

Alvera-Azcárate et al., 2021). The amount of missing data in satellite observations can therefore be substantial.20
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Several methods have been proposed in the past to reconstruct missing data in satellite images, such as EOF-based (Empiri-

cal Orthogonal Functions) methods like Data Interpolating Empirical Orthogonal Functions (DINEOF, Alvera-Azcárate et al.,

2016; Alvera-Azcárate et al., 2021; Pujol et al., 2022), optimal interpolation (e.g. Reynolds et al., 2007), and Kriging (e.g.

Saulquin et al., 2011). More recently, neural network-based techniques, such as the Data-Interpolating Convolutional Auto-25

Encoder (DINCAE, Barth et al., 2020; Han et al., 2020; Ji et al., 2021; Jung et al., 2022; Barth et al., 2022; Luo et al., 2022)

and other neural networks with a U-Net architecture (Ronneberger et al., 2015) like those described by Hong et al. (2023) as

well as marked auto-encoders (Goh et al., 2023), have been applied to this problem. The input of these neural networks is

typically a satellite image with missing data and the output is the reconstructed full field. Then the neural network is trained by

being fed pairs of images (with and without clouds, or with some clouds and with even more clouds) so that the neural network30

learns the mapping between an image affected by clouds and a clear image.

For satellite images where all missing data have been reconstructed, it is clear that the error of the reconstructed and initial

missing pixels is typically larger than the error of the original pixels. In optimal interpolation and Kriging, this error is rep-

resented by the a posteriori error covariance. However, these methods assume that the errors can be described by a Gaussian35

distribution and that the underlying error covariances of the observations and the first guess are perfectly known. In practice,

the error covariance of the first guess (the a priori error covariance) is often described as an isotropic function depending only

on the distance between two points. In addition, these methods assume that the observations and the first guess are unbiased

and independent.

40

For DINCAE (Barth et al., 2020, 2022), the estimation of the error variance is part of the training process and does not

require precise knowledge of the error statistics of the input data. For every pixel, an estimate of the reconstructed value and

its error variance is provided. During the training process, the likelihood of the actual measurement is maximized by assuming

that the error is Gaussian distributed. This gives a pointwise estimate of the error variance and validation with independent data

shows that the expected error variance is reliable. However, this approach does not give us any information about how the error45

is correlated in space (and time). This additional information is crucial for computing the expected error of derived quantities

that combine satellite data from different spatial locations. For example, this is the case when computing an average quantity

over a given area.

Another issue, when the model is forced to provide a single reconstruction, is that the results are often too smooth, as small50

scales under clouds are of course not resolved when the cloud coverage has a given spatial extension (and only large scales can

be estimated using available data). Since multiple images would be consistent with the partial information present, a neural

network trained to minimize e.g. the mean square error, would then implicitly produce the average of all these possible states.

For example, if the exact position of a front is not visible in a satellite image, a reconstructed image would have the tendency

to smooth out the front as it is implicitly the average of multiple images with the front in different positions. Consequently, this55

means that small scale information cannot be adequately retained.
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Therefore, instead of creating a single reconstruction for each pixel (with the associated error variance), it would be preferable

to produce an ensemble of likely reconstructions (based on the available data), as is the case with ensemble modeling and

the Ensemble Kalman Filter (Evensen, 2009). The expected error of a derived quantity (for example total amount of surface

chlorophyll in a given area) is then given directly by the ensemble statistics where this derived quantity is computed for each60

member of the ensemble individually.

The denoising diffusion models (e.g. Ho et al., 2020) belong to the family of generative algorithms like Generative Adver-

sarial Networks (Goodfellow et al., 2016). Contrarily to deterministic neural networks, in which the primary objective is to

learn a mapping function between input features and a desired output, generative models aim to produce samples from the

same distribution as the training data. In general, such probability distribution cannot be expressed explicitly in closed form. In65

many studies (e.g. Dhariwal and Nichol, 2021; Bayat, 2023), it has been shown empirically that diffusion models tend to have

better diversity than Generative Adversarial Networks which is an important property if one wants to represent the uncertainty

of the reconstruction of incomplete satellite data.

Often diffusion models use additional information (for example text description or an image) in order to guide the gener-

ation process during the reverse diffusion process (i.e. the image generation process). This guidance can be implemented in70

different ways. One can either use a classifier to steer the generation process (Dhariwal and Nichol, 2021). A classifier is a

neural network which associates a label (typically a text description) to an image. However, it is important that the pre-trained

classifier is suitable for noisy images as generated during the reverse diffusion process.

In the classifier-free guidance algorithm (Ho and Salimans, 2022), the neural network denoising the images also depends75

explicitly on the class label. While training the neural network, this class label is sometimes replaced by a null label (i.e. a

vector with all elements equal to zero). As a result the trained neural network can either denoise any image of the training

dataset (when given the null label) or a specific subset of the training dataset (matching the provided label). During sampling

the reverse diffusion is steered by a scaled difference between the noise predicted knowing the label and the noise predicted

with a null label and therefore enhancing the similarity of the generated image with the provided label.80

Denoising diffusion models have also been used for increasing the resolution (Saharia et al., 2021) and for in-painting.

Lugmayr et al. (2022) apply the forward and reverse diffusion process iteratively to fill in the missing region. However, for

these approaches the diffusion model must be trained on a large collection of complete images.

In section 2, we will introduce the denoising diffusion framework which is the basis of this work. The data will be presented

in section 3. The denoising diffusion framework will be adapted in section 4 to handle missing data during the training and to85

produce reconstructed images based on partial data. The results will be discussed and validated in the section 5 and compared

to the DINCAE method. Conclusions will be presented in section 6.
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2 Denoising diffusion model

The denoising diffusion models (Ho et al., 2020) use a quite different approach than traditional applications for neural net-

works, as their goal is to generate an image that comes from the same (but not explicitly known) distribution as the training90

data. This inherently stochastic generation process gives us an appropriate framework to provide an ensemble of possible states.

The present description closely follows Ho et al. (2020). The general idea is that we start with a clear image x0 (later we

will discuss the case where all training images contain clouds) and then progressively add noise. Without loss of generality, we

assume that x0 is scaled such that every element is of the order of 1. In practice, we remove the mean and divide the anomalies95

by the standard deviation. The mean and standard deviation are here single scalars computed over the whole training dataset.

We did not compute a different mean and standard for every image.

The diffusion process is a Markov process as every image xt (considered here as a flat vector) depends only on the previous

image xt−1 in this chain. We degrade the image xt−1 by adding noise zt (zt ∼N (0,I)) scaled by the parameter βt (with100

0< βt < 1). The variance of added noise (βt) typically increases at the diffusion step t increases. Note that the diffusion step

is completely unrelated to the acquisition time of the satellite data. At the same time, we scale the image xt−1 so that the

combination xt remains of unit variance:

xt =
√
1−βtxt−1 +

√
βtzt−1 (1)

The level of degradation in the image xt increases as the diffusion step t increases. This Markov process has the following105

transition probability (also called forward diffusion kernel):

q(xt|xt−1) =N
(
xt;
√

1−βtxt−1,βtI
)

(2)

The linear combination of two Gaussian distributed variables is also Gaussian distributed. Therefore, we can compute the

transition probability q(xt|x0) in closed form (Ho et al., 2020):

q(xt|x0) =N
(
xt;

√
ᾱtx0,(1− ᾱt)I

)
(3)110

where ᾱt =
∏t

s=1αs and αt = 1−βt. The parameters ᾱt and αt generally depend on the diffusion step t. All elements αt

are smaller than 1, therefore, ᾱt tends to zero as t increases. The image xt will become more and more similar to an image

with Gaussian noise as t increases. The last image xT approximately follows a Gaussian distribution with zero mean and an

identity matrix as covariance:

q(xT )≈N (xT ;0,I) (4)115
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2.1 Reverse process

If the forward transition kernel is a Gaussian distribution, the distribution of the reverse transition kernel is also a Gaussian

distribution in the limit of small steps sizes βt, i.e. in the limit where the discrete diffusion process tends to the continuous dif-

fusion (Feller, 1949; Sohl-Dickstein et al., 2015). The Markov chain for the reverse process begins with a Gaussian Distribution

random variable with zero mean and unit variance:120

p(xT ) =N (xT ;0,I) (5)

The reverse process is also a Markov process involving the transition probabilities pθ(xT−1,xT ) and a certain number of

model parameters θ to be determined:

pθ(xT−1) =

∫
pθ(xT−1,xT )dxT (6)

Formally, the probability of the clear image x0 is obtained by combining the probability of all possible trajectories x0:T125

leading to the image x0:

pθ(x0) =

∫
pθ(x0:T )dx1:T (7)

The parameters θ will be determined by maximizing the expected probability pθ(x0), or equivalently by minimizing the

negative logarithm of this probability:

L= E [− log(pθ(x0))] (8)130

In practice, the integral is intractable as it would require an integration over a very high-dimensional space. It can be shown

that L is always smaller than the so-called evidence lower bound Lelb (Sohl-Dickstein et al., 2015) using Jensen’s inequality

(Jensen, 1906) and the Bayes’ theorem:

E [− log(pθ(x0))]≤−E

[
log

pθ(x0:T )

q(x1:T |x0)

]
=−E

[
log

(
p(xT )

T∏
t=1

pθ(xt−1|xt)

q(xt|xt−1)

)]
= Lelb (9)

where the latent variables (i.e. unobserved variables) are here the whole trajectory except the first state (x1:T ). Rather than135

minimizing L, the quantity Lelb is minimized instead. Ho et al. (2020) showed that this leads, after some simplifications, to

the following cost function for training the neural network (ϵθ(x, t)), for any step t and for any sample x0 from the training

dataset:
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J(θ) = ||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱt ϵ, t))||2 (10)

where ϵ is the accumulated noise added during the forward process. The weights θ of the neural network are updated using140

the gradient of the previous loss function. A trained neural network can then be used to create other samples x0 by solving the

following equation backwards where the initial image xT and z follows a normal distribution:

xt−1 =
1

√
αt

(
xt −

1−αt√
1− ᾱt

ϵθ(xt, t)

)
+σtz (11)

where the noise term σt is equal to
√
βt. This algorithm will be extended in Section 4.1 to handle clouded images.

3 Data145

To illustrate the application of the denoising diffusion model, we use the daily L3 satellite chlorophyll a concentration of the

Black Sea at a spatial resolution of 300 m from the Copernicus Marine Service (Zibordi et al., 2015; Kajiyama et al., 2019;

Lee et al., 2002; European Union-Copernicus Marine Service, 2022) using data from the Ocean and Land Color Instrument

(OLCI) sensor onboard the Sentinel-3A and Sentinel-3B satellites. On average, the amount of valid data over the ocean is 30%

and shows a clear seasonal cycle (Figure 1). The marked increase of data after 2019 is due to the availability of Sentinel-3B150

data. We use data from April 26, 2016 to August 31, 2023 of this chlorophyll a concentration dataset. For the training data, we

use data up to the date August 31, 2021.

The aim of the study is to test different methods on a problem with relatively small images which allow us to test many

different hyperparameters. The training data is therefore split horizontally in tiles with 64 x 64 grid cells. Only tiles with at155

least 20% valid data (i.e. non-clouded pixels) are used for training to reduce training time. In total, there are 851926 images

(after splitting the data into tiles) for training.

The validation dataset is composed of the 12 months of data between September 1, 2021 to August 31, 2022. The following

12 months (from September 1, 2022 to August 31, 2023) are used as test data. We only consider the region 28.56979°E -

28.80623°E and 43.64238°N - 43.81242°N (corresponding to a 64 × 64 grid at 300 m resolution) for validating and testing160

the neural network (while the data from the whole Black Sea is used for training), as the other considered method (DINCAE)

has only been tested so far with a fixed location. This is a relatively small area, but it allowed us to perform several tests with

different network configurations (Figure 2).

A coastal area was chosen because the dynamics there are more complex than in offshore waters. For the validation and

test data, we randomly took the cloud mask from other time instances to mask additional grid cells which will be used for165

validation. Only images with a cloud mask between 15% and 35% of the missing data were considered as an additional mask

to obtain a sufficient number of “clouded” pixels and to reduce the risk that an image is masked almost entirely. We verified

that, neither in the validation nor in the test dataset, were images masked entirely after applying the cloud mask.

6



All the data is log transformed (base 10) and the units are to be understood as log10 mg m−3.
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percentage of valid data (filtered)

Figure 1. Percentage of valid data over time in each satellite image for the Black Sea dataset and percentage of valid data filtered by a

Gaussian filter (with a standard deviation of 30 days).
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Figure 2. Western part of the Black Sea. The black square corresponds to the area where the methods are validated and tested (units:

log10 mg m−3).

4 Method170

4.1 Training with clouded images

The training approach by Ho et al. (2020) assumes that we have a large training dataset with clear images. Unfortunately, for

satellite observations, the clouds are so common that it would be difficult to create such a dataset. If the data was previously

interpolated, then there is the risk that the neural network would also learn potential interpolation artifacts. Alternatively, the

neural network could also be trained with data from a numerical model. But even in this case, the neural network would also175

learn biases and errors present in the model. When validating models with satellite observations, it is generally preferable that

8



the satellite observation is independent of a numerical model. Therefore, we are aiming to extend the approach of Ho et al.

(2020) to train using images including clouds.

It is important to note that all operations in the training and sampling algorithms (equations 1, 10 and 11) are only pointwise180

operations (i.e., operations that apply to each grid cell independently) that do not involve the neighboring grid cells, except

for the neural network which ensures spatial coherence. The spatial coherence is mainly due to the convolutional layers whose

weights have been trained to provide the same spatial structure as in the training dataset. Rather than working with a global

step t valid for a whole image, we consider the case where every pixel can be in a different state of degradation. The noise

schedule βt is a freely selectable list of parameters. For the following approach, we impose that β0 = 0, which means that the185

noise is effectively added only at step 1 and later but not at step zero.

For a training image that contains clouds, we consider clouded pixels initially at the fully degraded level t= T (i.e., normally

distributed random noise) and clear pixels at the non-degraded level t= 0 (i.e., pixels as measured by the satellite). During

training, for each image of the training dataset, a different image is randomly selected (also from the training dataset) and its

cloud mask is used to degrade clear pixels of the input image (Figure 3). The stage of degradation t of these pixels is randomly190

chosen between 1 and T but applied uniformly to all withheld pixels. This is important because the noise is reduced progres-

sively during inference and the neural network needs to know how to handle intermediate degradation levels.

The loss function is the L2 norm between the actual added noise and the noise predicted by the neural network, computed

over the pixels to which clouds have been added (Figure 4). Pixels which are clouded or covered by land are considered in the195

last stage of degradation (T ) during training. Those pixels (in white on panel “added noise (target)” in Figure 4) cannot be used

to evaluate the loss function, as the underlying value is not known (for clouded pixels) or not defined (for land pixels).
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Figure 3. Data preparation for training. For the cloud mask, 1 corresponds to a clouded pixel and 0 to a pixel with valid data.
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Figure 4. Input and output of the neural network during training. Predicted noise is an actual prediction of the trained diffusion model for

the provided inputs (units: log10 mg m−3). The diffusion step t (0≤ t≤ T ) is scaled linearly to the interval − 1
2

and 1
2

.

Figure 5. Reverse diffusion process illustrated with data from September 9, 2022 (units: log10 mg m−3).

The noise schedule of the forward diffusion process is defined by the parameter βt, which varies linearly from 0 for t= 0 to

a maximum value of βmax for t= T , where βmax and T are hyperparameters (chosen from a search range to satisfy ᾱT ≈ 0).
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The neural network has the general architecture of a U-Net (Ronneberger et al., 2015) which is defined recursively by a200

block (at a given level l) composed of:

– three convolutional layers with output layers Cl and kernel size k followed each by an activation function.

– 2-by-2 max pooling layer.

– inner block at level l+1.

– a single transpose convolution with a stride 2 with the number of output channels the same as the number of input205

channels of this block followed by an activation function.

– output of the previous layer, added to the input layer to form a residual connection.

An inner block at level l+1 has the same structure as an outer block at level l, except for the innermost level, where the inner

block is simply the identity function. This recursive definition of the U-Net architecture allows us to easily test networks with

different depth levels. The depth level L, the number of channels Cl (l = 1 . . .L) and the kernel size k are hyperparameters of210

the network.

The input of the neural network is a 2D image with two channels. The first channel is the noisy image (normalized using

the mean and standard deviation computed over the training dataset) and a 2D field with the step of the denoising pipeline

(scaled between − 1
2 for clear pixels and 1

2 for fully-degraded pixels). We do not directly use the step t, since the inputs of the

neural network should be of the order of 1 to accelerate the training. In this implementation of the denoising diffusion model,215

every pixel can be at a different step of degradation. During training, noise is intentionally added to the image (advancing from

diffusion step l to l+1) and the neural network is trained to predict the noise allowing it to denoise the image and to go from

step l+1 back to l. The neural network can predict the added noise because it learned the typical spatial structures in the

training dataset and it is able to recognise them even in a corrupted image. At a first approximation, the neural network acts

like a high-pass filter to identify the noise, which is then removed iteratively during sampling.220

The model is optimized using the Adam optimizer (Kingma and Ba, 2014) using the default parameters except for the learn-

ing rate. During the training process, the learning rate is repeatedly reduced by a given factor after a certain number of steps.

The initial learning rate, the number of steps between the reduction of the learning rate and the reduction factor are treated as

hyperparameters.225

As usual, all model parameters (weights and biases of all convolutional layers) are optimized using the training data. The

denoising diffusion model is implemented in the Julia programming language (Bezanson et al., 2017) using the deep learning

library Flux.jl (Innes, 2018; Innes et al., 2018) and the GPU programming library CUDA.jl (Besard et al., 2019, 2018). The

training of the neural network takes 7 hours on an NVIDIA A100-SXM4-40GB and 8 hours on an NVIDIA GeForce RTX230

4090. The inference time of the test dataset is 30 minutes. All hyperparameters are determined using random search (Bergstra
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and Bengio, 2012) to minimize the RMS error of the reconstruction with the validation data (Table 1). The optimal model (in

terms of RMS error relative to the validation data) has in total 1.6 million parameters. Unless otherwise stated, all comparisons

and reported validation metrics are performed with the independent test data, including the final validation. The final validation

is performed using the independent test data.235

Table 1. Hyperparameters of the diffusion model with the adopted value and the corresponding search space.

Parameter Value Search space

kernel size (k) 5 3 or 5

channels (Cl) [16, 32, 64, 128] [16, 32, 64, 128], [16, 32, 64, 128, 256] or [16, 32, 64, 128, 256,

256]

activation function selu relu, selu or swish

number of steps (T ) 800 between 500 and 1500 (step of 100)

βmax 0.027 between 0.01 and 0.04

batch size 60 fixed

number of epochs 100 fixed

learning rate 0.00017 between 10−5 and 0.0008

number of epochs before reduc-

ing the learning rate

50 between 10 and 100 (step of 10)

factor by which the learning

rate is reduced

0.938 between 0.7 and 0.95

Preliminary experiments showed that a large training dataset is quite important to obtain a stable reconstruction. In fact,

during the reverse diffusion, the neural network is applied 800 times to a satellite image to denoise it and to reconstruct the

missing part of the image. Overfitting of the neural network, which emphasizes an unrealistic structure, could quickly lead to

an unstable reverse diffusion process (i.e., the variance of the reconstructed image grows in an unbounded way). Such problems

were resolved if a sufficiently large and diverse dataset was used for training. In particular, we needed to train the diffusion240

model using image tiles from the whole Black Sea to obtain a stable reverse diffusion process. As an illustration, a sample of

the unconditional generation of images is shown in appendix A together with a random sample of the training data.
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4.2 Sampling

After training the neural network, the missing data in the validation and test dataset are reconstructed. Every clear pixel of245

the input image is considered to be in the non-degraded state t= 0, and all other pixels (clouded or on land) are in the fully

degraded state t= T and initialized with normal distributed random values. For these later pixels, the reverse diffusion process

is used iteratively (going from step l+1 to l) to reduce their noise keeping the originally present pixels unchanged (Figure

5). The convolution operations in the U-Net ensure spatial coherence between clear pixels and reconstructed pixels. All clear

pixels remain constant during the reverse diffusion because the corresponding term in equation (11) is zero as σ0 =
√
β0 = 0250

and α0 = 1−β0 = 1 for these pixels.

For each image of the validation and test two datasets, the reconstruction process is repeated 64 times, leading to an ensemble

of possible reconstructed fields. The larger the ensemble is, the more accurate the derived ensemble mean and variance. Various

ensemble sizes have been used in the literature, for example the ECMWF real-time S2S forecasts use a 51 member ensemble255

size (Buizza et al., 2008). Using 64 ensemble members is here a compromise between diversity of ensemble members and

computational time.

From this ensemble, the ensemble mean and the ensemble standard deviation are also computed. When minimizing the RMS

error relative to the validation dataset, only this ensemble mean is considered.

260

5 Results

Figures 6 and 7 show an example of the reconstruction for the dates August 7, 2022 and September 9, 2022 respectively from

the test dataset. In the original data (panel a), additional clouds have been added using the cloud mask from a different image

(panel b) in order to evaluate the accuracy of the reconstruction. From the data with the added clouds, the reverse diffusion

process was performed 64 times. Two of these 64 reconstructions are shown in panels e and f. The ensemble mean (panel c)265

and the standard deviation (d) are also computed. For every ensemble member, the interpolated fields in the pixels for which

we have valid values in the input data is, per construction, identical to the initial input value. The ensemble standard deviation

at these locations is thus consequently equal to zero. As expected, the ensemble mean is blurrier at the locations where we

have added clouds, but the individual ensemble members also contain realistic small-scale information at these locations. In

Figure 6 (panel d), we see that the ensemble standard deviation increases near fronts under clouds, since the exact position270

of the fronts cannot be deduced from the provided data. In general, the difference between the reconstructions is highest near

the coastline, as the coastal areas are more variable than the offshore waters. This difference is particularly visible when large

clouds are present near the coastline (Figure 7, panels d, e, and f).
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Figure 6. The denoising diffusion model applied on the independent test data for the date 2023-08-07 showing the original data (panel a),

the data with added clouds (panel b), the ensemble mean and standard deviation (panel c, d) and two ensemble members (panel e and f). The

units are log10 mg m−3.
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Figure 7. The same as Figure 6 for the date September 9, 2022.

We compared the reconstruction with the DINCAE neural network. So far, DINCAE was only trained on data using a fixed

area. We adopted the same approach here and trained DINCAE over the area used for validation. We used the same temporal275

split as the diffusion model: data before 2021-09-01 was used for training, the following 12-month period was used to adjust the

hyperparameters (development dataset) and the last 12 months (starting on September 1, 2022) for the independent validation

(test dataset). More information about the application of DINCAE is given in appendix B.

The RMS error and the bias of DINCAE and the diffusion model are computed on artificially clouded pixels for the devel-

opment and test dataset (2 and 3). The RMS error of the diffusion model is based on the ensemble mean. In all cases, the bias280

is relatively low and does not contribute significantly to the RMS error. The RMS error of the diffusion model (based on the

ensemble mean) is slightly smaller than the RMS error of DINCAE for development and test datasets. However, as expected

the RMS error of every ensemble member individually is substantially larger than the RMS error of the ensemble mean. Given

that the RMS error is computed over all time instances, the RMS error for a single ensemble member is relatively stable. The

maximum and minimum RMS error among the 64 ensemble members are 0.202 and 0.211 log10 mg m−3 respectively.285
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Table 2. Comparison of DINCAE and the diffusion model (using the ensemble mean) with the development dataset.

method RMS bias std(reconstruction) std(observation)

DINCAE 0.163 -0.0531 0.308 0.363

Diffusion Model 0.151 0.00568 0.333 0.363

Table 3. Comparison of DINCAE and the diffusion model (using the ensemble mean) with the test dataset.

method RMS bias std(reconstruction) std(observation)

DINCAE 0.175 0.0488 0.308 0.331

Diffusion Model 0.163 0.00388 0.285 0.331

Figure 8 shows a meandering coastal front with submesoscale flow features, which is partially obscured by the added clouds.

The general structure of the front is preserved well by DINCAE and the diffusion model (panels c and e) but the level of details

and the intensity is better represented using the diffusion model. The noise visible offshore is retained by the diffusion model

(per construction), but it is effectively reduced by DINCAE which can be a desirable effect for some applications.
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Figure 8. Comparison between DINCAE and the diffusion model for the date November 10, 2022 (units: log10 mg m−3).

To assess the scales present in the reconstructed data, a variogram (Cressie, 1991; Wackernagel, 2003) is computed using290

the reconstruction of the development and test datasets (Figure 9). A variogram of a spatial random field ϕ(x) is defined by the

following expectation:
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2γ(x1,x2) = E
[
(ϕ(x1)−ϕ(x2))

2
]

(12)

Here we are considering a variogram only as a function of distance h= ∥x1 −x2∥, which allows us to estimate the variogram

numerically by computing the squared differences for the field at randomly chosen locations. These squared differences are295

averaged over bins of distances using all time instances of the validation and test datasets. As many different random locations

were chosen until there are at least 10000 pairs for each bin of distance. For the diffusion model, the variogram is deduced

using the individual ensemble members, and the averaging in equation (12) is done also over different ensemble members.

When computing the variogram of the original data, only the pairs of points corresponding both to valid pixels are considered.

300

It can be seen from Figure 9 that both reconstruction methods underestimate the variance in the original data to some degree,

but the reconstruction with the diffusion model is consistently closer to the original data than DINCAE, which confirms our

qualitative assessment of Figure 8. For the independent test dataset and scales larger than 15 km, the variogram of the diffusion

model coincides with the variogram of the original data. The fact that the variogram does not converge to zero as distances

tend to zero shows that the data is affected by spatially white noise, as it can be seen in the offshore region of Figure 8 (panel a)305

which is also called the “nugget effect” (Matheron, 1962). DINCAE effectively removes (or significantly reduces) the spatially

uncorrelated white noise and therefore the corresponding variogram shows a clear tendency towards zero for smaller distances.
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Figure 9. Variogram of the development (dev) and test datasets (units: (log10 mg m−3)2).

To assess the statistical reliability of the produced reconstruction ensemble, we can use the so-called Talagrand diagram,

also called rank histogram (Talagrand et al., 1997; Hamill, 2001). If the ensemble is generated from the same probability

distribution as the observations, the ensemble is considered reliable. However, it is important to note that the Talagrand and310

other statistical tests described below only allow us to assess the reliability of the marginal PDFs (probability density function)

evaluated for each pixel individually and not the joint PDF accounting for spatial correlations between pixels.

For each pixel for which an observation is available, the corresponding value of all 64 ensemble members is sorted by

x1 ≤ x2 · · · ≤ xN (where here N = 64), and the following successive N +1 bins are defined as:

b0 = (−∞,x1) (13)315

bi = [xi,xi+1) for i= 1 . . .N − 1 (14)

bN = [xN ,∞) (15)

In this case, the probability that the observations belong to the interval bi is 1
N+1 and thus independent of the value of

the observation. With a sufficient number of observations, this probability can be estimated for different bins i. A Talagrand
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diagram shows these frequencies as a function of the bin indices. A perfectly marginally reliable ensemble would result in a320

flat curve. Underdispersive (or overdispersive) ensembles would result in a ∪-shaped (respectively ∩-shaped) curve.

Figure 10 shows the Talagrand diagram computed for the test for the diffusion model and DINCAE dataset. DINCAE pro-

vides the mean and variance of the marginal Gaussian probability distribution function. Therefore, one can derive from this

the corresponding Talagrand diagram using the cumulative distribution function. It can be seen that the error statistics of the325

diffusion model are closer to the ideal flat curve for the diffusion model than for DINCAE. This shows that the probabilities pro-

duced by the diffusion model are marginally reliable, except for the tails of the marginal PDF (first and last bin, corresponding

to the probabilities between 1.5% and 98.5%) where the produced ensemble is underdispersive.
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Figure 10. Talagrand diagram of the diffusion model and the DINCAE method for the independent test datasets.
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Another common probabilistic validation approach defined for marginal PDFs is the Continuous-Ranked Probability Score

(CRPS). Following Hersbach (2000), it is defined as:330

CRPS =

∞∫
−∞

(P (x)−H(x−xo))
2dx (16)

where P (x) is the cumulative distribution function, xo the observations, and H(x) the Heaviside function (H(x) = 1 for

x≥ 0 and H(x) = 0 otherwise). The CRPS has the same units as the data x and it is always positive or zero. When applied to

ensemble reconstructions, the CRPS attains its best score of zero, only when all ensemble members reproduce the observations

exactly. The CRPS can be decomposed into potential CRPS (CRPSpot), reliability, uncertainty and resolution:335

CRPS = reliability+CRPSpot (17)

CRPSpot = uncertainty− resolution (18)

The reliability (smaller is better) measures whether the ensemble accurately reflects the uncertainty of the results. Note that a

system reproducing the climatological data distribution would be perfectly reliable but would not resolve different events. The

resolution (higher is better) determines whether the ensemble allows discrimination between different events. The resolution340

would be zero for the data climatology. Consequently, the uncertainty is the CRPS score for the data climatology and thus

depends only on the variability of the data (and not on the reconstruction method). For more information on these scores and

how they are computed based on an ensemble, the reader is referred to Hersbach (2000) and Candille et al. (2007). It should

be noted that in this context, the resolution is not related to the spatial or temporal resolution of the dataset.

Table 4 shows the corresponding scores for the test and development datasets and for both considered methods. All scores345

have the same units of the data and the standard deviation of this training data is 0.46 log10 mg m−3 to provide an order

of magnitude of the variability. The reliability of the diffusion model (for the marginal PDF) seems to be quite good, which

confirms the results of the Talagrand diagram (Figure 10). The CRPS is mostly determined by the resolution. To further improve

the resolution, it might be beneficial to use more data (including multivariate reconstructions), but it is clear that a perfect score

is not attainable simply due to the lack of information under clouds.350

Table 4. Decomposition of the CRPS score using the developpement (dev) and the independent test data for the diffusion model and for

DINCAE (units log10 mg m−3).

method dataset CRPS reliability CRPSpot resolution uncertainty

diffusion model dev 0.0635 0.00045 0.0631 0.130 0.193

diffusion model test 0.0712 0.00041 0.0708 0.112 0.182

DINCAE dev 0.0827 0.00842 0.0743 0.119 0.193

DINCAE test 0.0856 0.00356 0.0820 0.100 0.182
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Among the test data, we took the images with less than 30% of cloud cover (representing 99 images here). To these rela-

tively clear images, we applied the cloud mask (potentially flipped in the longitude or latitude direction) chosen randomly from

another image in the test dataset so that the total cloud coverage for every image is within a given range of 45% to 55%. If

the cloud coverage is outside this range, then another cloud mask is chosen randomly until the target range is achieved. This

procedure is repeated for different ranges, up to a range of 85% to 95% of missing data.355

The trained diffusion model was applied to these images, and the RMS error relative to the withheld (and independent) data

was computed and is shown in Figure 11.

As expected, the RMS error rises with an increased amount of missing data. With a large amount of missing data, the

diffusion model misses the context to reconstruct the field and the model acts as an unconditional diffusion model. It can also360

be seen that the RMSE does not show any abrupt augmentation.
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Figure 11. Impact of cloud coverage on the RMS computed relative to independent data (units log10 mg m−3)

Further domains are considered to test the applicability of the trained diffusion model in comparison with DINCAE to

explore the different dynamical regimes. In Figure 12, the domain used previously is labeled as 1, and the additional domains

are labeled 2 to 10. For each of these domains DINCAE is trained using only the data from the corresponding domain using the

hyperparameters presented in Table B1. As the diffusion model is trained using 64 x 64 tiles from the whole Black Sea, it is not365

trained again but used only in the inference mode. The RMS error for each domain is shown in table 5 and the corresponding

23



variogram can be seen in Figure 13. Overall the results from the previous test on the first domain are also applicable to other

domains. The RMS error of the diffusion model is lower than the corresponding RMS error of DINCAE except for domain 7.

At the same time, the variance for all domains across different scales is more realistic for the diffusion model.

Figure 12. Additional domains where the diffusion model is applied (domain 2 to domain 10)
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Figure 13. Variogram for the independent test data for the additional domains
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Table 5. RMS error relative to the independent test data for different domains.

domain RMS DINCAE RMS Diffusion Model std(obs)

1 0.175 0.163 0.331

2 0.159 0.058 0.226

3 0.225 0.056 0.211

4 0.162 0.155 0.253

5 0.162 0.074 0.251

6 0.182 0.143 0.353

7 0.090 0.096 0.295

8 0.119 0.062 0.286

9 0.189 0.149 0.442

10 0.116 0.111 0.244

median 0.158 0.107 0.289

6 Conclusions370

Denoising diffusion models have shown their great potential for image generation for computer vision applications and related

tasks. One limitation of this approach, in the context of satellite data, is that it requires clear images for training. The present

manuscript shows that the training approach of Ho et al. (2020) can be extended if the training dataset contains incomplete

images. The approach presented here does not need any additional parameters that would require calibration. The spatial co-

herence and the statistical reliability of the resulting reconstruction process emerges naturally from the training.375

The method is tested on relatively small images of the chlorophyll a concentration of the Black Sea. The quality of the recon-

struction is assessed using independent test data. The diffusion method compared favorably against the U-Net DINCAE. The

RMS error of the reconstructed data using the denoising diffusion model was smaller than the corresponding reconstruction of

DINCAE. The main advantage of the diffusion model is however the ability to reproduce an ensemble of possible reconstructed380

conditions on the available data. Each of these reconstructions contains small-scale information comparable to the scales of

variability in the original data, avoiding a common problem where the results of U-Net and autoencoders produce images that

are too smooth, as the information on small scales can typically not be recovered under clouds with a certain extent. The overall

conclusion is robust when applying this technique to other areas of the Black Sea.

385
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The ensembles of reconstructed data generated by the diffusion model can be used, for example, in the detection of gradients

and fronts in the satellite images or in the estimation of the error in derived quantities, where information on how the error is

correlated in space is also needed.

Another aspect that would be important to investigate in future studies would be the ability to reconstruct sequences of390

images, other parameters (like sea surface temperature, salinity, height...), multivariate reconstructions and data with inhomo-

geneous and/or very reduced coverage like in situ observations. It remains to be seen how well the diffusion model can be used

in these cases.

Data availability. The source code is released as open source under the terms of the MIT License and available at the address https://github.

com/gher-uliege/DINDiff.jl (doi: 10.5281/zenodo.13165363). The satellite chlorophyll a concentration of the Black Sea is provided by the395

Italian National Research Council (CNR – Rome, Italy) as part of the Copernicus Marine Service (doi: 10.48670/moi-00303).

Author contributions. AB designed and implemented the neural network. AB, JB, AAA, BM, CT and JMB contributed to the discussions

and to the writing of the manuscript.

Competing interests. Aida Alvera Azcárate is a member of the editorial board of the journal Ocean Science.

Acknowledgements. The F.R.S.-FNRS (Fonds de la Recherche Scientifique de Belgique) is acknowledged for funding the position of Alexan-400

der Barth. The present research benefited from computational resources made available on Lucia, the Tier-1 supercomputer of the Walloon

Region, infrastructure funded by the Walloon Region under the grant agreement number 1910247. This work has received funding from the

Horizon Europe RIA program via the NECCTON project under the grant agreement number 101081273. Aida Alvera-Azcárate received

funding from the Copernicus Marine Service MultiRes project. Copernicus Marine Service is implemented by Mercator Ocean in the frame-

work of a delegation agreement with the European Union. The authors wish also to thank the Julia community, in particular for the Julia405

programming language and the packages Flux.jl and CUDA.jl.

27

https://github.com/gher-uliege/DINDiff.jl
https://github.com/gher-uliege/DINDiff.jl
https://github.com/gher-uliege/DINDiff.jl


References

Alvera-Azcárate, A., Barth, A., Parard, G., and Beckers, J.-M.: Analysis of SMOS sea surface salinity data using DINEOF, Remote Sensing

of Environment, 180, 137 – 145, https://doi.org/10.1016/j.rse.2016.02.044, special Issue: ESA’s Soil Moisture and Ocean Salinity Mission

- Achievements and Applications, 2016.410

Alvera-Azcárate, A., Van der Zande, D., Barth, A., Troupin, C., Martin, S., and Beckers, J.-M.: Analysis of 23 years of

daily cloud-free chlorophyll and suspended particulate matter in the Greater North Sea, Frontiers in Marine Science, 8,

https://doi.org/10.3389/fmars.2021.707632, 2021.

Barth, A., Alvera-Azcárate, A., Licer, M., and Beckers, J.-M.: DINCAE 1.0: a convolutional neural network with error estimates to recon-

struct sea surface temperature satellite observations, Geoscientific Model Development, 13, 1609–1622, https://doi.org/10.5194/gmd-13-415

1609-2020, 2020.

Barth, A., Alvera-Azcárate, A., Troupin, C., and Beckers, J.-M.: DINCAE 2.0: multivariate convolutional neural network with

error estimates to reconstruct sea surface temperature satellite and altimetry observations, Geoscientific Model Development,

https://doi.org/10.5194/gmd-2021-353, 2022.

Bayat, R.: A Study on Sample Diversity in Generative Models: GANs vs. Diffusion Models, https://openreview.net/forum?id=420

BQpCuJoMykZ, 2023.

Bergstra, J. and Bengio, Y.: Random Search for Hyper-Parameter Optimization, Journal of Machine Learning Research, 13, 281–305, http:

//www.jmlr.org/papers/v13/bergstra12a.html, 2012.

Besard, T., Foket, C., and De Sutter, B.: Effective Extensible Programming: Unleashing Julia on GPUs, IEEE Transactions on Parallel and

Distributed Systems, https://doi.org/10.1109/TPDS.2018.2872064, 2018.425

Besard, T., Churavy, V., Edelman, A., and De Sutter, B.: Rapid software prototyping for heterogeneous and distributed platforms, Advances

in Engineering Software, 132, 29–46, 2019.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A fresh approach to numerical computing, SIAM review, 59, 65–98,

https://doi.org/10.1137/141000671, 2017.

Buizza, R., Leutbecher, M., and Isaksen, L.: Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System, Quarterly430

Journal of the Royal Meteorological Society, 134, 2051–2066, https://doi.org/https://doi.org/10.1002/qj.346, 2008.

Candille, G., Côté, C., Houtekamer, P. L., and Pellerin, G.: Verification of an Ensemble Prediction System against Observations, Monthly

Weather Review, 135, 2688–2699, https://doi.org/10.1175/MWR3414.1, 2007.

Cressie, N.: Statistics for Spatial Data, A Wiley-interscience publication, J. Wiley, ISBN 9780471843368, 1991.

Dhariwal, P. and Nichol, A.: Diffusion Models Beat GANs on Image Synthesis, in: Advances in Neural Information Processing Systems,435

edited by Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., vol. 34, pp. 8780–8794, Curran Associates, Inc.,

https://proceedings.neurips.cc/paper_files/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf, 2021.

European Union-Copernicus Marine Service: Black Sea, Bio-Geo-Chemical, L3, daily Satellite Ob-

servations (1997-ongoing), https://doi.org/10.48670/moi-00303, dataset accessed 2023-09-26, dataset ID

cmems_obs-oc_blk_bgc-plankton_my_l3-olci-300m_P1D, 2022.440

Evensen, G.: Data assimilation: the Ensemble Kalman Filter, 2nd edition, Springer, https://doi.org/10.1007/978-3-642-03711-5, 2009.

Feller, W.: On the Theory of Stochastic Processes, with Particular Reference to Applications, in: Berkeley Symp. on Math. Statist. and Prob.,

pp. 403–432, 1949.

28

https://doi.org/10.1016/j.rse.2016.02.044
https://doi.org/10.3389/fmars.2021.707632
https://doi.org/10.5194/gmd-13-1609-2020
https://doi.org/10.5194/gmd-13-1609-2020
https://doi.org/10.5194/gmd-13-1609-2020
https://doi.org/10.5194/gmd-2021-353
https://openreview.net/forum?id=BQpCuJoMykZ
https://openreview.net/forum?id=BQpCuJoMykZ
https://openreview.net/forum?id=BQpCuJoMykZ
http://www.jmlr.org/papers/v13/bergstra12a.html
http://www.jmlr.org/papers/v13/bergstra12a.html
http://www.jmlr.org/papers/v13/bergstra12a.html
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1137/141000671
https://doi.org/https://doi.org/10.1002/qj.346
https://doi.org/10.1175/MWR3414.1
https://proceedings.neurips.cc/paper_files/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
https://doi.org/10.48670/moi-00303
https://doi.org/10.1007/978-3-642-03711-5


Feng, L. and Hu, C.: Comparison of Valid Ocean Observations Between MODIS Terra and Aqua Over the Global Oceans, IEEE Transactions

on Geoscience and Remote Sensing, 54, 1575–1585, https://doi.org/10.1109/tgrs.2015.2483500, 2016.445

Goh, E., Yepremyan, A. R., Wang, J., and Wilson, B.: MAESSTRO: Masked Autoencoders for Sea Surface Temperature Reconstruction

under Occlusion, EGUsphere, 2023, 1–20, https://doi.org/10.5194/egusphere-2023-1385, 2023.

Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press, http://www.deeplearningbook.org, 2016.

Hamill, T. M.: Interpretation of Rank Histograms for Verifying Ensemble Forecasts, Monthly Weather Review, 129, 550–560,

https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2, 2001.450

Han, Z., He, Y., Liu, G., and Perrie, W.: Application of DINCAE to Reconstruct the Gaps in Chlorophyll-a Satellite Observations in the

South China Sea and West Philippine Sea, Remote Sensing, 12, https://doi.org/10.3390/rs12030480, 2020.

Hersbach, H.: Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems, Weather and Forecasting, 15,

559–570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000.

Ho, J. and Salimans, T.: Classifier-Free Diffusion Guidance, https://doi.org/10.48550/arXiv.2207.12598, 2022.455

Ho, J., Jain, A., and Abbeel, P.: Denoising Diffusion Probabilistic Models, in: NIPS’20: Proceedings of the 34th International Conference on

Neural Information Processing Systems, 574, pp. 6840–6851, 2020, https://doi.org/10.48550/arXiv.2006.11239, 2020.

Hong, Z., Long, D., Li, X., Wang, Y., Zhang, J., Hamouda, M. A., and Mohamed, M. M.: A global daily gap-filled chlorophyll-a dataset

in open oceans during 2001–2021 from multisource information using convolutional neural networks, Earth System Science Data, 15,

5281–5300, https://doi.org/10.5194/essd-15-5281-2023, 2023.460

Innes, M.: Flux: Elegant Machine Learning with Julia, Journal of Open Source Software, https://doi.org/10.21105/joss.00602, 2018.

Innes, M., Saba, E., Fischer, K., Gandhi, D., Rudilosso, M. C., Joy, N. M., Karmali, T., Pal, A., and Shah, V.: Fashionable Modelling with

Flux, CoRR, abs/1811.01457, https://arxiv.org/abs/1811.01457, 2018.

Jensen, J. L. W. V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Mathematica, 30, 175–193,

https://doi.org/10.1007/bf02418571, 1906.465

Ji, C., Zhang, Y., Cheng, Q., and Tsou, J. Y.: Investigating ocean surface responses to typhoons using reconstructed satellite data, International

Journal of Applied Earth Observation and Geoinformation, 103, 102 474, https://doi.org/10.1016/j.jag.2021.102474, 2021.

Jung, S., Yoo, C., and Im, J.: High-Resolution Seamless Daily Sea Surface Temperature Based on Satellite Data Fusion and Machine Learning

over Kuroshio Extension, Remote Sensing, 14, 575, https://doi.org/10.3390/rs14030575, 2022.

Kajiyama, T., D’Alimonte, D., and Zibordi, G.: Algorithms Merging for the Determination of Chlorophyll-a Concentration in the Black Sea,470

IEEE Geoscience and Remote Sensing Letters, 16, 677–681, https://doi.org/10.1109/lgrs.2018.2883539, 2019.

Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, CoRR, abs/1412.6980, http://arxiv.org/abs/1412.6980, 2014.

Lee, Z., Carder, K. L., and Arnone, R. A.: Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for

optically deep waters, Applied Optics, 41, 5755, https://doi.org/10.1364/ao.41.005755, 2002.

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., and Gool, L. V.: RePaint: Inpainting using Denoising Diffusion Probabilistic475

Models, 2022.

Luo, X., Song, J., Guo, J., Fu, Y., Wang, L., and Cai, Y.: Reconstruction of chlorophyll-a satellite data in Bohai and Yellow sea based on

DINCAE method, International Journal of Remote Sensing, 43, 3336–3358, https://doi.org/10.1080/01431161.2022.2090872, 2022.

Matheron, G.: Traité de géostatistique appliquée, no. v. 1 in Memoires, Éditions Technip, 1962.

Mikelsons, K. and Wang, M.: Optimal satellite orbit configuration for global ocean color product coverage, Opt. Express, 27, A445–A457,480

https://doi.org/10.1364/OE.27.00A445, 2019.

29

https://doi.org/10.1109/tgrs.2015.2483500
https://doi.org/10.5194/egusphere-2023-1385
http://www.deeplearningbook.org
https://doi.org/10.1175/1520-0493(2001)129%3C0550:IORHFV%3E2.0.CO;2
https://doi.org/10.3390/rs12030480
https://doi.org/10.1175/1520-0434(2000)015%3C0559:DOTCRP%3E2.0.CO;2
https://doi.org/10.48550/arXiv.2207.12598
https://doi.org/10.48550/arXiv.2006.11239
https://doi.org/10.5194/essd-15-5281-2023
https://doi.org/10.21105/joss.00602
https://arxiv.org/abs/1811.01457
https://doi.org/10.1007/bf02418571
https://doi.org/10.1016/j.jag.2021.102474
https://doi.org/10.3390/rs14030575
https://doi.org/10.1109/lgrs.2018.2883539
http://arxiv.org/abs/1412.6980
https://doi.org/10.1364/ao.41.005755
https://doi.org/10.1080/01431161.2022.2090872
https://doi.org/10.1364/OE.27.00A445


Pujol, C., Pérez-Santos, I., Barth, A., and Alvera-Azcárate, A.: Marine Heatwaves Offshore Central and South Chile: Understanding Forcing

Mechanisms During the Years 2016-2017, Frontiers in Marine Science, 9, https://doi.org/10.3389/fmars.2022.800325, 2022.

Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G.: Daily High-resolution Blended Analyses for sea

surface temperature, Journal of Climate, 20, 5473–5496, https://doi.org/10.1175/2007JCLI1824.1, 2007.485

Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, in: Medical Image Com-

puting and Computer-Assisted Intervention – MICCAI 2015, edited by Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F., pp.

234–241, Springer International Publishing, Cham, ISBN 978-3-319-24574-4, https://doi.org/10.1007/978-3-319-24574-4_28, 2015.

Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J., and Norouzi, M.: Image Super-Resolution via Iterative Refinement,

https://doi.org/10.48550/ARXIV.2104.07636, 2021.490

Saulquin, B., Gohin, F., and Garrello, R.: Regional Objective Analysis for Merging High-Resolution MERIS, MODIS/Aqua, and SeaWiFS

Chlorophyll- a Data From 1998 to 2008 on the European Atlantic Shelf, IEEE Transactions on Geoscience and Remote Sensing, 49,

143–154, https://doi.org/10.1109/TGRS.2010.2052813, 2011.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S.: Deep Unsupervised Learning using Nonequilibrium Thermodynamics,

in: Proceedings of the 32nd International Conference on Machine Learning, edited by Bach, F. and Blei, D., vol. 37 of Proceedings of495

Machine Learning Research, pp. 2256–2265, PMLR, Lille, France, 2015.

Talagrand, O., Vautard, R., and Strauss, B.: Evaluation of probabilistic prediction systems, in: Proceedings, ECMWF Workshop on Pre-

dictability, pp. 1–25, ECMWF, 1997.

Wackernagel, H.: Multivariate Geostatistics: an introduction with applications, Springer-Verlag, 3rd edn., 2003.

Wylie, D., Jackson, D. L., Menzel, W. P., and Bates, J. J.: Trends in Global Cloud Cover in Two Decades of HIRS Observations, Journal of500

Climate, 18, 3021–3031, https://doi.org/10.1175/JCLI3461.1, 2005.

Zibordi, G., Mélin, F., Berthon, J.-F., and Talone, M.: In situ autonomous optical radiometry measurements for satellite ocean color validation

in the Western Black Sea, Ocean Science, 11, 275–286, https://doi.org/10.5194/os-11-275-2015, 2015.

30

https://doi.org/10.3389/fmars.2022.800325
https://doi.org/10.1175/2007JCLI1824.1
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.48550/ARXIV.2104.07636
https://doi.org/10.1109/TGRS.2010.2052813
https://doi.org/10.1175/JCLI3461.1
https://doi.org/10.5194/os-11-275-2015


Appendix A: Sample of training data and generated images

In Figure A1, a random sample of training images are shown. Most training images are affected by a significant amount of505

noise and some artifacts are present in the training data. The denoising diffusion model aims to generate images with the same

distribution and therefore including the noise and artifacts.
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Figure A1. Sample of training data and generated images (starting an entirely masked input image)

Appendix B: Application of DINCAE

As the baseline method, we use the U-Net DINCAE described in Barth et al. (2020) and Barth et al. (2022). The hyperpa-

rameters adjusted using the development dataset were the number of epochs, the number of instances in the time window, the510

upsampling method and whether a refinement step is used. In the case of a refinement step, the neural network is composed of

two U-Nets: the first network provides an intermediate estimate of the missing data and the second U-Net uses the intermediate

estimate and the original data to provide the final estimate. During training, the loss function is based on a weighted sum of the

intermediate and final estimate. For inference, only the final estimate is used. The weights are considered as hyperparameters.

More information is provided in Barth et al. (2022).515

In Barth et al. (2020), it has been shown that the accuracy of a reconstruction can be improved by averaging the obtained

reconstruction over a certain number of epochs after the epoch 200. In practice, we do not save the model weights of the
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at different epochs but apply the model on the test and development data and accumulate all the reconstruction which are

later normalized to compute the average. The frequency (in number of epochs) of applying the neural network to the test and

validation data to compute the corresponding average, is also a hyperparameter here. As before, the hyperparameters were520

determined by minimizing the RMS error relative to the validation dataset using random search. Table B1 shows all parameters

used in DINCAE and their corresponding search range.

The number of parameters of the optimal DINCAE model is 3.1 millions. The training time is 12 minutes on a GeForce

RTX 4090 GPU. The inference time of the test and development datasets is 2.7 seconds which is significantly faster than the

diffusion model.525

Table B1. Hyperparameters of DINCAE with the adopted value and the corresponding search space.

Parameter Value Search space

number of epochs 1276 between 500 and 1500

save epochs 36 between 10 and 40

batch size 32 fixed

channels [32, 64, 128, 256, 512] fixed

instances in time window 1 1, 3 or 5

upsampling method nearest nearest or bilinear

refinement step deactivated activated or deactivated
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