
1 Reviewer 1

1.1 General Comments

Overall, the manuscript is structured well and clearly demonstrates the application of denoising
diffusion probabilistic models in the domain of satellite reconstruction, with compelling results when
compared to the baseline method, denoted as DINCAE (a method which was previously applied on
this task). However, before I can fully recommend the manuscript for publication, there are some
shortcomings that have to be addressed. Firstly, there are some implementation details which might
indicate potential errors in the algorithm’s implementation. It seems that the presented equations
pertaining to the diffusion model somewhat deviate from the standard definition, while the changes lack
an explanation or motivation. Secondly, the results section, although demonstrating that the proposed
method compares favourably to the baseline approach in terms of RMSE, variogram, and quality of
reconstruction, could still benefit from some additional comparisons. Furthermore, I do not wholly
agree with some of the conclusions reached by the authors with regards to the interpretation of the
Talagrand diagram. I provide detailed arguments for each of the issues raised in the following Section.

We thank the reviewer for her/his careful reading of the manuscript. Essentially, we agree with the proposed
changes and implement them in the updated manuscript. Unfortunately, there were some typos in the original
manuscript. However, these typos only affected the presentation and not the implementation. The source
code of the diffusion model has also been made available (https://github.com/gher-uliege/DINDiff.
jl). As proposed by the reviewer, we extended the discussion of the results (in particular, computing the
Talagrand diagram and the CRPS for the DINCAE method). The interpretation of the Talagrand diagram
was also updated. More information is given in the point-by-point response below.

1.2 Specific Comments

Equation (3): The authors state that the conditional distribution of the image x at step t given x0 in
the forward pass is defined as q(xt|x0) = N(xt;

√
ᾱtx0, αtI) This suggests that the value of the variance

approaches zero as t increases, reducing the distribution to be zero mean and zero standard deviation
in the limit. The value of the variance in the conditional case, if I am not mistaken, should be equal to
(1− ᾱt)I, given the transformation defined by Equation (1).

The reviewer is, of course, correct. Thank you for spotting this issue, which is corrected in the revised
manuscript. The equation now reads:

q(xt|x0) = N(xt;
√
ᾱtx0, (1− ᾱt)I) (1)

Fortunately, Equation 3 is not used in the code implementation, only its limit (equation 4) is used, which
is not affected by this error.

Equation (9): The reverse probability pθ(xT ) should not be parameterised by θ, since the distribution
is defined in Equation (5), where no such parameters are present. If these distributions indeed differ the
authors should explain what properties the parameterization defines in this specific case. Additionally,
a technical mistake seems to be present in the term q(x1:T )|x0, which should be equal to q(x1:T |x0)
correct?

1

https://github.com/gher-uliege/DINDiff.jl
https://github.com/gher-uliege/DINDiff.jl


The review is certainly correct. Thank you for finding these issues. The updated equation now reads:

E [− log(pθ(x0))] ≤ −E

[
log

pθ(x0:T )

q(x1:T |x0)

]
= −E

[
log

(
p(xT )

T∏
t=1

pθ(xt−1|xt)

q(xt|xt−1)

)]
= Lelb (2)

This comment pertains to the neural network description provided in paragraphs 185 and 190, and
Table 1. The definition of the neural network is given recursively, with each block l being dependent on
the block l − 1. However, given how the levels are provided l = 1, . . . , L (L being the depth level) and
Cl = [16, 32, 64, 128], this description might be confusing for readers unfamiliar with the architecture.
For example, one can make the mistake that the number of channels on the first level C1 is equal to 16.
However, as far as I understand the provided description, the block at depth level 4 contains 16 channels
while the block at depth level 1 contains 128 channels. Therefore, the initial block corresponds to l = 4,
while the ”deepest” block corresponds to l = 1, which seem counter-intuitive given that l denotes the
depth level. Consider these two cases: if l = 1 and C1 = 16, then the inner block of block l = 1 is an
identity and the recursion stops immediately. However, if one assumes that l = 4 and C4 = 16, then
the inner block at l = 3 contains C3 = 64 etc. which results in the familiar U-net architecture, where
the spatial dimension is reduced with each consequent block and the number of channels increases. This
later assumption is not self evident from the provided description. Therefore, I suggest that the author
either flip the depth indices l, such that l = L, ..., 1, or that they flip the Cl values Cl = [128, 64, 32, 16]
while keeping the indices intact.

We are sorry for the confusion. Indeed, the recursive definition should be reversed relative to the depth
index l. In particular, at line 187 (submitted version)

inner block at level l − 1

Should rather be:

inner block at level l + 1.

Similar changes have been made at the lines 191-194. The input resolution is indeed at level l = 1 (with
16 channels) and the deepest levels l = 4 (with 128 channels). We verified that this is actually the case in
the code implementation used (i.e. number of channels increases as spatial dimensions decrease) .

The authors provide a short description of the DINCAE method’s training setup in the Results
section, in paragraphs 250 and 255. While I believe that this is beneficial to the manuscript the descrip-
tion somewhat breaks the flow of the Results section. Therefore, I suggest that the authors move this
description to the Appendix.

We agree, and the relevant text and the hyperparameters of DINCAE is now in the appendix.

Talagrand diagram in Figure 10

The authors compute the Talagrand diagram using the ensemble as an approximate distribution
function, where each ensemble memeber represents an equally probable event realization. The authors
sort the ensemble members in an ascending order for each masked pixel, independently. The resulting
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empirical distribution functions and their corresponding ground truth values are used to construct the
diagram. The histograms for both the dev and test datasets are displayed in Figure 10 and the authors
conclude that: ”Figure 10 shows the Talagrand diagram computed for the development and testing
dataset. It can be seen that except for the two first and two last bins (corresponding to the probabilities
between 3% and 97%), the Talagrand diagram is relatively flat. This shows that the produced proba-
bilities are reliable, except for very rare events where the produced ensemble is underdispersive. The
difficulty of predicting rare events is a known issue in machine learning (e.g. Kaiser et al., 2017) and a
dedicated area of research.”
Here I would like to raise a minor concern regarding the use of ”probabilities are reliable” in this con-

text. The produced probabilities are marginally reliable, since each pixel is treated independently from
its neighbours. However, this does not necessarily imply that the joint distribution of the ensemble is
reliable, which is not decernable from the conclusion reached by the authors. For example, consider
taking the same ensemble forecast produced in this work, however, with its values randomly permuted
between the corresponding members for each pixel. A permuted forecast like this would exhibit the
same Talagrand diagram (since the sorting on a per-pixel basis restores the initial diagram conditions),
however, the forecast would not be jointly reliable as the spatial relationships would be lost. Therefore,
I suggest that the authors state that this evaluation method, as is, assesses the marginal reliability only
and not the joint. Again, this is not a major concern for readers familiar with the evaluation technique,
however, since the spatial correlation is an important asset of this proposed reconstruction method, a
clarification of this would be welcome.
However, I do not agree that the excess number of observations in the extreme ranks implies that the

method perform poorly for very rare events only. The excess denotes that the distribution described
by the ensemble exhibits short tails, meaning, that a disproportionate number of observations fall into
those ranks. These observations can including realizations that are not rare at all and should actually
be described by other ranks. Therefore, I would suggest rewording this conclusion such that it reflect
the notion of the distribution tails being too short rather than an explicit comment on the reliability of
rare event forecasting.

The review is certainly right that the Talagrand and other statistics only test if the probabilities are
marginally reliable. We clarified this in the revised manuscript and changed “reliable” by “marginal reli-
able” at several places in this section.

We also followed the reviewer’s suggestion and removed reference to “rare” events and made explicit
reference to the tails of the underlying PDF. The relevant sentence now reads:

If the ensemble is generated from the same probability distribution as the observations, the en-
semble is considered reliable. However, it is important to note that the Talagrand and other
statistical tests described below only allow us to assess the reliability of the marginal PDFs
(probability density function) evaluated for each pixel individually and not the joint PDF ac-
counting for spatial correlations between pixels. [...] This shows that the produced probabilities
are marginally reliable, except for the tails of the marginal PDF where the produced ensemble is
underdispersive.

DINCAE comparisons
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The output of the DINCAE method can be interpreted as a normal distribution, where the
reconstruction is its mean, and the reconstruction error its standard deviation (or variance), correct? If
so, I suggest constructing the Talagrand diagram for the DINCAE method as well, which would further
demonstrate the impact of the proposed method’s distributional capabilities compared to the baseline.
The same comment applies to the evaluation using the CRPS method, where the DINCAE approach
(given that the above assumption holds) can also be included.

I also suggest that the authors include the training and inference times for the DINCAE method,
as well as the number of parameters of the DINCAE method, such that the reader can better asses the
relative computational complexity of this new approach compared to the baseline.

The reviewer is correct that the DINCAE method provides a mean and standard deviation for every
pixel, and the marginal PDFs are treated as a Gaussian distribution.

In the revised manuscript, we added the Talagrand diagram and the CRPS statistics (and its decom-
position) for the DINCAE method, as they all rely only on marginal distributions, as pointed out by the
reviewer. For DINCAE, the Talagrand diagram was constructed using the Gaussian cumulative distribution
function, while for the CRPS statistics, we created an ensemble with 10 000 samples following the marginal
PDF.

The corresponding table and figures have been revised in the new manuscript and show that the diffusion
model is more reliable (assessing the marginal PDFs) than DINCAE.

The number of parameters of the optimal DINCAE model is 3.1 millions. The training time is 12 minutes
on a GeForce RTX 4090 GPU. The inference time of the test and development datasets is 2.7 seconds which
is significantly faster than the diffusion model.

Diffusion model performance conditional on the number of valid input image pixels

The proposed diffusion model is dependent on the valid pixel (pixels without clouds) in the input
image to construct a spatially consistent reconstruction. This approach produces realistic reconstructions
with a high degree of spatial correlation as can be seen in the provided examples. This, however,
prompted the following consideration: how does the performance of the reconstruction degrade in relation
to the number of valid pixel available in the input image? An evaluation like this could be an interesting
inclusion in the current manuscript, providing a practitioner with the knowledge on how reliable the
reconstruction is given how much information is present in the original input image. The ensemble spread
might already describe such notions however, it might not be marginally reliable when considering images
with a high degree of missing valid data.

We agree and have added the following additional test to the manuscript.

Among the test data, we took the images with less than 30% of cloud cover (representing 99
images here). To these relatively clear images, we applied the cloud mask (potentially flipped
in the longitude or latitude direction) chosen randomly from another image in the test dataset
so that the total cloud coverage for every image is within a given range of 45% to 55%. If the
cloud coverage is outside this range, then another cloud mask is chosen randomly until the target
range is achieved. This procedure is repeated for different ranges, up to a range of 85% to 95%
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of missing data.

The trained diffusion model was applied to these images, and the RMS error relative to the
withheld (and independent) data was computed and is shown in Figure 1.

As expected, the RMS error rises with an increased amount of missing data. With a large amount
of missing data, the diffusion model misses the context to reconstruct the field and the model
acts as an unconditional diffusion model. It can also be seen that the RMSE does not show any
abrupt augmentation.
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Figure 1: Impact of cloud coverage on the RMS computed relative to independent data (units log10 mg m−3)

On ”For the validation and test data, we randomly took the cloud mask from other time instances
to mask additional grid cells which will be used for validation. Only images with a cloud mask between
15% and 35% of the missing date were considered as an additional mask to obtain a sufficient number
of “clouded” pixels without masking an image almost entirely.” in paragraph 150: Does this mean that,
when constructing an input image from the validation/testing datasets, a random image with 15% to
30% of missing data is selected (still from the same dataset) and its cloud mask is used to cover the
current input image’s pixels? If so, it seems that this approach can still result in a completely covered
image if the image being masked has a coverage greater than 85%, correct? Or are only images with a
coverage of less than 70% considered for the validation/test datasets? A few comments on this would
be appreciated.

The reviewer is right, and the procedure, while not likely, could in theory result in a completely masked
image. However, we checked that this is not the case for the generated dataset. The following has been
added to the manuscript to clarify this point:
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Only images with a cloud mask between 15% and 35% of the missing data were considered as
an additional mask to obtain a sufficient number of “clouded” pixels and to reduce the risk that
an image is masked almost entirely. We verified that, neither in the validation nor in the test
dataset, were images masked entirely after applying the cloud mask.

On ”During training, for each image of the training dataset, a different image is randomly selected
(also from the training dataset) and its cloud mask is used to degrade clear pixels of the input image
(Figure 3). The stage of degradation t of these pixels is randomly chosen between 1 and T.” in paragraph
170: Can it not occur that the training image can be fully degraded after the additional cloud mask is
provided (example: input image has 20% valid data and the mask has a cover of 80%)? Such training
images might slow the convergence of the method as the denoising process is completely unguided. Or
is this event rare in practice?

We agree that this can happen and would slow down the training process, as the reviewer points out.
For the training data, we estimated this probability numerically (using 100 000 000 pairs of images chosen
at random) and found that the probability is 0.00071289. It is indeed a quite rare event.

Furthermore, what is the benefit of setting the degradation value between 1 and T instead of just
T ? If I understand correctly, during inference, each missing pixel is treated as being fully degraded. Is
there a difference in performance compared to setting all pixels to the fully degraded value T ? Does
this help in cases where the training image might be degraded to a high spatial degree (above example)?
A few comments on this would be appreciated.

During inference, each missing pixel is only treated as fully degraded initially at step T . After removing
the noise predicted by the neural network, those pixels will be at the step T − 1. For inference, we need to
apply the neural network multiple times (here T = 800) to reach the clear and non-degraded level (t = 0).
So, the neural network needs to know how to handle intermediate degradation levels during inference. This
information has been added to the manuscript.

On ”For each image of the validation and test two datasets, the reconstruction process is repeated 64
times, leading to an ensemble of possible reconstructed fields.” in paragraph 230: How did you choose
the number of ensemble members (64 members) in the reconstruction? Was it determined empirically?
If so, please provide an explanation.

We did not test different ensemble sizes. The number is rather guided by the typical ensemble size used
in ensemble modeling in oceanography (e.g. Simon and Bertino, 2009; Ohishi et al., 2022) and meteorology
(Buizza et al., 2008). In theory, the method should work better as the ensemble size increases towards
infinity. If we had chosen too large ensemble sizes, one could have criticized the method as having only been
tested in an impracticable setting.

On ”In Barth et al. (2020), it has been shown that the accuracy of a reconstruction can be improved
by averaging the obtained reconstruction over a certain number of epochs after the epoch 200.” in para-
graph 250: I do not fully understand this approach. Does this mean that, during training, intermediate
models from epoch 200 onwards are saved and the mean reconstruction from each of those models is
used as the final DINCAE output?
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Yes, the reviewer is correct that this is essentially the approach employed here. It is similar to ensemble
averaging different trained models, except that we use the same model at different epochs, which does not
increase the computational costs of the training. In practice, we do not save the model weights at different
epochs but apply the model to the test and development data and accumulate all the reconstructions, which
are later normalized to compute the average.

1.3 Technical comments

Figure 2, Figure 6, Figure 7, Figure 8: Consider adding lat, lon labels to the axis.

Done!

Broken Latex mathematical symbol for ᾱT in paragraph 180.

Fixed!

The kernel size ks (Table 1) does not require a subscript since it is a fixed value across levels. Consider
omitting the subscript.

Ok, done.

”As an illusion” in paragraph 215: misplaced use of the word ”illusion”. Consider replacing with
”Illustration”.

Done, sorry for the typo!

Table 2: Typo in ”desactivated”. Additionally, consider explaining the meaning of the rows of the
table as some are not self evident, for example ”refinement step”.

The typo is fixed, and the following has been added to the manuscript.

In the case of a refinement step, the neural network is composed of two U-Nets: the first network
provides an intermediate estimate of the missing data and the second U-Net uses the intermediate
estimate and the original data to provide the final estimate. During training, the loss function
is based on a weighted sum of the intermediate and final estimate. For inference, only the final
estimate is used. The weights are considered as hyperparameters. More information is provided
in Barth et al. (2022).
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On ”(corresponding to the probabilities between 3% and 97%)”: Should this not be equal to ”between
1.5% and 98.5%” since each interval has a weight of 1/65 implying, that the first rank covers realizations
with a probability of occurrence between 0 and 0.015 and the last rank between 0.98 and 1? Therefore,
the middle ranks exhibit a coverage between 0.015 and 0.98, correct?

Indeed, we changed the probabilities in the revised manuscript. (Originally we were considering two bins
at the lower end and two bins at the high end to be affected, but we changed this assessment in the revised
manuscript (in particular after adding the comparison with DINCAE)).
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