Preprints
https://doi.org/10.5194/egusphere-2023-2901
https://doi.org/10.5194/egusphere-2023-2901
23 Jan 2024
 | 23 Jan 2024

How Rainfall Events Modify Trace Gas Concentrations in Central Amazonia

Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botia, Hella Van Asperen, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosa Ferreira, Hartwig Harder, Sam Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker

Abstract. This study investigates the rain-initiated mixing and variability in the concentration of selected trace gases in the atmosphere over the central Amazon rain forest. It builds on comprehensive data from the Amazon Tall Tower Observatory (ATTO), spanning from 2013 to 2020 and comprising the greenhouse gases (GHG) carbon dioxide (CO2) and methane (CH4), the reactive trace gases carbon monoxide (CO), ozone (O3), nitric oxide (NO), and nitrogen dioxide NO2 (NO2) as well as selected volatile organic compounds (VOC). Based on more than 1000 analyzed rainfall incidents, the study resolves the trace gas concentration patterns before, during, and after the rain events, along with its vertical concentration gradients across the forest canopy. The assessment of the rainfall events was conducted independently for daytime and nighttime periods, which allows us to elucidate the influence of solar radiation. The concentrations of CO2, CO, and CH4 clearly declined during rainfall, which can be attributed to the downdraft-related entrainment of pristine air from higher altitudes into the boundary layer, a reduction of the photosynthetic activity under increased cloud cover, as well as changes in the surface fluxes. Notably, CO showed a faster reduction than CO2, and the vertical gradient of CO2 and CO is steeper than for CH4. Conversely, the O3 concentration increased across all measurement heights in the course of the rain-related downdrafts. Following the O3 enhancement by up to a factor of two, NO and VOC concentrations decreased, whereas NO2 increased. The temporal and vertical variability of the trace gases is intricately linked to the diverse sink and source processes, surface fluxes, and free troposphere transport. Within the canopy, several interactions unfold among soil, atmosphere, and plants, shaping the overall dynamics. Also, the concentration of biogenic VOC (BVOC) clearly varied with rainfall, driven by factors such as light, temperature, physical transport, and soil processes. Our results disentangle the patterns in trace gas concentration in the course of the sudden and vigorous atmospheric mixing during rainfall events. By selectively uncovering processes that are not clearly detectable under undisturbed conditions, our results contribute to a better understanding of the trace gas life cycle and its interplay with meteorology, cloud dynamics, and rainfall in the Amazon and beyond.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

13 Aug 2024
How rainfall events modify trace gas mixing ratios in central Amazonia
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024,https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botia, Hella Van Asperen, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosa Ferreira, Hartwig Harder, Sam Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Luiz Augusto Toledo Machado on behalf of the Authors (26 Apr 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (15 May 2024) by Graciela Raga
RR by Anonymous Referee #2 (27 May 2024)
ED: Publish as is (27 May 2024) by Graciela Raga
AR by Luiz Augusto Toledo Machado on behalf of the Authors (17 Jun 2024)  Manuscript 

Journal article(s) based on this preprint

13 Aug 2024
How rainfall events modify trace gas mixing ratios in central Amazonia
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024,https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botia, Hella Van Asperen, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosa Ferreira, Hartwig Harder, Sam Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botia, Hella Van Asperen, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosa Ferreira, Hartwig Harder, Sam Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker

Viewed

Total article views: 738 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
534 175 29 738 57 19 16
  • HTML: 534
  • PDF: 175
  • XML: 29
  • Total: 738
  • Supplement: 57
  • BibTeX: 19
  • EndNote: 16
Views and downloads (calculated since 23 Jan 2024)
Cumulative views and downloads (calculated since 23 Jan 2024)

Viewed (geographical distribution)

Total article views: 731 (including HTML, PDF, and XML) Thereof 731 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 18 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Composite analysis of the gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. This analysis helps to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon