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Abstract. This study investigates the rain-initiated mixing and variability in the mixing ratio of selected trace gases in the

atmosphere over the central Amazon rain forest. It builds on comprehensive data from the Amazon Tall Tower Observatory

(ATTO), spanning from 2013 to 2020 and comprising the greenhouse gases (GHG) carbon dioxide (CO2) and methane (CH4),

the reactive trace gases carbon monoxide (CO), ozone (O3), nitric oxide (NO), and nitrogen dioxide NO2) as well as selected

volatile organic compounds (VOC). Based on more than 1000 analyzed rainfall events, the study resolves the trace gas mixing5

ratio patterns before, during, and after the rain events, along with vertical mixing ratio gradients across the forest canopy.

The assessment of the rainfall events was conducted independently for daytime and nighttime periods, which allows us to
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elucidate the influence of solar radiation. The mixing ratios of CO2, CO, and CH4 clearly declined during rainfall, which can

be attributed to the downdraft-related entrainment of pristine air from higher altitudes into the boundary layer, a reduction

of the photosynthetic activity under increased cloud cover, as well as changes in the surface fluxes. Notably, CO showed a10

faster reduction than CO2, and the vertical gradient of CO2 and CO is steeper than for CH4. Conversely, the O3 mixing ratio

increased across all measurement heights in the course of the rain-related downdrafts. Following the O3 enhancement by up to

a factor of two, NO, NO2, and isoprene mixing ratios decreased, whereas monoterpene increased. The temporal and vertical

variability of the trace gases is intricately linked to the diverse sink and source processes, surface fluxes, and free troposphere

transport. Within the canopy, several interactions unfold among soil, atmosphere, and plants, shaping the overall dynamics.15

Also, the mixing ratio of biogenic VOC (BVOC) clearly varied with rainfall, driven by factors such as light, temperature,

physical transport, and soil processes. Our results disentangle the patterns in trace gas mixing ratio in the course of the sudden

and vigorous atmospheric mixing during rainfall events. By selectively uncovering processes that are not clearly detectable

under undisturbed conditions, our results contribute to a better understanding of the trace gas life cycle and its interplay with

meteorology, cloud dynamics, and rainfall in the Amazon.20
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1 Introduction

A precise understanding of the interaction between the atmosphere and the forest is crucial to accurately simulate and predict

the effects of climate and land use change in Amazonia. Atmospheric multiphase processes and chemical reactions are mainly

controlled by the mixing ratio of reactive gases and governed by rainfall, thermodynamics, and solar radiation (Ravishankara,

1997). Rainfall events can significantly impact these processes by causing sudden and quite strong changes in trace gas mixing25

ratios over short periods of time (Bertrand et al., 2008). Therefore, it is essential to understand how weather conditions affect

the interaction between the atmosphere and the biosphere to develop comprehensive parameterizations for climate models.

The Amazon Tall Tower Observatory (ATTO) is a site equipped with state-of-the-art instruments, laboratories and towers.

The key element is a tall tower (325 metres) equipped with a wide range of micrometeorological and trace gas sensors. The

so-called Instant and Triangle Towers were erected in 2012, each with a height of 80 meters; see Andreae et al. (2015) for a30

detailed description of the ATTO instrumentation. These towers have been monitoring gas mixing ratios since then, serving as

the primary data source for this study. The data collected at ATTO have been instrumental in advancing our knowledge of the

atmosphere-biosphere interaction. Numerous studies have been published using ATTO data, contributing to our understanding

of processes such as particle formation. (e.g., Wang et al., 2016; Machado et al., 2021; Franco et al., 2022; Pöhlker et al., 2016;

Moran-Zuloaga et al., 2018) and long-range transport (e.g., Holanda et al., 2020, 2023), as well as biogenic gases and particles35

(e.g., Kesselmeier and Staudt, 1999). The journal Atmospheric Chemistry and Physics features a specialized volume devoted

to ATTO research (Amazon Tall Tower Observatory (ATTO) Special Issue), comprehensively analyzing the intricate physical,

chemical, and biological interactions inherent in the Amazon rain forest.

The factors influencing the temporal variability of greenhouse gas (GHG) mixing ratio have been studied widely. The global

trend of the atmospheric growth rate of carbon dioxide (CO2) (Lan et al., 2023) and methane (CH4) (Thoning et al., 2022) has40

been documented extensively by global measurement networks, revealing accumulation of these trace gases in the atmosphere.

The temporal patterns at a particular measurement site are embedded in this global trend but follow seasonal and diurnal

patterns specific to their latitude and local drivers. On a tall tower in Siberia, the Zotino Tall Tower Observatory (ZOTTO) site,

fluxes and mixing ratios of carbon monoxide (CO), CO2 and CH4 have been monitored for more than a decade, as reported

by Panov et al. (2022); Kozlova et al. (2008); Winderlich et al. (2014), showing seasonal and diurnal variations, driven by the45

growing season and type of vegetation, either Taiga forests, bogs and old river meanders. At the ATTO site, the seasonal pattern

of nighttime CH4 peaks at the 79-m level was described by Botía et al. (2020), highlighting the atmospheric conditions for these

events and the potential sources from which these CH4 enhancements could originate. Using a Lagrangian model to obtain the

background mixing ratio of CO2 at ATTO (79-m), Botía et al. (2022) derived the regional signal (observations - background)

of CO2 and found that the amplitude of the seasonal cycle was about 4 ppm. In that study, they also show how the atmospheric50

record captured the CO2 anomalies caused by the 2015/2016 El Niño-induced drought. At the diurnal cycle scale, the changes

in atmospheric trace gases result from the interaction between local factors and the dynamics and subsequent growth of the

planetary boundary layer (PBL). For gases such as CH4, ozone (O3), and nitrogen dioxide (NO2), Mikkelä et al. (1995) found
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a relationship between soil temperature, solar radiation, and diurnal emission variability. CH4 exhibits inter-annual variability

and a trend of increasing mixing ratio, the background of which is still not understood (Rigby et al., 2017; Schaefer et al.,55

2016; Nisbet et al., 2019). Williams et al. (2001) conducted some of the earliest studies on time-space variability of trace gases

in the Amazon forest and observed large spatial and temporal variability of gas mixing ratio, resulting in strong gradients of

CO and CO2 mixing ratios. Given these studies, the drivers of inter-annual, seasonal, and diurnal variability of trace gases in

the atmosphere are part of a wide range of processes that include atmospheric dynamics and chemistry, but so far, a study of

the immediate influence of rain events is lacking.60

Ozone concentration is strongly modulated by precipitation, as observed by Betts et al. (2002) during the Large-Scale Biosphere-

Atmosphere Experiment in Amazonia wet season experiment. They found an increase in ozone concentration and a decrease in

potential temperature as an indication of convective downdraft. They suggested the important role of the ozone increase in the

photochemical process in the boundary layer. Sigler et al. (2002) studied the effect of ozone on forested and deforested regions

in Amazonas. They found higher ozone concentrations over pasture than over forest, suggesting that the forest has a more65

effective sink mechanism to consume ozone. Gerken et al. (2016) studied ozone dynamics during the GoAmazon experiment.

They compared concentrations between the dry and wet seasons and found that the average concentration differed by 5 ppbv,

higher during the dry season with an average concentration of 20 ppbv. They observed peaks of up to 25 ppbv in the boundary

layer during rain events. Lighting can also increase O3 mixing ratios, as discussed by Shlanta and Moore (1972).

VOCs are reactive atmospheric trace gases and comprise many groups of saturated, unsaturated, and oxygenated derivatives70

(Kesselmeier and Staudt, 1999). Biogenic VOCs (BVOC) include isoprenoids (isoprene and monoterpenes) as well as alkanes,

alkenes, carbonyls, alcohols, esters, ethers, and acids. Their reactivities are high, and their lifetimes in the atmosphere range

from < 1 min to days. Some species are hardly detectable under normal atmospheric conditions as they react too fast with

O3 and radicals. Thus, BVOCs exhibit highly dynamic anomalies with strong diurnal and seasonal characteristics. For an

overview, see Kesselmeier and Staudt (1999) and Yanez-Serrano et al. (2020). Atmospheric mixing ratios strongly depend75

on atmospheric oxidation processes, but the anthropogenic and biogenic production and emission pathways should never be

overseen. As reported by Laothawornkitkul et al. (2009), BVOCs are produced in the course of many plant physiological and

metabolic pathways involved in plant growth, development, reproduction, and defense. Their release to the atmosphere depends

on solubility and volatility and may, therefore, be a function of physiological gas exchange regulation under stomatal control.

Some of the BVOC species are released close to the mixing ratio gradient between outside air and plant tissue; some are80

under strict stomatal control. This behavior strongly depends on water solubility, i.e., equilibrium gas–aqueous phase partition

coefficient (Niinemets, 2007). Thus, emission can occur in different manners, from constant diffusion to sudden bursts. Within

this context, we have to consider climate, season, and diurnal effects to include plant adaptation and development as well

as physiological reactions on shorter time scales, as slow and fast changes of BVOC emission in relation to adaptation and

developmental processes for plants, soil, and leaf litter. Within this context, bursts of gases and aerosols are often observed85

during and after rain events (Greenberg et al., 2012; Bourtsoukidis et al., 2018; Rossabi et al., 2018). Such emission bursts, or
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upward air mass transport, can be responsible for sudden changes in the hydroxyl radical (OH), an oxidative component acting

as a sink for volatile organic compounds (VOCs) (Pfannerstill et al., 2021), and a catalyst for the further reactions of different

trace gases in rain-forest, is strongly modulated by environmental variables, including rainfall, temperature, and radiation

(Nölscher et al., 2016; Ringsdorf et al., 2023), and exhibits important vertical stratification and variations on intradiurnal to90

interannual scales.

This study aims to provide a comprehensive overview of the anomalies in trace gas mixing ratios due to rainfall events occurring

within and immediately above the canopy at a site that serves as a representative sample of the central Amazon region. The

analytical approach proposed in this study is important due to its capacity to unveil gas mixing ratio variability caused by

rainfall. Accurately replicating these patterns by models is crucial for precise computation of the gas budget and life cycle. A95

composite study of the gas profile measurements conducted both during the day and night and inside and above the canopy

provides a comprehensive opportunity to investigate the impact of rainfall on greenhouse gases (GHGs), specifically CO2 and

CH4. Long-term vertical profile measurements enable us to analyze the interaction between soil, canopy, and boundary layer

to specifically assess how the vertical profile of greenhouse and reactive gases vary before, during, and after rainfall events.

2 Data and Methodology100

2.1 Measurement systems

This study utilizes the greenhouse gases (GHG) and reactive gases mixing ratio data collected at the Instant tower, a neighbor

ATTO 80 m tower, at different heights with diverse instrumentation. For the gases NOx (nitric oxide (NO) and NO2) and

O3, the data for this study was collected between 2013 and 2020 (for O3) and between 2018 and 2020 (for NO and NO2), and

monitored mixing ratios at the heights 0.05, 0.5, 4, 12, 24, 38, 53, and 79 m, where 0.05 m hovers just above the surface, and 79105

m is elevated approximately 45 m above the canopy. Each height was measured 4 times per hour, and air was sampled directly

from the inlet height. Timestamps were rescaled to 30-minute intervals for each altitude. The mixing ratios of NOx (NO and

NO2) and O3 were acquired using an Eco Physics CLD TR 780 and a Thermo Scientific 49i O3 Analyzer, which measured by

UV photometry with a precision of 1 ppb, as referenced in Andreae et al. (2015). Employing a gas-phase chemiluminescence

technique, The CLD accurately measures the NO mixing ratio to an accuracy of better than 25 ppt. Subsequently, NO2 was110

determined by converting it to NO through a photolytic converter driven by UV radiation (Solid-state Photolytic NO2 Converter

(BLC); DMT, Boulder/USA). Regular calibration was conducted with a Dynamic Gas Calibrator.

For CO, CO2 and CH4, the data for this study was collected between 2013 and 2020. Sample air from five different heights (4,

24, 38, 53, and 79 m) was led through a buffer system, such as described by Winderlich et al. (2010), which was connected

to two instruments, employing cavity ring-down spectroscopy, the G1301 and G1302 analyzers (Picarro Inc.). The G1301115

analyzer measures data with remarkable precision, displaying a minimal standard deviation of less than 0.05 ppm for CO2 and

0.5 ppb for CH4 in the raw readings. Furthermore, the device exhibits stability over time, with a long-term drift of under 2
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ppm for CO2 and 1 ppb annually for CH4. The G1302 analyser, was calibrated using a stable gas tank. This comprehensive

assessment revealed a standard deviation of 0.04 ppm for CO2 and 7 ppb for CO in the raw data. Both instruments automatically

measured 3 calibration gases every 100 hours, and a target tank every 30 hours. The measurement strategy was to cover all120

heights four times per hour, with a resampling rate of 30 minutes.

Isoprene (C5H8) and monoterpenes (C10H16) were collected at the Instant tower, using a Proton Transfer Reaction Mass Spec-

trometer (PTR-MS) from November 2012 to December 2015, but not continually due to the need of dedicated people for the

instrument operation. Mixing ratios were measured at 0.05, 0.5, 4, 12, 24, 38, 53, and 79 m, where the canopy top is between 24

and 38 m. The sample inlets (3/8”OD insulated Teflon) were connected to the PTR-MS and installed at the foot of the Instant125

tower. Each level of the vertical profile was sampled every 2 minutes between different heights. This sequential operation al-

lowed for a complete profile to be generated in just 16 minutes. The measurements were focused on two compounds: isoprene

(m/z 69.069) and monoterpenes (m/z 137.132). For a detailed description, see Yáñez Serrano et al. (2015) and Yanez-Serrano

et al. (2020). All trace gas profiles were linearly interpolated in 5-meter steps from the surface to 80 meters for better visual

quality and equal vertical distribution.130

Air temperature and relative humidity were measured at 26 m, wind speed at 42 m, and precipitation and solar radiation at

the top of the tower at 79 m; all measurements were collected by weather sensors installed on the Instant tower. Temperature

and relative humidity were measured using a Termo-hygrometer (CS215, Rotronic Measurement Solutions, UK), rainfall was

obtained using a Raingauge (TB4, Hydrological Services Pty. Ltd., Australia), the wind speed was obtained through a 2-D

sonic anemometer (WindSonic, Gill Instruments Ltd., UK) and the solar radiation with a Net radiometer (NR-LITE2, Kipp-135

Zonen, Netherlands). The data was collected from 2013 to 2020, but the parameters experienced intermittent failures at various

times. From ABI (Advanced baseline imager) channel 13, total cloud cover was estimated, collocated at the ATTO site as the

frequency of occurrence of brightness temperature (TIR)< 284 K following Machado et al. (2021). The GLM (Geostationary

Lightning Mapper) events, describing the lightning activity, were obtained from the GOES-16 GLM sensor, also collocated

at ATTO site as the number of events every ten minutes in an area of 5 by 5 pixels in a 20 km radius, similar to Machado140

et al. (2021). TIR as well as GLM events were resampled every 30 minutes. Boundary layer heights were measured using a

ceilometer model CHM15k (Jenoptik AG, Jena, Germany). The ceilometer is an instrument based on LIDAR, which involves

capturing the intensity of optical backscatter in the wavelength range 900-1100 nm by emitting autonomous vertical pulses.

LIDAR measurements are reliant on aerosol concentrations in the atmosphere. Within the PBL, aerosol concentrations are

notably higher compared to the free atmosphere above, and this contrast serves as the foundation for detecting the PBL height145

through LIDAR measurements, see Dias-Júnior et al. (2022). Boundary layer height data were resampled every 30 minutes

from 2014 to 2020.

222Rn is a naturally occurring radioactive noble gas of terrestrial origin and is produced via the decay of long-lived radium

isotope 226Ra, present in most rock and soil types (Nazaroff, 1992). 222Rn is measured in Bq.m−3, corresponding to the amount
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of radon radioactive decay per second in a volume of air and is used as a proxy of surface-atmospheric mixing and transport.150
222Rn and CO2 undergo similar exchange processes between the soil and the atmosphere, and all trace gases experience

comparable atmospheric mixing phenomena as atmospheric mixing is turbulent. The exhalation of 222Rn from the soil can be

considered almost constant in the absence of rain and changes in pressure. Consequently, it can serve as a proxy for assessing

the dynamics of CO2 emission/sink from/to the soil (Hirsch, 2007). Atmospheric radon activity concentration was measured

at 80 m on the ATTO tall tower. Radon activity measurements covered the period from January 2019 to December 2020. The155

measurement used a static filter collecting radon progeny on a filter method and assuming radioactive equilibrium between

atmospheric radon and its daughters as described by Levin et al. (2002), and a correction was made to account for the aerosol

loss in the intake line as presented in Levin et al. (2017). The data was combined with rainfall to produce a composite for day

and night to evaluate the relative importance of surface fluxes on the changes in the gas mixing ratio during rainfall events.

The radon source can be assumed to be approximately constant over the diurnal cycle and horizontally uniform on local scales160

(Nazaroff, 1992). One limitation of this measurement is the error associated with situations where the relative humidity is

larger than 95% or during rain events, when part of the atmospheric radon progeny may have been lost due to scavenging

effects. In these situations, the general assumption that progeny are in equilibrium with the radon gas may be violated. To

avoid this imprecision, the measurements used in this study account for only cases where the relative humidity is smaller than

this threshold and are only applied for the range of two hours before the time of maximum rain.165

2.2 Data analysis

We conducted a composite study following the same methodology as Machado et al. (2021), in which composites were based

on the time of maximum rainfall events. This study intends to analyze the gas mixing ratio evolution during rainfall events

by selecting moments within 4-hour time slots and using composite analysis to obtain the medium pattern evolution before

and after maximum rainfall. Composite analyses are useful to study physical hypotheses that occur over time (Boschat et al.,170

2016). This method quantifies standardized instances of a specific phenomenon, such as a rainfall event, and consolidates them

into a composite. In this study, we computed the gas mixing ratio during rainfall events with a maximum rain rate inside the

four-hour time slot as the reference time. This analysis considered a time frame spanning two hours before and after the peak

rain rate. A rainfall event was defined as any instance where the rain rate exceeded 0.5 mm.hr−1 within a 4-hour window, with

the peak occurring at the moment of maximum rain rate.175

To compute the composites, we first define the median mixing ratio during the rain event as the median value of the trace gas

C at the height z during all times when rain was observed during the day (Cday(z)median), and the night (Cnight(z)median).

The composite was constructed as the median at each time (t) corresponding to the window between 15 minutes before and

15 minutes after time t. The composite was performed for each trace gas, for day and night, for the time between 2 hours

before and 2 hours after the maximum rainfall, every 30 minutes. The Mixing ratio composite difference is then calculated as:180

7

222Rn and CO2 undergo similar exchange processes between the soil and 

atmosphere, and all trace gases experience comparable atmospheric mixing phenomena as atmospheric mixing is turbulent. The exhalation of 222Rn from the soil can be considered almost constant 

 the absence of rain and changes in pressure. Consequently, it can serve as a proxy

assessing the dynamics of CO2 emission/sink from/to 

 soil (Hirsch, 2007). Atmospheric radon activity concentration was measured at 80 m on

ATTO tall tower. Radon activity measurements covered

period from January 2019 to December 2020. The

measurement used a static ﬁlter collecting radon progeny on a ﬁlter method and assuming radioactive equilibrium between atmospheric radon and its daughters as described by Levin et al. (2002), and a correction was made to account for the aerosol loss in the intake line as presented in Levin et al. (2017). The data was combined with rainfall to produce a composite for day and night to evaluate the relative importance of surface ﬂuxes on the changes in the gas mixing ratio during rainfall events. The radon source can be assumed to be approximately constant over the diurnal cycle and horizontally uniform on local scales 160 (Nazaroff, 1992). One limitation of this measurement is the error associated with situations where the relative humidity is larger than 95% or during rain events, when part of the atmospheric radon progeny may have been lost due to scavenging effects. In these situations, the general assumption that progeny are in equilibrium with the radon gas may be violated. To avoid this imprecision, the measurements used in this study account for only cases where the relative humidity is smaller than this threshold and are only applied for the range of two hours before the time of maximum rain. 165 2.2 Data analysis 

mixing ratio

170 

mixing ratio

175 To compute the composites, we ﬁrst deﬁne the median mixing ratio during the rain event as the median value of the trace gas C at the height z during all times when rain was observed during the day (Cday(z)median), and the night (Cnight(z)median). The composite was constructed as the median at each time (t) corresponding to the window between 15 minutes before and 15 minutes after time t. The composite was performed for each trace gas, for day and night, for the time between 2 hours before and 2 hours after the maximum rainfall, every 30 minutes. The Mixing ratio composite difference is then calculated as: 180 7 



∆Cday/night(z, t) = Cday/night(z,t) - Cday/night(z)median). The composite was defined in this way to highlight the variability

of the gas mixing ratio during the rainfall event.

We evaluated the composites at three distinct time points: at the onset, at the end of the rain event, and at the moment of peak

rainfall intensity. The results exhibited qualitative similarity in gas mixing ratio evolution across these different calculations,

except for the gas mixing ratio at the moment designated as the reference time. Supplementary Fig. S1 shows an example of185

the composite describing the ozone mixing ratio at a height of 79 m. It shows the variation during the rain event, at the onset,

at the moment of maximum rainfall, and at the offset of the rain event. It can be seen that the composite does not show a very

different behavior. The largest effect is at the moment of maximum rainfall because it fixes the time of maximum convective

activity, the vertical transport, and the rainfall rate, which influence the turbulence and the rainfall. It can be seen that the

definition of the moment as the zero time is not very different among the different composites; this is because a large part of190

the rainfall events (about 38% of the events) have a duration of less than half an hour. Therefore, the time of the beginning, the

time of the maximum rain rate, and the time of the end of the rainfall event are considered simultaneously in the composite.

The histogram of rainfall rate and event duration is discussed and presented in section 3.2. Considering that more than 64%

of the rain events have a duration of less than 2 hours, the composite mainly comprises hours with and without rainfall. The

main idea is to consider the mixing ratio variation before and after the maximum rain event rather than the absolute value or195

when the atmosphere returns to the background mixing ratio. We specifically chose the moment of maximum rain rate as the

reference time to center the composite analysis on the most intense phase of rainfall activity. The selection of a 0.5 mm.hr−1

threshold was based on its proximity to the resolution of the tipping amount. As it was expected that daytime and nighttime

conditions are different, considering the presence or absence of solar radiation, we decided to separate the rain events into

daytime events (occurring between 8:00 and 17:00 Local Manaus Time) and nighttime events (occurring between 20:00 and200

5:00 Local Manaus Time). All composite results are presented as median values.

Between 2013 and 2020, a total of 1291 rain events were recorded. Since the collection period was different for each group of

gases, the amount of to-be-studied rain events differed per group. The composite dataset utilized 647, 650, 673, and 774 rain

events during the daytime and 286, 285, 291, and 264 rain events during the nighttime for CO2, CH4, CO, and O3, respectively.

For NO and NO2, the data spanned the period from 2018 to 2020, but due to the intricacies associated with the measurement205

of NO and NO2, certain time intervals experienced data gaps. Consequently, these gaps impacted the composite dataset when

combined with rainfall data. The composite datasets involving rainfall events were derived from 114 and 54 rain events during

the day and night, respectively, for NO. Similarly, for NO2, the composites were constructed using 104 and 54 rain events during

the day and night. In the case of Volatile Organic Compounds (VOCs), collected between November 2012 and December 2015,

the composite datasets that considered rainfall events were calculated using 258 rain events during the daytime and 94 rain210

events during the nighttime. The various gases, their corresponding data collection periods, and the influence of rainfall events

have contributed to a complex dataset that captures the dynamics of atmospheric constituents over the Central Amazon.
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3 Results and Discussion

The analysis is based on a composite of several gas mixing ratio profiles covering GHGs and reactive gases, including selected

BVOC during rainfall events, as similarly studied for aerosol in the Amazon (Machado et al., 2021). This comprehensive215

examination covers both daytime and nighttime periods. To enhance the discussion and interpretation, we commence the

analysis by examining the median profiles for each gas species during day and night. These profiles were computed inside the

4-hour time window, centered at the moment of the maximum rain rate. Subsequently, we will delve into the analysis of 222Rn

activity, utilized as a tracer for assessing surface-atmosphere mixing, alongside examining pertinent weather variables during

precipitation events.220

3.1 Day and night mean profile of gas mixing ratio during rainfall events

The gas profiles shown in Figure 1 serve as the baseline for the composite analysis, highlighting variations in the profiles

around (4-hour window) the precipitation events. Composites were derived by calculating deviations from the median profile

within a 4-hour window, covering 2 hours before and 2 hours after the peak rain rate. The profiles presented in Figure 1

represent the basis for calculating gas mixing ratio differences in the composites. The canopy rises to heights around 32 m,225

and as a reference, a line at 32 m was included in Figure 1. The Figures are presented as the median and the 30% and 70%

percentiles. The CO2 profile exhibits distinct patterns characterized by elevated mixing ratios at night, a gradual reduction

within the canopy during the day, and a relatively constant mixing ratio above the canopy. During the nocturnal hours, the

vertical gradient of the mixing ratio decreases steadily. These profiles clearly show the nighttime source of CO2 within the

canopy. Similarly, CO demonstrates analogous patterns, with its vertical distribution exhibiting similarities between day and230

night. However, CO has a much larger variability. We should consider that these Figures include the dry and the wet seasons,

which have different background values. In contrast, CH4 displays a similar mixing ratio during daytime and nighttime, and

its vertical variability remains minimal, typically less than 4 ppb. Even if the CH4 medium is quite similar between day and

night and has a nearly zero vertical gradient, one can not the large variability between the 30%-70% percentile. Therefore, no

significant difference is found between day and night and in the vertical distribution. These profiles provide insights into the235

different vertical dynamics of greenhouse gases with strong sources and sinks, like CO2, and weak or absent local sources like

CH4.

The O3 profile follows a similar diurnal pattern, with higher mixing ratios during the daytime and an increase in mixing ratio

with height. O3 mixing ratio and vertical variation are nearly identical during the day and night. O3 varies from surface to 79

m by around 7 ppb during the day and 6 ppb at night. This day/night contrast becomes more pronounced above the canopy240

level. These profiles illustrate how ozone-rich air infiltrates the canopy during rainfall events, contributing to its complexity.

The faster decrease in O3 mixing ratios within the canopy primarily results from the interactions between BVOCs and O3 and

reaction with the vegetation, as highlighted by Freire et al. (2017). Nevertheless, during instances of rain and, consequently,

downdrafts, a surge in turbulence occurs within the canopy, leading to the upward movement of air from the top to the bottom.
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This atmospheric transport mechanism contributes to an augmentation in O3 mixing ratios within the canopy, as elucidated245

by Mendonça et al. (2023). We also note a large variability of the O3 due to the different background values during the dry

and wet seasons (Supplementary Figs. S3). Conversely, the mixing ratio of NO remains primarily confined within the canopy,

with marginal differences between day and night. However, a distinction arises just below the canopy, where nighttime mixing

ratios are larger. This characteristic delineates the interplay of ground-level production and consumption processes within and

above the canopy, influenced by the dynamics of the nocturnal boundary layer and its impact on nighttime mixing ratio levels.250

NO2 exhibits a distinct day-night contrast in its characteristics. At night, its mixing ratio remains relatively homogeneous,

while during the day, there is an exponential decrease in the mixing ratio from within the canopy to higher altitudes. Addi-

tionally, nighttime mixing ratios above the canopy are higher, indicating production and accumulation within the canopy and

consumption within and above during daylight hours.

Isoprene and monoterpenes display similar behavior, with their primary source at the canopy’s top. Their mixing ratios decrease255

both above and below the canopy. During nighttime, isoprene exhibits minimal variation in mixing ratio with height, showing a

nearly uniform distribution, with a gradual increase with altitude. In contrast, monoterpenes accumulate in the canopy at night

and could be released during rain events. Although their mixing ratio is lower than during the day, their vertical distribution

remains constant. The monoterpene production could be influenced by mechanical turbulence within the vegetation, especially

during rainfall events, and modulated by the air temperature.260

Supplementary Figs. S2, S3, and S4 show the difference between the gas mixing ratio during rain and no rain events for day

and night and wet and dry seasons. These figures provide information on the variability of the mixing ratio profile of each gas

during the wet and dry seasons and the rainy and non-rainy moments, giving an idea of the background in each season and

during the day and night. The CO2 mixing ratio varies only about 2 ppm during the day and 8 ppm during the night between

rain and non-rain events. The variation between dry and wet seasons is small compared to other gases. For CO, the difference265

between rain and non-rain is around 2 and 6 ppb. Day and night variations are small compared to the seasonal variation of

around 20 ppb. The variation in the rain and non-rain profiles have the same behavior between the seasons. The CH4 variation

due to rain and absence of rain is less than 1 ppb during the dry season and during the day. However, the largest vertical gradient

is observed during the dry season and the day, with a maximum around the canopy. The difference between rain and the absence

of rain is about 3-4 ppb during the wet season and during the night. The seasonal difference is about 6 ppb. Supplementary270

Fig. S3 shows the ozone, nitric oxide, and nitrogen dioxide profiles. The O3 has a significant difference between the dry and

wet season mixing ratio; the day and night difference shows a different profile, with a more homogeneous profile within the

canopy during the night. It is interesting to note that the non-rain event during the dry season has a higher ozone concentration,

whereas the opposite behavior is observed during the wet season. This is because the background ozone mixing ratio during

the dry season is very high, and the wash-out effect seems to compensate for the effect of the injection of ozone-rich air from275

higher altitudes. NO shows a less pronounced seasonal variation. The profiles show a higher concentration near the surface

and a faster decrease with height, and the non-rainy background shows a higher mixing ratio. NO2 shows a nearly similar
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Vertical profiles of median mixing ratios and 30% and 70% percentiles interval (Shadow), for a) CO2, b) CO, c) CH4, d) O3, e)

NO, f) NO2, g) isoprene, and h) monoterpenes during the day (red) and night (black), for all rain-events. The dataset to compute the median

spans a two-hour window before and after the peak rain rate. The total number of rain events for each gas is detailed in the Data Analysis

section.
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variation with height during day and night, dry and wet, with a minimum mixing ratio just below the canopy, highlighting an

important process of mixing ratio reduction in this height. Finally, Supplementary Fig. S4 shows the profiles of isoprene and

monoterpene. All profiles show a maximum around the canopy and a different mixing ratio between rain and non-rain events.280

There is a considerable seasonal variation, with more than twice the concentration during the rainy season. Monoterpene has a

similar or higher concentration during rain events than during non-rain events. Isoprene, however, has a higher concentration

during non-rain events, except during the dry season, when the concentration is higher during rainy days.

The composite does not distinguish between the dry and wet seasons, even though most rain events occur during the rainy

season. The main objective of this study is to evaluate the variation of the mixing ratio of a specific gas with the rain event,285

observing before and after the maximum rain rate. Therefore, a composite was made from two hours before to two hours after

the maximum rain rate, and the average of the median profile during these four hours was calculated (Figure 1) and subtracted

from each time step. This was done to highlight the variation during the rain event rather than the absolute concentration, which

varies between days and seasons. Therefore, the mean values of the composite should be zero.

3.2 Vertical mixing and environmental characteristics during rainfall events290

(a) (b)

Figure 2. Composite of 222Rn concentrations at 80 m above ground during day (a), and night (b), from two hours before to the time of the

maximum rain rate. After the rain, part of the atmospheric radon progeny could have been lost due to scavenging effects and to avoid this

imprecision 222Rn activity concentrations are not reported after maximum rain rate. A rainfall event was considered as an event inside the

4-hour window with at least one moment with a rain rate larger than 0.5 mm.hr−1. The data used covers rain events from January 2019 to

December 2020. Values are presented as the median values, and the gray shading is the 95% confidence interval.

Changes in gas mixing ratio during rainfall events could be modulated by an ensemble of effects, from the vertical advection

of free troposphere air, changes in surface fluxes, changes in the cloud cover inducing a reduction in solar radiation reaching
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the canopy, temperature changes, the wash-out effect by the rain, among others processes Pedruzo-Bagazgoitia et al. (2023).

We used a proxy value based on atmospheric 222Rn activity concentration measurements to evaluate the effect and dynamics

of the soil fluxes. Of course, this proxy only applies to gases that are co-emitted with 222Rn from the soil, such as CO2, NO and295

possibly CH4 after a rain event. The relative humidity threshold (<95%) employed in the data analysis considerably reduced

the sample size; for the day events, the composite had 109 cases, and for the night, 23 cases. Figure 2 shows how 222Rn

varies before the maximum rainfall event during the day and during the night, measured at 80 m height above the ground.

During the day, the 222Rn activity concentration is nearly constant 2 hours before the maximum rain rate. There is a slight

decrease half an hour before the moment of maximum rainfall, which is likely due to the effect of the onset of precipitation,300

causing washout and radioactive imbalance thereafter. On the other hand, during nighttime, radon concentrations peak one

hour before the maximum rain intensity, followed by a slight drop in activity concentration and also half an hour before the

moment of maximum rainfall, possibly due to the same wash-out effect. We should observe a large variability during the night

due to the small sample; the large variability of the sampling and the wide confidence interval do not allow us to say that these

changes in behavior associated with rainfall are statistically significant. However, we tested the behavior separately for only305

2019 and 2020, and the pattern of maximum activity concentration before maximum rainfall is consistent between the two

years. This analysis suggests that preceding rain events, there is a nearly constant surface flow during the day and an increase

in surface flows at night. These features will be discussed in detail in the upcoming subsections. The increase in radon activity

concentrations is more pronounced during nighttime, possibly linked to atmospheric stability leading to the accumulation of

trace gases with a local source. For further evaluation of the 222Rn behavior with other gases (CO2, CO, CH4) see Supplement310

Figure S5 showing the behavior side by side, with normalized variation based in standard variation. These Figures will be

discussed during the analysis of each of these gases in the next session.

Figure 3a) and b) show the histogram of the duration of the rainfall events and the maximum observed rain rate of each event.

Most of the events have a duration of less than an hour and a rain rate of less than 1 mm.hr−1; therefore, the composites are

mainly composed of short events with low rain rates. There are some cases with high rain rates and event duration of more315

than 400 minutes and 25 mm.hr−1, but about 64% of the cases have a duration of less than 2 hours and rain rates of less than

5mm.hr−1. The maximum rain rate could occur at any moment of the rainfall event. However, it currently occurs closer to the

rainfall initiation rather than the end of the event due to the stratiform rain that follows the convective, most intense, rain. Figure

3c) illustrates the temporal variations in several key meteorological parameters, including temperature, relative humidity, wind

speed, solar radiation, boundary layer height, and lightning events within a 4-hour window surrounding the time of maximum320

rain rate. Temperature exhibits a decreasing trend from 1 hour prior to the peak rainfall, reaching its lowest point approximately

30 minutes after the maximum rainfall intensity. Conversely, relative humidity experiences a steady increase, with the highest

humidity levels occurring about 30 minutes after the peak rainfall. Wind speed attains its maximum value at the time of the

highest rainfall rate, while total cloud cover shows an overcast situation 1.5 hours before the maximum rain rate, and solar

radiation registers its lowest value concurrently with the maximum rain rate. Boundary layer height initiates a decline around325

13

the canopy, temperature changes, 

wash-out effect by the rain, among others processes Pedruzo-Bagazgoitia et al. (2023). We used a proxy value based on atmospheric 222Rn activity concentration measurements to evaluate 

effect 

dynamics of

soil ﬂuxes. Of course, this 

 only applies to gases that are co-emitted with 222Rn 

soil, such

s 

NO and

possibly CH4 after a

. The relative humidity threshold (<95%) employed in

data analysis considerably reduced the sample size; for

day events, the composite had 109 cases, and for

night, 23 cases. Figure 2 shows how 222Rn varies before the maximum rainfall event during

day and during the night, measured at 80 m height above the ground. During the day, the 222Rn activity concentration is nearly constant 2 hours before the maximum rain rate. There is 

 slight decrease half an hour before the moment of maximum rainfall, which is likely due to the effect of 

 onset 

 precipitation

causing washout and radioactive imbalance thereafter. On the other hand, during nighttime, radon concentrations peak one hour before the maximum rain intensity, followed by a slight drop in activity concentration and also half an hour before the moment of maximum rainfall, possibly due to the same wash-out effect. We should observe a large variability during the night due

the small sample; the large variability of the sampling and the wide conﬁdence interval do not allow us to say that these changes in behavior associated with rainfall are statistically signiﬁcant. However, we tested the behavior separately for only

2019 and 2020, and the pattern of maximum activity concentration before maximum rainfall 

 consistent between

two years. This analysis suggests that preceding rain events, there is a nearly constant surface ﬂow during the day and an increase in surface ﬂows at night. These features will be discussed in detail in the upcoming subsections. The increase

radon activity 

is more pronounced during nighttime

linked

atmospheric stability leading to the accumulation of trace gases with a local source. For further evaluation of the 222Rn behavior with other gases (CO2, 

, CH4) see Supplement

Figure S5 showing

behavior side by side, with normalized variation based

standard variation. These Figures will be discussed during

analysis of each of these gases in

next session. Figure 3a) and b) show the histogram of

duration

 the rainfall events and 

observed 

 of each event. Most of the events have a duration of less than an hour and a rain rate of

than 1 mm.hr−1; therefore, the composites are mainly composed of short events with low rain rates. There are some cases with high rain rates and event duration 

 more

than 400 minutes and 25 mm.hr−1, but about 64% of 

 cases have a duration of less than 2 hours and rain rates of

 5mm.hr−1. The maximum rain rate could occur at any moment of the rainfall event. However, it currently occurs closer to 

rainfall initiation rather than the end of

event due to the stratiform rain that follows the convective, most intense, rain. Figure 3c) illustrates the temporal variations in several key meteorological parameters, including temperature, relative humidity, wind speed, solar radiation, boundary layer height, 

 lightning events within a 4-hour window surrounding the time of maximum

rain rate. Temperature exhibits a decreasing trend from 1 hour prior to the peak rainfall, reaching its lowest point approximately 30 minutes after 

 maximum rainfall intensity. Conversely, relative humidity experiences a steady increase, with

highest humidity levels occurring about 30 minutes after

peak rainfall. Wind speed attains its maximum value at

time of the highest rainfall rate, while total cloud cover shows an overcast situation 1.5 hours before 

 maximum

rate, and solar radiation registers its lowest value concurrently with the maximum rain rate. Boundary layer height initiates

 decline around
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(a) (b)

(c)

Figure 3. a) Rain event duration histogram for all cases in the composite, b) Maximum rain rate distribution for all cases in the composite,

c) Composite of weather variables for two hours before the maximum rain rate to two hours after. The air temperature was measured at

the height of 26 m, relative humidity at the height of 26 m, wind speed at the height of 42 m, and solar radiation at the top of the tower at

the height of 79 m. The Figure also includes the GLM lighting events, the boundary layer height, and the cloud cover. A rainfall event was

considered as an event inside the 4-hour window with at least one moment with a rain rate larger than 0.5 mm.hr−1. Values are presented as

the median values, except for the GLM lighting, because lighting events are not frequent and the median value is zero, so we used the mean

for GLM lighting. The shaded bands around the median or mean values correspond to the 95% confidence interval.
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(a) (b) (c) Figure 3. a) Rain event duration histogram for all cases in the composite, b) Maximum rain rate distribution for all cases in the composite,

) Composite of weather variables for

before the maximum rain rate

two hours after. The air temperature was measured at the height of 26 m, relative humidity at the height of 26 m, wind speed at 

 height of 42 m, and solar radiation at the top of the tower at the height of 79 m. The 

also includes the GLM lighting events, the boundary layer height, and the cloud cover. A rainfall event was considered as an event inside the 4-hour window with at least one moment with 

 rain rate larger than 0.5 mm.hr−1. Values are presented as the median values, except for the GLM lighting, because lighting events are not frequent and the median value is zero, so we used 

 mean for GLM lighting. The shaded bands around the median or mean values correspond to

95% conﬁdence interval. 14 



30 minutes before the maximum rainfall, indicating a notable influence of precipitation on the atmospheric boundary layer.

Furthermore, lightning events (hereafter called GLM events) reach their maximum simultaneously.

Rainfall is correlated with changes in other meteorological variables, as described above, but gas solubility is also directly

affected by rain events. Rain can increase the rate of air-water gas exchange, Ho et al. (1997) empirically calculated the

gas transfer velocity and rainfall rate for different rainfall rates and drop sizes, quantifying the enhancement of air-water gas330

exchange by rainfall. There is also the wet deposition effect, which may not be an efficient removal mechanism for hydrophobic

gases as described by Mullaugh et al. (2015). The direct rainfall effect depends on the solubility of gases, and wet deposition

is highly complex, especially for VOCs, due to the water solubility of this heterogeneous mixture covering several orders of

magnitude (Niinemets and Reichstein, 2003).

3.3 Greenhouse gases, carbon monoxide and rainfall events335

To effectively illustrate the variations in the gas profiles before and during precipitation events, the calculations were performed

as deviations from the average profile within 4-hour windows, spanning 2 hours before and 2 hours after the peak rain rate.

To enhance visual clarity, the figures represent the deviation inside the 4-hour window, centered in the moment of maximum

rain rate, and employing distinct scales to accentuate pre- and post-rain contrasts. The composite is used to describe the

changes in the gas mixing ratio with the rain event. We calculated the diurnal cycles of the gas mixing ratio with and without340

rain to demonstrate the significance of the differences between the gas concentration during the rainy and no-rainy events.

Supplementary Fig. S6 shows the median of all gas species mixing ratios for the rainy and no-rainy events. The figures show

the quantitative difference between the two situations and provide an indication of how a particular gas concentration varies

during rain events. The discussion of each gas and its evolution during the rain events is discussed in detail in the following

figures.345

Figure 4 depicts the diurnal and nocturnal evolution of the deviation from the median profile, presented in the precedent section,

for CO2, CO, and CH4 mixing ratio profiles within a two-hour window before and after the peak of rainfall events.

The majority of gas mixing ratios exhibit a decline concurrent with precipitation. The CO2 profile varies between the surface

and above the canopy at 79m, before and after the rain event, around 1.8 ppm during the day to 3.3 ppm at night (total

range of variation). While CO2 mixing ratio shows limited sensitivity to rain, particularly during the day, the influence is350

more pronounced at night, manifesting a significant reduction in mixing ratios below the canopy. This data underscores the

variable response of CO2 mixing ratios to rainfall, emphasizing its more prominent role in nocturnal conditions, possibly due

to the enhanced mixing conditions associated with rainfall having a relatively larger impact on the nighttime CO2 mixing ratio

buildup than during the daytime. CO2 mixing ratios, possibly affected by local sinks and sources (vegetation and soil), behave

differently during day and night. During the night, the largest variation is below the canopy but in phase with the heights above.355
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During the day, there is a decrease in concentration inside the canopy with the rainfall, but above the canopy, the variation is

very small with a slight increase with rainfall. Probably because of the reduction of photosynthesis due to the increase in cloud

cover, it could result in a slight increase in CO2 mixing ratio above the canopy. Higher mixing ratios near the ground and lower

ones at the canopy height suggest sources close to the forest floor, such as soil and understory ecosystem respiration, and a

stronger photosynthetic sink at the higher heights. The decrease in the CO2 mixing ratio within the canopy during the rain360

event is correlated with the simultaneous increase in humidity and decrease in temperature as a consequence of the reduction

in radiation due to the increase in cloud cover Pedruzo-Bagazgoitia et al. (2023). As discussed above, these environmental

conditions suppress both soil and tree CO2 exchange and surface flux and reduce photosynthesis. Another possible reason

could be associated with increased mixing within the canopy, destroying the stable layer within the canopy by mixing free

tropospheric air into the canopy Betts et al. (2002). These two effects may contribute to the reduction in CO2 mixing ratio after365

the rain event; however, the importance of each of these effects could not be quantified with the current data.

During the night before the rain event, there is a clear increase in the mixing ratio at 79 m according to the radon surface flux

proxy (see Supplementary Figures S5). The nocturnal production of CO2 combined with the turbulent fluxes associated with

the gust fronts of the rain events may increase the mixing ratio above the canopy. The rain event leads to turbulent air mixing

from above down to the ground, resulting in a strong decrease of CO2 mixing ratio.370

The evaluation of CO mixing ratios around rain events (Figure 4c,d) shows a similar behavior during the day and night, though

with some important differences. Before the rain event, CO profiles exhibit high differences near the ground and show lower

mixing ratio differences near the canopy, mainly during the day. Thus, there is likely a source of CO near the forest floor

(van Asperen et al., 2023). In global CO inventories, the biosphere is regarded to act as both a source and a sink, but large

uncertainties remain about the strength of individual sources. CO emissions are usually associated with abiotic degradation375

of organic matter, in the form of photodegradation (Guenther, 2002; Seiler and Conrad, 1987; Schade et al., 1999; Tarr et al.,

1995; Derendorp et al., 2011) as well as thermal degradation (Yonemura et al., 1999; Lee et al., 2012; van Asperen et al.,

2015). Living plants have also been reported to show CO emissions, but are expected to be minimal compared to senescent

plant material (Derendorp et al., 2011; Schade et al., 1999; Tarr et al., 1995). Besides soil CO emissions, soil CO consumption

cannot be excluded: soil microorganisms are known to oxidize CO to CO2, a process, among others, dependent on available380

oxygen (soil diffusivity) and temperature (King and Hungria, 2002). As underlined by Liu et al. (2018), the balance between

soil CO uptake and soil CO emission is not well understood, especially in the tropics. These effects are more important during

the wet season because the anthropogenic effect (e.g. fire emissions) is very significant during the dry season. As for the CO2

profile, during the night, the rainfall effect is more vertically homogeneous.

During the night, CO shows a slight vertical gradient with higher CO mixing ratios difference close to the forest floor. The385

precipitation event causes a more important difference near the ground and, may be associated with the processes of uptake

and emission of CO with the same transport phenomena discussed for CO2. Above the canopy, at night, at 79 m, an increase
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in the mixing rate of CO after rain is not observed (see Supplementary Figure S5), related to the increase in surface turbulent

fluxes, as observed for CO2, but less clear for a probably smaller nocturnal source of CO, comparable to that of CO2 (see

Supplementary Figure S5).390

CH4 (Figure 4e, f), in contrast to the other gases, displays notably less stratification, with variations spanning from the surface to

79 meters, amounting to less than 4-6 ppb throughout both day and night periods (see Figure 1c). Although a slight stratification

can be observed in this figure, a discernible pattern emerges with the highest mixing ratio differences occurring at the surface

during the day, while at night, they are more prevalent at higher levels above the canopy. This daytime behavior can be attributed

to weak sources of CH4 production, primarily stemming from microbial anaerobic decomposition processes, depending on395

temperature and soil humidity, occurring mainly near the ground. As temperatures decrease during nighttime, CH4 production

wanes, possibly leading to the observed shift in mixing ratio peaks toward upper levels. Assuming the inlet at 79-m height is

within the nocturnal boundary layer, the nocturnal maxima can be explained by the processes described in Botía et al. (2020),

but if the inlet height is above the nocturnal boundary layer and inside the residual layer, the CH4 peak could be associated with

the mixing ratio of the previous afternoon. As CO2 and CO, CH4 exhibits a time trend with rainfall with a minimum mixing400

ratio difference of two hours subsequent to the peak rainfall intensity. The supplementary information presented in Figure

Supplement 5 shows a practically unchanged mixing ratio of CH4 during the night before the rain events, which indicates that

although there are turbulent fluxes at the surface, the mixing ratio is not affected above the canopy, possibly due to the absence

of sources at that time.

Generally, the greenhouse gas mixing ratios (CO2, CO, and CH4) revealed a similar pattern during day and night and, overall,405

there is a noticeable declining trend in their mixing ratios after reaching the peak of the rain intensity. This pattern implies that

atmospheric transport plays a pivotal role in regulating the levels of trace gases, as evidenced by the concurrent rise in wind

speed and boundary layer height, as depicted in Figure 3, leading up to the maximum rain rate.

During the nighttime, the influence of atmospheric transport on CO2, CO and CH4 mixing ratios difference before reaching

the maximum rain rate is less stratified compared to daytime. The mixing ratios of these gases exhibit a more homogeneous410

vertical variability until the point of maximum rain intensity. Still, a more intense effect on the mixing ratio difference for CH4

is observed near 79 m.

The effect of air transport from the free troposphere to the canopy should be the same for all the gases, as it is related to the

amount of air exchanged. However, the source-sink patterns of the three gases in terms of time and location within the canopy

differ, implying the pattern observed in these compounds. The data used in this study does not allow transport effects to be415

completely separated from the effects of sources and sinks. The composite highlights distinct patterns associated with the rain

events in the gases presented here. For CO2, the strong vertical gradient for night and day with high mole fractions within the

canopy suggests a local production of the gas and poor CO2 gas mixing ratio transported from the free atmosphere. In contrast,
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CO profiles could be affected by vertical transport, whereas the minimal vertical gradient of CH4 could indicate an almost

balanced local production/sink relationship.420

(a) (b)

(c) (d)

(e) (f)

Figure 4. Composite of CO2 during the day (a), and night (b), CO during the day (c) and during the night (d), and CH4 during the day (e) and

during the night (f), for two hours before the maximum rain rate to two hours after. Please note that the color bar scale is different between

each figure. A rainfall event was considered as an event with at least one case with a rain rate larger than 0.5 mm.hr−1. Calculation was done

for all cases from January 2013 to December 2020. Values are presented as the deviation from median composite values.
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3.4 Reactive gases and rainfall events

Figure 5 shows the evolution of O3, NO, and NO2 mixing ratio profiles during the day (a,c,e) and during the night (b,d,f), two

hours before and after the maximum rainfall. Figure 5 (a,b,) shows O3 mixing ratio increasing during precipitation events, as

observed by Wang et al. (2016); Gerken et al. (2016); Sigler et al. (2002). A considerable increase is driven by a downdraft

reaching the ground. This injection of ozone-rich air from the upper levels reaches a maximum of about one hour after rainfall.425

The O3 increase within the canopy can be attributed to the injection of high levels of O3 mixing ratio from the upper tropo-

sphere. O3 mixing ratio is related to atmospheric chemistry, cloud dynamic transport, and cloud electrification (Brune et al.,

2021; Williams et al., 2002), as indicated by a maximum lightning activity at this time. Of special interest is the less striking

variation of the O3 mixing ratio just around and above the canopy during the day, before and after rainfall. This result suggests

deposition, decomposition, or uptake by vegetation. This kind of sink masks the variation as affected by the rain event. As this430

level represents the main source for isoprene and monoterpenes, mainly during the day, a reaction with these VOC species may

play a crucial role. The NO/NO2 dynamics within the precipitation event seem to reflect this complex series of reactions near

the surface and above the canopy, starting with soil NO emission and accumulation affected by O3, transport processes and

chemical reactions, resulting in the production of NO2. This general view is supported by several reports based on chamber

and field experiments (Rummel et al., 2002; Gut et al., 2002; Kesselmeier et al., 2002; Chaparro-Suarez et al., 2011; Bell et al.,435

2022; Zhao et al., 2021) indicating the oxidative regime is governed by O3 and affecting several trace gases. These studies

contribute to understanding the within-forest oxidative capacity reflected by VOC oxidation products, such as formaldehyde,

as observed under daytime conditions near the forest surface (Rottenberger et al., 2004). During the day, the rainfall event leads

to an opposite behavior between NO2 and NO; the former is increased during rainfall, and NO decreases after the rainfall. NO

variation with rainfall mostly occurs within the canopy. During the night, the effect is also observed above the canopy, possibly440

due to the small height of the nocturnal boundary layer. For NO2, the variation with rain is highest just above the canopy.

However, at night, a different pattern emerges, showing the importance of solar radiation in the daily photochemical reaction.

At night, the highest variations of NO2 mixing ratio primarily occur around the canopy top. This can be understood as caused

by vegetation’s missing NO2 uptake. Under daylight, with open stomata, the plant leaves are effectively taking up NO2 from

the air, whereas stomata are closed in the dark, and the sink strength decreases to negligible (Chaparro-Suarez et al., 2011).445

The rainfall events at night show NO2 being washed out from the air above the canopy, with the strongest loss at the canopy

top. Interestingly, a small positive variation remains near the ground after the rainfall. However, this potential source remains

unclear as the rain does not activate any soil NO source to produce NO2, but could be the product of the NO and O3 reaction

producing NO2. Nevertheless, the behavior of NO anomalies within the forest shows an expected picture of accumulation be-

fore and decreasing mixing ratio after rain. Although the absolute difference with rain events is small, it corresponds to about450

10% variation. The NO variation with rain is restricted to the inside canopy during the day and the night.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Composite of O3 during the day (a), and night (b), NO2 during the day (c) and during the night (d), and NO during the day (e) and

during the night (f), for two hours before the maximum rain rate to two hours after. A rainfall event was considered as an event inside the

4-hour window with at least one moment with a rain rate larger than 0.5 mm.hr−1. Calculation was done for all cases from January 2013 to

December 2020. Values are presented as the deviation from median composite values.
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3.5 Volatile Organic Compounds and rainfall events

Figure 6 shows the evolution of isoprene and monoterpenes mixing ratio profiles during the day (a,c) and during the night (b,d)

two hours before and after the maximum rainfall. The depletion of biogenic VOC under these conditions could generally be

related to oxidative atmospheric chemistry leading to secondary organic aerosol. The most important biogenic non-methane455

VOCs, isoprene and monoterpenes, have their maximum mixing ratio difference increase about two hours before the rain

peak during the day related to canopy release and upward transport, driven by the meteorological conditions before rainfall,

mostly with high air temperatures and intensive solar radiation favoring the biogenic synthesis of isoprene and monoterpenes.

Typically, when rain starts in a forest, the temperature and solar irradiance drop rapidly, directly affecting biogenic trace

gas production. Subsequently, during this time (daytime), the mixing ratios continue to be lower than before the rain event.460

This basic behavior is observed at all levels and is comparable to the observations of isoprene after rain events reported in

Pfannerstill et al. (2021). The clear loss of isoprene and monoterpene emission causes a sharp mixing ratio decrease above the

canopy. This drop indicates a set of decomposition pathways, deposition processes, and consumption inside the canopy. Under

night conditions, a constant decrease of isoprene is observed before the rain event, followed by a slight increase of isoprene

near the ground under rainfall, and it even affects higher heights in the course of time after rainfall. This observation of a465

slight increase in the isoprene mixing ratio at night looks puzzling, but only at first view. We have to regard the biosynthesis

of this compound. Plants produce isoprene with chloroplasts (see Lichtenthaler (1999)) for an overview. But the chloroplastic

pathway is of bacterial origin (Rohmer et al., 1993, 1996) imported by endosymbiosis, a relic of bacterial pathways through the

evolution of plastids, obviously. More recently, bacterial isoprene synthesis was confirmed and described as a general issue of

the bacterial genome (Sivy et al., 2002; Rudolf et al., 2021). Thus, we understand the isoprene increase and accumulation near470

the ground under night conditions due to a light-independent microbial production of this compound, which becomes visible

under the applied composite description around rainfall. Furthermore, this pathway might also contribute to further isoprenoid

accumulation, i.e., that of monoterpenes. Monoterpenes have a lower mixing ratio during the night, but in contrast to isoprene,

the pattern caused by the rain event shows a clear accumulation before the rainfall peaks. This maximum is located at a lower

altitude above the forest canopy than during the day. Obviously, there is a source within the lower layers of the forest. We475

may only speculate about such potential sources, for example, plant tissues with stored monoterpenes physically affected by

raindrops, such as glands or hairs, or mechanical turbulence caused by the gust front associated with the convective process.

4 Conclusions

The combination of rainfall data with gas profiles collected at the ATTO site over several years provides insight into the trace

gas variability during rainfall events. This analysis provides a quantitative description of greenhouse gases, reactive inorganic480

and volatile organic compounds at different heights within and above the canopy and being affected by meteorological events.
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(a) (b)

(c) (d)

Figure 6. Composite of isoprene during the day (a) and night (b), monoterpenes during the day (c) and during the night (d), for two hours

before the maximum rain rate to two hours after. A rainfall event was considered inside the 4-hour window with at least one moment with

a rain rate larger than 0.5 mm.hr−1. Calculation was done for all cases from January 2012 to December 2015. Values are presented as the

deviation from median composite values.

The average profile for each gas computed based on the median-composite 2 hours before to 2 hours after a rainfall event

during day and night clarifies several aspects of the gas behavior within and above the canopy. BVOC, O3 and CH4 present

larger mixing ratios during the day, and CO2, CO, and NO have maximum mixing ratios during the night, NO2 has a mixed

behavior, with a larger mixing ratio near the ground during the day and above the canopy mixing ratio is larger during the night.485

For all species, except for NO2, the nighttime profile is more homogeneous due to the shallow nocturnal boundary layer. These

profiles suggest the source of each gas, such as the canopy top for VOC, respired from leaves and stems and ground surface for

CO2, and ground surface for CO, and CH4 and free-atmosphere for O3.

The 222Rn is used as a surface flow tracer before rain events to complement the data analysis. There is a difference between day

and night. During the day, the activity of 222Rn remains practically unchanged for two hours before the moment of maximum490

rainfall, while at night, there is an increase in the mixing ratio of radon activity one hour before the moment of maximum

rainfall. This indicates a greater impact on the soil surface flux during the nocturnal rain event.
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Composite analysis of the gas mixing ratio before and after rainfall, during the day and night, gives insight into the complex

relationship between trace gas variability and precipitation. Entrainment from above may affect the mixing above and within

the forest. This analysis improves our understanding of trace gas sinks and sources. CO2, CO, and CH4 decrease with rain,495

probably related to the clean air injected into the boundary layer from the upper levels. CO2 and monoxide are more stratified

with height than CH4. CO has a sharper change with rainfall than CO2. CH4 changes are less significant, proportionally to

the total mixing ratio, than CO2. O3 mixing ratio difference increases during precipitation events. The variability patterns of

the NOx family in time and space are closely related to the contributing sink and source processes. As discussed above, a

series of potential interactions exist between soil, atmosphere, and plants inside the canopy. Biogenic VOCs, such as isoprene500

and monoterpenes, change with the rainfall affected by light (production) and physical transport. The NO-NO2 emission and

reaction chain becomes visible concerning soil emission of NO, resulting in an accumulation at night or oxidation to NO2 and

release from the forest during the day. Furthermore, rainfall can activate trace gases (NO) burst from soil or VOCs from plant

storage tissues. Thus, this composite analysis helps to understand sources and sinks of trace gases within a forest ecosystem.

Data availability. All data used in the study will be available at the Edmond repository, with open access.505
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