Preprints
https://doi.org/10.5194/egusphere-2023-2865
https://doi.org/10.5194/egusphere-2023-2865
08 Jan 2024
 | 08 Jan 2024

Selecting a conceptual hydrological model using Bayes' factors computed with Replica Exchange Hamiltonian Monte Carlo and Thermodynamic Integration

Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale

Abstract. We develop a method for computing Bayes’ factors of conceptual rainfall-runoff models based on thermodynamic integration, gradient-based replica-exchange Markov Chain Monte Carlo algorithms and modern differentiable programming languages. We apply our approach to the problem of choosing from a set of conceptual bucket-type models with increasing dynamical complexity calibrated against both synthetically generated and real runoff data from Magela Creek, Australia. We show that using the proposed methodology the Bayes factor can be used to select a parsimonious model and can be computed robustly in a few hours on modern computing hardware. We introduce formal posterior predictive checks for the selected model. The prior calibrated posterior predictive p-value, which also tests for prior data conflict, is used for the posterior predictive checks. Prior data conflict is when the prior favours parameter values that are less likely given the data.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

12 Mar 2025
Selecting a conceptual hydrological model using Bayes' factors computed with replica-exchange Hamiltonian Monte Carlo and thermodynamic integration
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale
Geosci. Model Dev., 18, 1709–1736, https://doi.org/10.5194/gmd-18-1709-2025,https://doi.org/10.5194/gmd-18-1709-2025, 2025
Short summary
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2865', Anonymous Referee #1, 03 Apr 2024
    • AC1: 'Reply on RC1', Damian Mingo Ndiwago, 08 Apr 2024
  • RC2: 'Comment on egusphere-2023-2865', Georgios Boumis, 14 May 2024
    • AC2: 'Reply on RC2', Damian Mingo Ndiwago, 22 May 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2865', Anonymous Referee #1, 03 Apr 2024
    • AC1: 'Reply on RC1', Damian Mingo Ndiwago, 08 Apr 2024
  • RC2: 'Comment on egusphere-2023-2865', Georgios Boumis, 14 May 2024
    • AC2: 'Reply on RC2', Damian Mingo Ndiwago, 22 May 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Damian Mingo Ndiwago on behalf of the Authors (15 Aug 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (27 Aug 2024) by Wolfgang Kurtz
RR by Anonymous Referee #2 (28 Aug 2024)
RR by Ivana Jovanovic Buha (07 Oct 2024)
ED: Publish subject to minor revisions (review by editor) (01 Nov 2024) by Wolfgang Kurtz
AR by Damian Mingo Ndiwago on behalf of the Authors (18 Nov 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (04 Dec 2024) by Wolfgang Kurtz
AR by Damian Mingo Ndiwago on behalf of the Authors (20 Dec 2024)  Manuscript 

Journal article(s) based on this preprint

12 Mar 2025
Selecting a conceptual hydrological model using Bayes' factors computed with replica-exchange Hamiltonian Monte Carlo and thermodynamic integration
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale
Geosci. Model Dev., 18, 1709–1736, https://doi.org/10.5194/gmd-18-1709-2025,https://doi.org/10.5194/gmd-18-1709-2025, 2025
Short summary
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale

Data sets

Magela Creek data (precipitation, discharge, potential evapotranspiration, temperature) D. N. Mingo and Jack S. Hale https://doi.org/10.5281/zenodo.10202093

Model code and software

Selecting a conceptual hydrological model using Bayes' factors Damian N. Mingo and Jack S. Hale https://doi.org/10.5281/zenodo.10202093

Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale

Viewed

Total article views: 722 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
510 178 34 722 28 25
  • HTML: 510
  • PDF: 178
  • XML: 34
  • Total: 722
  • BibTeX: 28
  • EndNote: 25
Views and downloads (calculated since 08 Jan 2024)
Cumulative views and downloads (calculated since 08 Jan 2024)

Viewed (geographical distribution)

Total article views: 714 (including HTML, PDF, and XML) Thereof 714 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 12 Mar 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Hydrologists are often faced with selecting amongst a set of competing models with different numbers of parameters and ability to fit available data. The Bayes’ factor is a tool that can be used to compare models, however it is very difficult to compute the Bayes’ factor numerically. In our paper we explore and develop highly efficient algorithms for computing the Bayes’ factor of hydrological systems, which will bring this useful tool for selecting models to everyday hydrological practice.
Share