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We would like to thank the second reviewer for their thoughtful comments. We will address 
their specific comments in this response and move towards a final response in the coming 
weeks. We are also more than happy to discuss specific points with the reviewer again. 
 

I have now finished reviewing the work by Mingo et al. The authors have combined Replica-
Exchange Hamiltonian Monte Carlo (HMC) with Thermodynamic Integration in order to do 
Bayesian inference for the parameters of a conceptual hydrologic model, while simultaneously 
they compute the marginal likelihood of the model; the latter, facilitates model inter-
comparison via the Bayes Factor (BF). In general, the manuscript is well written and has 
novelty in the sense that the proposed algorithm has never been applied before to hydrological 
modeling. As a result, I am overall positive! However, I think the manuscript would benefit from 
a more in-depth discussion (possibly toward the end of the article) about the scientific problem 
that the authors address, the limitations, and what are some possible alternatives. 
 

Indeed, there is an implicit assumption in our paper that computing the BF is something one 
might want to do in the first place! We agree we should have been more expansive on this 
point, so we make some specific answers to your points below. We will then paraphrase this 
into some new paragraph(s) in the discussion. 
 

In light of the extensive comments (major and editorial) of Reviewer #1 with which I completely 
agree, I would like to raise some concerns about the usefulness of BF as a hydrologic model 
inter-comparison metric. Please see my comments below: 
 

1. For the synthetic experiments, Tables 4 and 5 show that both DIC and WAIC could correctly 
indicate the data-generating model, i.e., M2 and M3, respectively. For the average reader, this 
might practically mean that we do not need BF as an additional metric to "tell" us which model 
to choose. Please provide an explanation to show why employing BF matters. If you cannot 
demonstrate that the BF can capture the true underlying model while the other, simpler 
metrics, cannot, then it is hard to justify your analysis. 
 

There is an example of the BF succeeding to identify the underlying data generating model in 
our paper, whereas the DIC does not, and the WAIC only provides at best weak evidence. 
 

In Experiment 2 (data generated from the three-bucket model M3), the DIC values for M3 and 
M4 differ by ~1, while the WAIC values for M3 and M4 differ by ~3 (Table 5 and Figure 12b). 
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(Burnham & Anderson 2002) on page 71, discusses ~4-7 (less evidence) and >~10 
(substantial evidence) in favour of one model over another when using IC-type measures for 
model selection. There are other similar values in the literature but this seems to be a 
commonly used interpretation, akin to the table of Kass and Raftery for the BF (1995) which 
we show in Table 1. 
 

Information and Likelihood Theory: A Basis for Model Selection and Inference. (2002). In K. 
P. Burnham & D. R. Anderson (Eds.), Model Selection and Multimodel Inference: A Practical 
Information-Theoretic Approach (pp. 49–97). Springer New York. 
doi: 10.1007/978-0-387-22456-5 2 
 

With this interpretation in mind, the DIC does not provide evidence to prefer M3 over M4. The 
WAIC possibly provides weak evidence in favour of M3 over M4, but we would be wary of 
making that conclusion by noting the substantial size of the error bar for M4 WAIC in Fig 12b. 
The BF (Table 5) decisively selects M3, the data generating model, over both M2 and M4. 
 

This is clearly not evidence for the superiority of the BF as a model selection tool in all 
circumstances, and so we would not feel comfortable framing the BF as being superior in the 
paper. However, it is indicative that there may be cases where the BF succeeds where other 
approaches do not. The BF comes at a substantial computational cost over IC-type measures, 
necessitating improved algorithms such as the one we proposed in this paper if the BF is ever 
to be used at all in practice. 
 

We will tweak the discussion of Experiment 2 to highlight this point better. 
 

2. Although I am not a Hydrologist myself, I have a hard time understanding the usefulness of 
BF within the context of hydrologic model comparison. Traditional hydrologists calibrate 
models using algorithms like Shuffled Complex Evolution (SCE) based on optimization of a 
deterministic metric, e.g., NSE. I do understand that Bayesian inference of hydrologic model 
parameters, on the other hand, is appealing because it naturally provides a measure of 
uncertainty, which is always important. But the BF provides no pragmatic information to the 
modeler as per which model is performing better. For example, one would still have to compute 
NSE or KGE for all models M2, M3, and M4 for the real-world data (Table 8) to get an idea of 
what's happening. On the contrary, I would argue that for conceptual hydrologic models, which 
are not  computationally demanding and time-intensive, likelihood-free methods like 
Approximate Bayesian Computing (ABC) might be more suitable for model comparison, as 
the posterior distributions of parameters for different models are obtained on the basis of an 
actually useful (to the modeler) distance metric, e.g., NSE, KGE, or even a metric tailored only 
to river discharge peaks!!! 
 

Again, I am positive about your article and I believe it should be considered for publication, 
but please provide a better discussion about the practical use of BF as a hydrologic model 
comparison metric… 
 

We will first discuss the issue of the metric or goodness-of-fit measure. 
 



In the paper we use a iid Gaussian likelihood function which in a deterministic setting can be 
seen as being equivalent to weighted minimisation in an l^2 norm, with the Bayesian prior 
being equivalent to some regularization term added to the l^2 norm. 
 

According to (Cheng et al. 2014) the NSE is “equivalent to a log-likelihood function with iid 
Gaussian residuals”. Consequently, if the modeler wishes to use NSE as a metric for 
parameter calibration (Cheng et al. 2014) proposes that they could simply use a iid Gaussian 
as a likelihood in a formal Bayesian analysis. 
 

Qin-Bo Cheng, Xi Chen, Chong-Yu Xu, Christian Reinhardt-Imjela, Achim Schulte, 
Improvement and comparison of likelihood functions for model calibration and parameter 
uncertainty analysis within a Markov chain Monte Carlo scheme, Journal of Hydrology, Volume 
519, Part B, 2014, Pages 2202-2214. https://doi.org/10.1016/j.jhydrol.2014.10.008 
 

We are unable to find results formally linking the KGE with a likelihood function, which means 
that if the modeler wants to use KGE, they cannot use a formal Bayesian analysis. We found 
the paper (Liu et al. 2022) which derives an object called an ‘informal pseudo probability 
density based on the KGE” which is then used in a formal Bayesian analysis, along with some 
discussion in the introduction of similar adaptations to the NSE. Perhaps this could then be 
used to evaluate the BF but this is a conjecture at this stage. 
 

Yan Liu, Jaime Fernández-Ortega, Matías Mudarra, and Andreas Hartmann, Pitfalls and a 
feasible solution for using KGE as an informal likelihood function in MCMC methods: 
DREAM(ZS) as an example, Hydrology and Earth System Sciences,, 26, 5341–5355, 
https://doi.org/10.5194/hess-26-5341-2022 
 

Likelihood-free methods such as Approximate Bayesian Computing (ABC) that bypass the 
evaluation of a likelihood function are a potentially good alternative if an explicit link with 
between a metric and the likelihood function is unavailable, as in the case of the KGE or 
perhaps with the example you mention with calibrating to capture peak discharge. 
 

In summary, it seems that the adaptation of commonly used metrics such as NSE and KGE 
to a full Bayesian setting is still an active area of research. We will add a remark discussing 
metric choice and ABC to the section “Likelihood construction 2.2.1”. This more detailed 
discussion will remain here if the reader is interested. 
 

We now discuss the point on metrics vs model selection criteria. 
 

The Gaussian likelihood (implying the weighted l^2 norm), NSE and KGE can be used as 
measures of goodness-of-fit for both training/fitting/calibration and nested model comparison 
via e.g. likelihood ratios. However, this is distinct from the model selection criteria (the BF or 
IC-type measures) which attempt to give a measure of fit balanced by an explicit or implicit 
penalisation for model complexity. Fit alone cannot choose between two models with free 
parameters which reproduce the data ‘similarly’ well. This is shown in our paper where we 
have deliberately constructed M4 with a strict superset of the model elements of M3 (and 
similarly M3 with M2). 
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So we agree that computing fit measures and performing graphical and formal posterior 
predictive checks are still an essential part of the modeling process. What the IC-type and BF 
offer is an additional measure for comparing models, potentially allowing the choice between 
models with similar fits. 
 

 


