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Abstract. We develop a method for computing Bayes’ factors of conceptual rainfall-runoff models based on thermodynamic

integration, gradient-based replica-exchange Markov Chain Monte Carlo algorithms and modern differentiable programming

languages. We apply our approach to the problem of choosing from a set of conceptual bucket-type models with increasing

dynamical complexity calibrated against both synthetically generated and real runoff data from Magela Creek, Australia. We

show that using the proposed methodology the Bayes factor can be used to select a parsimonious model and can be computed5

robustly in a few hours on modern computing hardware. We introduce formal posterior predictive checks for the selected

model. The prior calibrated posterior predictive p-value, which also tests for prior data conflict, is used for the posterior

predictive checks. Prior data conflict is when the prior favours parameter values that are less likely given the data.

1 Introduction

Hydrologists are often faced with assessing the performance of models that differ in their complexity and ability to reproduce10

observed data. The Bayes factor (BF) is one method for selecting between models from an a priori chosen set (Berger and

Pericchi, 1996). The appeal of the BF lies in its ability to implicitly and automatically balance model complexity and goodness-

of-fit under few simplifying assumptions. The BF is also invariant to data and parameter transformations unlike information

theory-based criteria such as Akaike information criteria (AIC) and Bayesian information criterion (BIC) (O’Hagan, 1997).

For example, a logarithmic transformation of the discharge or the square root of a parameter such as the flow rate can accelerate15

the convergence of the model, but it will not affect the computed BF.

However, the BF requires the computation of the marginal likelihood (the denominator in Bayes’ theorem) for each model,

which is a difficult and expensive integration problem. This expense and difficulty can be attributed to three main factors;

the necessity of many model runs at different points in the parametric space; the possibly multi-modal and highly correlated
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nature of the posterior that can lead to isolated and/or slowly mixing chains; and finally the inherent difficulty of the marginal20

likelihood integration problem.

Because of these difficulties, it is the case today that the BF is not widely used by practitioners, despite it being a crucial

component in Bayesian model comparison, selection and averaging (Höge et al., 2019). This stands in contrast with the widely

studied and used Bayesian parameter estimation procedure (Gelman et al., 2020). Consequently, model uncertainty is often

ignored, or assessed by either ad hoc techniques or information theoretic criteria (Birgé and Massart, 2007; Bai et al., 1999)25

that explicitly (rather than implicitly) penalise model complexity based on some measure of the number of parameters and

under limiting assumptions, see e.g. Berger et al. (2001) for a full discussion.

1.1 Contribution

The overall contribution of this paper is to describe the development of a method, Replica exchange preconditioned Hamilto-

nian Monte Carlo (REpHMC), which, when used in conjunction with thermodynamic integration (TI), can be used to estimate30

the BF of competing conceptual rainfall-runoff hydrological models. Our approach for estimating the marginal likelihood com-

bines TI for marginal likelihood estimation, Replica exchange Monte Carlo (REMC) for power posterior ensemble simulation

and preconditioned Hamiltonian Monte Carlo (pHMC) for high-efficient gradient-based sampling which in sum we call the

REpHMC + TI estimator. We demonstrate that REpHMC can sample from moderate-dimensional, strongly correlated and/or

multimodal distributions that frequently arise from hydrological models. In addition, REpHMC + TI can obtain posterior pa-35

rameter estimates and the marginal likelihood simultaneously. We remark that Brunetti et al. (2019) also suggested, but did

not explore, the idea of using REMC (therein called parallel tempering Monte Carlo) to improve chain mixing in hydrological

models.

Another key contribution of our work compared with e.g. Brunetti et al. (2017, 2019) is the incorporation of recent ideas from

probabilistic programming for the automatic specification of the Bayesian inference problems (parameter and BF estimation).40

Utilising recent techniques from the literature on Neural Ordinary differential equations (ODEs) (Chen et al., 2018; Rackauckas

et al., 2020; Kelly et al., 2020), we formulate a set of Hydrologiska Byråns Vattenbalansavdelning (HBV)-like models with

extensible model complexity as a system of ODEs. Working in this framework allows us to use efficient high-order timestepping

schemes for the numerical solution of the ODE system and to automatically derive the associated continuous adjoint ODE

system. With this adjoint system we can efficiently calculate the derivative of the posterior functional with respect to the45

model parameters, a necessary step for working with gradient-based samplers such as Hamiltonian Monte Carlo (HMC).

We emphasise at this point that our approach is largely free of manual tuning parameters and straightforward to implement

in a differentiable programming framework (we use TensorFlow probability (TFP) with the JAX backend, but the ideas are

applicable in similar frameworks such as Stan or PyMC3). We remark that a recent more theory-focused paper (Henderson

and Goggans, 2019) also proposed using TI with HMC via the Stan probabilistic programming language, but with results for50

non-time series models and without using REMC, which is an important aspect of our approach.

After model selection via the BF, it is essential to check if the chosen model can generate the observed data. Hydrographs

show the time series of stream flow. However, formal goodness-of-fit testing is necessary since it is challenging to see a
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mismatch in hydrographs for dense data. We therefore use the prior calibrated posterior predictive p-value (PCPPP), which

simultaneously tests for prior data conflict and discrepancies in the model for further improvements.55

In summary, this paper is the first to propose the REpHMC + TI method in a probabilistic programming framework for the

estimation of marginal likelihoods related to hydrological systems in view of model selection. We demonstrate the performance

of our method by showing a) a validation of the methodology using an analytically tractable model, b) its improved efficiency

with respect to classical methods using artificially generated data, and c) an application of a Bayes factor based model selection

on real rainfall/runoff data collected from the Magela Creek catchment in Australia.60

Our overall perspective is that these techniques have the potential to bring robust model comparison techniques based on

BF closer to everyday hydrological modelling practice. Aside from the algorithmic developments in this paper, a necessary

technological requirement would be the (re-)implementation of hydrological models in a differentiable programming language,

e.g. JAX, PyTorch or TensorFlow, rather than in a traditional language such as C, Fortran or Python. While using modern

differentiable programming techniques is commonplace for model developers working with machine-learning type approaches,65

e.g. neural networks, it is less commonly used, but no less applicable, for more traditional hydrological modelling approaches

like the Ordinary differential equation (ODE)-based HBV-like system we consider here. We hope our results encourage more

hydrologists to consider differentiable programming tools for conceptual model implementation given the advantages that

derivative-based sampling and optimisation algorithms bring to the table in terms of computational efficiency and improved

insight, e.g. model selection.70

1.2 Background

Looking outside of hydrology, there are a number of notable works that have developed techniques for numerically estimating

the BF. A recent comprehensive review by Llorente et al. (2023) discusses the relative advantages of commonly used methods

for computing the marginal likelihood, and consequently, the BF, such as naive Monte Carlo methods, harmonic mean estimator

(Newton and Raftery, 1994), generalised harmonic mean estimator (Gelfand and Dey, 1994), importance sampling and Chib’s75

method (Chib and Jeliazkov, 2001; Chib, 1995), bridge sampling (Meng and Wong, 1996; Gelman and Meng, 1998), nested

sampling (Skilling, 2004, 2006) and finally thermodynamic integration (Calderhead and Girolami, 2009; Lartillot and Philippe,

2006; Ogata, 1989), the technique that we choose to use in this study. Thermodynamic integration is well suited for high

dimensional integrals (Ogata, 1989, 1990), and physics-based models. The naive Monte Carlo is unstable and usually not

efficient, requiring a huge number of samples for convergence. The importance sampling and harmonic estimators require a80

suitable choice of the importance and proposal distributions, respectively. The performance of bridge sampling also depends

on a good choice of proposal distribution, which in practice is not straightforward a priori. The main difficulty with nested

sampling is generating samples from a truncated prior as the threshold increases (Chopin and Robert, 2010; Henderson and

Goggans, 2019). However, the efficiency of Chib’s method depends on how close an arbitrary value is to the posterior mode

(Dai and Liu, 2022). Hug et al. (2016) illustrated that Chib’s method significantly underestimates the marginal likelihood of a85

bimodal Gaussian mixture model.
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Turning our attention to works within hydrology that develop methods for computing Bayes factors, to the best of our

knowledge, the seminal work by Marshall et al. (2005) was the first to propose computing Bayes factors for hydrological

model selection. Marshall et al. (2005) used Chib’s method to estimate the marginal likelihood of conceptual models. More

recently various other authors (Liu et al., 2016; Brunetti et al., 2019, 2017; Volpi et al., 2017; Cao et al., 2019; Brunetti and90

Linde, 2018; Marshall et al., 2005) have considered the computation of Bayes factors in a hydrological or hydrogeological

context.

Perhaps most closely related to our study are the recent works of Brunetti et al. (2019, 2017); Brunetti and Linde (2018) who

computed Bayes factors for conceptual hydrogeological models with thermodynamic integration techniques. Brunetti et al.

(2017) compared naive Monte Carlo, bridge sampling based on the proposal distribution developed by Volpi et al. (2017),95

and the Laplace metropolis method in terms of calculating the marginal likelihood of conceptual models. Like most studies,

the naive Monte Carlo approach performed poorly. Also, Brunetti and Linde (2018) computed the marginal likelihood using

methods based on a proposal distribution, notably bridge sampling. Several marginal likelihood estimation methods have been

compared within hydrological studies. For example, Liu et al. (2016) found that thermodynamic integration gives consistent

results compared to nested sampling and is less biased.100

Many studies in hydrology, e.g. Zhang et al. (2020); Brunetti et al. (2017); Zheng and Han (2016); Shafii et al. (2014); Laloy

and Vrugt (2012) and Kavetski and Clark (2011) have used the differential evolution adaptive Metropolis (DREAM) algorithm

(Vrugt, 2016) for posterior parameter inference. Volpi et al. (2017) introduced a method to construct the proposal distribution

for bridge sampling and integrated it with the DREAM algorithm. However, it still requires the user to choose the number

of Gaussian distributions for the Gaussian mixture proposal distribution. The DREAM algorithm has been developed with105

an acceptance rate similar to the random walk Metropolis (RWM) algorithm, which has an optimal acceptance rate of 0.234

(Gelman et al., 1996b; Roberts and Rosenthal, 2009). The acceptance rate or probability is the proportion of the proposed

samples accepted in the Metropolis-Hastings algorithm. DREAM has an optimal acceptance probability of around 0.23 for

problems with dimensions greater than five (Vrugt et al., 2008). In contrast, a gradient-based sampler such as HMC, which

we use in this work, typically has a far higher optimal acceptance rate of around 0.65 (Radford M. Neal, 2011; Beskos et al.,110

2013). In addition, gradient-based samplers show improved chain mixing properties in high dimensions and on posteriors with

strongly correlated parameters (Radford M. Neal, 2011). The studies by Liu et al. (2016) and Brunetti et al. (2017, 2019) that

use the BF use posterior samples from the DREAM algorithm, which has a lower acceptance ratio than the HMC method. In

addition, because gradient-based samplers incorporate information about the local geometry of the posterior, they are usually

easier to tune to achieve the optimal acceptance rate, particularly in the moderate or high-dimensional parameter setting (num.115

parameters > 5). That is, to achieve the optimal acceptance rate, one may need to select a value for a parameter of the algorithm,

as described in Algorithm 3.

The rest of the paper is organized as follows. Section 2 is about conceptual hydrological models and Bayesian methodology,

which includes model formulation, prior and likelihood construction, posterior predictive checks, numerical methods, and

algorithms. Section 3 contains the results and discussions, while the conclusions are provided in Section 4. There is also a list120

of acronyms at the end.
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Q1 = k1V1

P Ea
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Qn = knVn

Q =
∑n
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Figure 1. Schematic representation of HBV-like ODE model with n-buckets according to the notations in the text. The blue boxes represent
the buckets with given state V1 to Vn. The solid arrows represent mass flows between buckets, into the system or out of the system. The
dashed arrow represents the collective mass flow between multiple buckets.

2 Methodology

This section describes the model formulation, including prior specification, likelihood construction, algorithms used, and im-

plementation in differentiable software. We leave other modelling aspects, like the type of priors used, for the next section,

where we present experiments.125

2.1 Conceptual models

We develop a set of rainfall-runoff conceptual hydrological models in the framework of continuous dynamical systems that can

be written as a system of ODEs of the following form

Vt = f(t,V,θ) ∀t ∈ (0, T̄ ],

V (t = 0) = V̂,
(1)

where V are the n system states, Vt := dV
dt is the derivative of the state with respect to the time variable t, T̄ is the final time,130

V̂ ∈ Rn are the initial conditions, f are known functions, and θ ∈ Rp is a vector containing the p model parameters.
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For the purpose of the results in this paper, we derive a set of HBV-like models under the principle of conversation of

mass. The algorithms developed in this study can be applied to other bucket-type models, e.g. Parajka et al. (2007); Jansen

et al. (2021) or those described in the comprehensive MARRMoT rainfall-runoff models toolbox (Trotter et al., 2022). In

comparison with the ‘standard’ HBV model (Bergström, 1976), our model lacks snow and a routing routine and we choose135

to replace the traditional soil moisture routine with a linear reservoir. A schematic representation of mass flow between the

buckets system is given in Fig. 1. The system states {V1, . . . ,Vn} [L3], where L is a generic length unit, represent the volume

of water in the i-th bucket and n is the total number of buckets. The system of ODEs for general n≥ 1 can be written

(V1)t = P −Ea− k1V1, n = 1, (2a)

(V1)t = P −Ea− k1V1− k1,2V1, n≥ 2 (2b)140

(Vi)t = k(i−1),(i)Vi−1− kiVi− k(i),(i+1)Vi, i = 2, . . . , n− 1, n≥ 3, (2c)

(Vn)t = k(n−1),(n)Vn−1− knVn, n≥ 2, (2d)

V (t = 0) = V̂, (2e)

Ea =
Ep

Vmax
V1, (2f)

Q =
n∑

i=1

kiVi. (2g)145

The parameters k(i−1),(i) [T−1], i = 2, . . . ,n, are the interbucket recession coefficients, where T is a generic time unit. The

parameters k(i) [T−1], i = 1, . . . ,n, are the outflow recession coefficients. The total outflow Q [L3T−1] specified in Eq. (2g) is

the noiseless quantity y used in the upcoming calibration and model selection procedures. The precipitation P [L3T−1] is an

a priori known function of time. Potential evaporation Ep [L3T−1] is a known function of time, whereas actual evaporation

Ea [L3T−1] is a function of Ep, and Vmax [L3] through Eq. (2f), where Vmax is the maximum amount of water the soil can150

store. We remark that the term Ep/Vmax in Eq. (2f) has units [L3T−1] and can therefore be thought of as a dynamic recession

coefficient with the dynamic behaviour controlled by the known time-varying potential evapotranspiration function Ep.

The parameter vector θ ∈ Rp associated with the model is then

θ := {Vmax︸ ︷︷ ︸
1

, k1, . . . ,kn︸ ︷︷ ︸
n

, k2,1, . . . ,k(n−1),(n)︸ ︷︷ ︸
n−1

, V̂1, . . . , V̂n︸ ︷︷ ︸
n

} (3)

The number of buckets can be varied by adjusting n ∈ N+, leading to a set of models {M1, . . . ,Mn} each with n states and155

p = 3n parameters.
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2.2 Bayesian methodology

We briefly restate the Bayes theorem in order to set our notation. If y is the data and θ the parameter vector associated with a

model M , then Bayes’ theorem in Eq. (4) defines the posterior probability of θ as

π(θ|y,M)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
f(y|θ,M)

prior︷ ︸︸ ︷
π(θ|M)

p(y|M)︸ ︷︷ ︸
marginal (averaged) likelihood

=
f(y|θ,M)π(θ|M)∫
f(y|θ,M)π(θ|M)dθ

. (4)160

The prior is a probability distribution of a parameter before data is considered. It can incorporate expert knowledge, historical

results or any belief about the model parameters. The likelihood tells us how likely various parameter values could have

generated the observed data. The denominator in Bayes’ theorem

p(y|M) =
∫ likelihood︷ ︸︸ ︷

f(y|θ,M)

prior︷ ︸︸ ︷
π(θ|M) dθ, (5)

is called the marginal likelihood. The marginal likelihood tells us how likely the model supports the data. The distribution of165

the parameters given the data is known as the posterior and is proportional to the product of the likelihood and the prior. In the

Bayesian paradigm, all inference is based on the posterior.

2.2.1 Likelihood construction

In this section, we drop the explicit index on the model for notational convenience. We define a solution operator Gsol :

R3n→X that maps a parameter vector θj to the total outflow function Q. Concretely, this solution operator is calculated by170

numerically solving Eqs. (2a) to (2g). We then define the observation operator Gobs : X → Rp which evaluates the solution

Q ∈X at a set of p points in time {t1, . . . , tp}.
We assume the following standard Gaussian white noise model for the observed data: y = GobsGsol(θ) + η where η ∼

MVN(0,σ2Ip) with MVN a multivariate normal distribution with mean 0 ∈ Rp and covariance σ2Ip ∈ Rp×p, with σ2 ∈ R the

variance of the measurement noise and Ip the usual p-dimensional identity matrix. Let G := GobsGsol : Rq→ Rp. By standard175

arguments it can be shown that y|θ ∼MVN(G(θ),σ2Ip) resulting in the likelihood f(y|θ,M) in Eq. (4) being fully defined.

For brevity, we leave precise prior specifications to the results in Section 3.

2.2.2 Model comparison

The marginal likelihood is also called the normalizing constant (Chen et al., 2000; Gelman and Meng, 1998), prior predictive

density, evidence (MacKay, 2003) or integrated likelihood (Lenk and DeSarbo, 2000; Gneiting and Raftery, 2007). This quan-180

tity is essential to the definition of the Bayes factor. Indeed, the Bayes factor for two competing models, M1 and M2 is the

7

https://doi.org/10.5194/egusphere-2023-2865
Preprint. Discussion started: 8 January 2024
c© Author(s) 2024. CC BY 4.0 License.



ratio of their marginal likelihoods

BF12 =
p(y|M1)
p(y|M2)

=
∫

f(y|θ1,M1)π(θ1|M1)dθ1∫
f(y|θ2,M2)π(θ2|M2)dθ2

. (6)

Since BF is a ratio, a value greater than one means that M1 should be preferred to M2, and vice-versa for a value smaller than

one. Kass and Raftery (1995) proposed a measure of the strength of evidence (Table 1) that we will use throughout this paper185

to interpret the Bayes factors.

An appealing feature of the BF is its consistency in the limit of a high number of observations. Proofs of consistency for

non-nested models are in Casella et al. (2009). For other cases, including nonparametric models, a review and detailed study

of consistency can be found in Chib and Kuffner (2016). Also, information theoretic model selection approaches usually

require an explicit penalty for the number of model parameters (model complexity). In contrast, the BF implicitly penalises the190

complexity of the model. That is we do not need to assign a penalty for model complexity since it is already accounted for in

the marginal likelihood and hence the BF.

Table 1. Interpretation of the Bayes factor (Kass and Raftery, 1995)

log10 BF12 BF12 Evidence in favour of model 1
0 to 1/2 1 to 3.2 Not worth more than a bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
>2 >100 Decisive

2.2.3 Posterior predictive checks

Model selection does not reveal discrepancies between the predictions from the chosen model and observed data. Hence

posterior predictive checks (PPCs) are also necessary to see if the selected model can replicate the observed data (Gelman195

et al., 1996a). PPCs can be graphical or formal. Graphical PPCs consist in making plots of predictions from the chosen model

and the observed data to reveal discrepancies. Formal PPC entails calculating a posterior predictive p-value (PPP). The concept

of posterior predictive checking was introduced by Rubin (1984) and later generalised by Gelman et al. (1996a) under the

name PPP where a discrepancy measure can depend on the model parameters. PPCs are the Bayesian equivalent of frequentist

goodness-of-fit tests, with the difference that the PPP can be based on any discrepancy measure, not just a statistic. To compute200

the PPP, the chosen discrepancy measure is calculated based on replicated data yrep, drawn from the predictive distribution

π(yrep|yobs) =
∫

f(yrep|θ)π(θ|yobs)dθ, and compared with that based on observed data. In mathematical terms, we wish to

approximate the theoretical probability

ppp(yobs) = Pr
[
D(y(rep),θ)≥D(yobs,θ)|yobs

]
. (7)
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This quantity can be estimated as205

ppp(yobs) =
1
B

B∑

i=1

I
[
D(yrep

i ,θi)≥D(yobs,θi)
]

(8)

where I[A] stands for the indicator function which takes the value 1 if A occurs and 0 otherwise, yobs is the observed dataset,

yrep
i is a replicated dataset from the posterior predictive distribution, B is the number of replicated datasets, while θi is a single

draw from the posterior distribution.

Unlike the frequentist p-value, the interpretation of the PPP is not straightforward since it does not follow a uniform dis-210

tribution but is concentrated around 0.5 (Meng, 1994). When the p-value has a uniform distribution, the type I error can be

controlled. For the frequentist p-value, the probability of falsely rejecting a null hypothesis, which is referred to as a type I error

rate, can be set to a fixed value. Typically, this value is prespecified at 0.05 or 0.01. On the contrary, it is difficult to fix the type

I error rate for the PPP. Hence, we might fail to reject poor models for a given PPP at a chosen type one error (Gelman, 2013;

Hjort et al., 2006). For this reason, we computed the prior calibrated posterior predictive p-value (PCPPP) introduced by Hjort215

et al. (2006) that has a uniform distribution and the same interpretation as a classical p-value. For more on the Type I error

and the distribution of the p-value, refer to Hung et al. (1997) and for Bayesian p-values, see Zhang (2014). To calculate the

PCPPP, a PPP based on data from the prior predictive distribution π(yprior) =
∫

f(yrep|θ)π(θ)dθ is computed and compared

with a PPP based on replicated data from the posterior predictive distribution:

pcppp(yobs) =
1
B

B∑

i=1

I
[
ppp(yrep

priori
)≤ ppp(yobs)

]
,220

where ppp(yobs) is obtained by Eq. (8) and ppp(yrep
priori

) can be in a similar way. From this equation, it becomes visible that the

PCPPP can also reveal prior data conflicts. A PCPPP greater than a prespecified type I error, say 0.05, means that the prior

distribution and model support the data at the level 0.05. The PPP can as well be calibrated based on posterior samples (Hjort

et al., 2006; Wang and Xu, 2021).

2.3 Numerical methods225

In this section we discuss the proposed new numerical method Replica exchange Hamiltonian Monte Carlo (REHMC) + TI

that we employ to simultaneously draw posterior samples and estimate the marginal likelihood. We recommend the reader refer

to Fig. 2 and its caption for a high-level overview of the approach before continuing to the detailed descriptions below.

2.3.1 Thermodynamic integration

Thermodynamic integration (TI) has its origins in theoretical physics, where it is used to calculate free energy differences230

between systems (Torrie and Valleau, 1977) before appearing in the statistical literature as path sampling (Gelman and Meng,
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β1

pHMC
β2

pHMC
β3

pHMC

β4

pHMC

βN

C
ha
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sw
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s

REMC TI logp(y|M)

logf(y|θ,βj) ∀j ∈ 1, . . . ,N.

Figure 2. Overall schematic of the REpHMC+TI algorithm for estimating the marginal likelihood for a given model M . Working from
left to right, N pHMC samplers are run at different values of the inverse temperature parameter {β1,β2, . . . ,βN} with 0≤ βj ≤ 1, j =
1, . . . ,N, to simulate from the power posterior logf(y;θi,βj). The REMC algorithm is responsible for swapping the state between adjacent
chains according to the Metropolis-Hastings criteria. Finally, the TI methodology is used to calculate an estimate of the marginal likelihood
logp(y|M). Note that in terms of setup, information flows from right to left, i.e. the discretisation of the TI integral is responsible for setting
the number N and values of inverse temperatures β1, . . . ,βN .

1998), a method for calculating marginal likelihoods. TI converts a high-dimensional integral into a one-dimensional integra-

tion problem over a unit interval.

To derive the TI estimate of the marginal likelihood p(y), we first raise the likelihood to the power 0≤ β ≤ 1 to form the

power posterior (Friel and Pettitt, 2008)235

πpower(θ|y,β) =

[
f(y|θ)

]β
π(θ)

p(y|β)
, (9)

with

p(y|β) =
∫ [

f(y|θ)
]β

π(θ) dθ. (10)
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When β = 0, the power posterior is the same as the prior distribution. When β = 1, we have the standard posterior distribution.

This makes a continuous path between the prior and the posterior distributions.240

Taking the logarithm on both sides of Eq. (10) and using the chain rule, a differentiation with respect to β yields

∂

∂β
logp(y|β) =

1
p(y|β)

∂

∂β
p(y|β)

=
1

p(y|β)

∫
∂

∂β

[
f(y|θ)

]β
π(θ) dθ

=
1

p(y|β)

∫ [
f(y|θ)

]β logf(y|θ)π(θ) dθ

=
∫ [

f(y|θ)
]β

π(θ)
p(y|β)

logf(y|θ) dθ245

= Ep(θ|y,β)[logf(y|θ)], (11)

where Ep(θ|y,β) is the expectation with respect to the power posterior. Integrating both sides of equation (11) with respect to β

gives the log of the marginal likelihood of interest p(y) in terms of an integral on β

logp(y) =

1∫

0

Ep(θ|y,β)[logf(y|θ)] dβ, (12)

This manipulation allows us to find a way to approximate the value of p(y). Computationally, posterior samples are drawn for250

each value of β. The values are then evaluated in the log-likelihood, and the mean for each value of β is obtained. The integral

(12) on β can be estimated using the trapezoidal rule as follows:

logp(y) =
N∑

j=1

(βj −βj−1)
2

[
Ep(θ|y,βj) logf(y|θ) + Ep(θ|y,βj−1) logf(y|θ)

]
.

The Monte Carlo estimate of the expectations can then be obtained by

logp(y)≈
N∑

j=1

(βj −βj−1)
2

[
1
S

S∑

i=1

logf(y|θi,βj) +
1
S

S∑

i=1

logf(y|θi,βj−1)

]
, (13)255

where j = 1, . . . ,N is the index for the β values and S is the number of posterior samples for each β value. The accuracy

of the TI estimate depends on the integration rule on β, i.e. the number of β values and the spacing of the values, and the

convergence of the Markov Chain Monte Carlo (MCMC). The most commonly employed path is a geometric path (Calderhead

and Girolami, 2009)

βj =
(

j

N

)5

, j = 1, . . . ,N. (14)260
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The number of βj values can be adaptively chosen as a tradeoff between model convergence and computational efficiency, for

instance, see Vousden et al. (2016). The complete TI algorithm is presented in Algorithm 1.

Algorithm 1 Thermodynamic integration (TI)

Input: β {β = {1, . . . ,0} : schedule of inverse temperatures based on trapezoidal rule of size N , S is the number of samples
per replica.}

Output: Log marginal likelihood (logp(y)).
1: REpHMC(β,S) {Run the REpHMC algorithm, see section 2.3.2.}
2: Estimate logp(y) by the definition of the quadrature rule, e.g. trapezoidal rule

logp(y)≈
N∑

j=1

(βj −βj−1)
2

[
1
S

S∑

i=1

logf(y|θi,βj) +
1
S

S∑

i=1

logf(y|θi,βj−1)

]
.

2.3.2 Replica exchange Monte Carlo

The REMC algorithm was introduced by Swendsen and Wang (1986). Geyer (1991) presented a similar formulation to the

statistical community under the name Metropolis-coupled MCMC. REMC is a generic algorithm in that it can be combined with265

other algorithms. Miasojedow et al. (2013) combined REMC with random walk Metropolis (RWM). RWM is a gradient-free

algorithm in that it generates posterior samples from the target distribution by randomly sampling from a proposal distribution.

We combine REMC with HMC, which gives the new algorithm REHMC explained in the rest of this section. When REMC is

combined with pHMC, we get the REpHMC. The REpHMC gives a higher effective sample size than REHMC. The effective

sample size is the number of independent samples with the same amount of information as correlated samples. Each sample270

in a Markov chain is correlated to the preceding sample, so the samples have less information than independent samples. The

effective sample size takes into account this autocorrelation. The main idea of REMC is that an ensemble of power posterior

chains known as replicas run in parallel. The likelihood of these chains is raised to values from zero to one. These values are

called inverse temperatures. Each replica performs a Metropolis update to get the next value at each iteration. The replica pairs

are randomly selected, and an attempt is made to swap the current values of the replica pairs. A swap is accepted or rejected275

according to the Metropolis-Hastings algorithm. The swapping accelerates convergence to the target distribution, avoids chains

becoming trapped in topologically isolated areas of the parameter space, and improves the mixing of the chains. REMC is also

known as parallel tempering (Hansmann, 1997; Earl and Deem, 2005). When the method has an iterated importance sampling

step, it is known as population Monte Carlo (PMC) (Iba, 2000; Cappé et al., 2004). However, the term PMC has also been

used for methods without an importance sampling step (Calderhead and Girolami, 2009; Friel and Pettitt, 2008; Mingas and280

Bouganis, 2016).

In the context of this paper, the samples of the replica with β = 1 are used to estimate the posterior parameters, while the

entire ensemble is used as input for TI to calculate the marginal likelihood. The REpHMC is summarised in Algorithm 2.
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Algorithm 2 Replica Exchange preconditioned Hamiltonian Monte Carlo (REpHMC)

Input: S,L,ϵ,β {S: number of samples, L: number of leapfrog steps, ϵ: leapfrog stepsize, β = {1, . . . ,0} : inverse tempera-
tures.}

Output: (θt+1
βi , θt+1

βj , θt+1
βk ,. . . , θt+1

βN ) {Posterior samples for each β}.
1: for all β do
2: for t = 1 to n do
3: pHMC(S,L,ϵ, β){Run pHMC algorithm for β values in parallel}.
4: function RE(θt+1

βi , θt+1
βj ,. . . , θt+1

βN ){Swap replicas}.
5: Randomly select a pair of samples from two different chains.
6: Attempt to swap samples. For example (θt+1

βi , θt+1
βj ).

7: Swap acceptance probability is

αi,j = min
(

1,
πi(θβj)πj(θβi)
πi(θβi)πj(θβj)

)

8: where πi(·) is the power posterior .
9: u∼ U(0,1)

10: if u≤ αi,j then
11: (θt+1

βi ,θt+1
βj )← (θt+1

βj ,θt+1
βi )

12: else
13: (θt+1

βi ,θt+1
βj )← (θt+1

βi , θt+1
βj )

14: end if
15: return (θt+1

βi , θt+1
βj , θt+1

βk ,. . . , θt+1
βN )

16: end for
17: end for

Like any sampling method, the REpHMC’s convergence should be assessed. We used both trace plots and formal diagnostic

tests to check for convergence of the Markov chain since there is no universal robust test for convergence (Cowles and Carlin,285

1996). The most widely used method to assess the convergence of Markov chains is the potential scale reduction factor R̂,

developed by Gelman and Rubin (1992) and extended by Brooks and Gelman (1998). Recently, an improved factor R̂ was

proposed by Vehtari et al. (2021). For R̂ to be a valid statistic, the chains must be independent of each other. In REHMC, the

chains are not independent due to swapping. Therefore, we used methods that require one chain or replica per temperature,

namely the Geweke diagnostic (Geweke, 1991) and the integrated autocorrelation time (IAT) (Geyer, 1992; Kendall et al.,290

2005). For the sake of brevity, we do not explain these concepts here but instead refer the reader to the respective papers.

2.3.3 Hamiltonian Monte Carlo

HMC is a gradient-based technique used to sample from a continuous probability density (Duane et al., 1987). HMC scales

better in high dimensions than gradient-free samplers, such as nested sampling, due to the inclusion of derivative information

(Ashton et al., 2022). Therefore, many applications combine HMC and gradient-free samplers. For example, Elsheikh et al.295

(2014) has combined HMC and nested sampling. HMC is based on the Hamiltonian, which describes a particle’s position and

momentum at any time. New positions are known by solving Hamilton’s equations of motion for position and momentum. In
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Bayesian inference, the Hamiltonian H(θ,ρ) in Eq. (15) describes the evolution of a d dimensional vector (θ) of parameters

and a corresponding d dimensional vector of auxiliary momentum (ρ) variables at any time, t.

H(θ,ρ) =−logf(y|θ)π(θ) +
1
2
ρT mρ

= U(θ) +K(ρ)
(15)300

In Eq. (15), m is the positive definite mass matrix because it is the inverse of the covariance matrix. U(θ) is the desired posterior

known as potential energy, and K(ρ) is the kinetic energy that is a function of momentum. In practice, ρ is sampled from a

Gaussian distribution. To sample from the Hamiltonian, we take the partial derivatives, which give Hamilton’s equations of

motion

dθ

dt
=

∂H

∂ρ
=

∂K

∂ρ
(16a)305

dρ

dt
=−∂H

∂θ
=−∂U

∂θ
(16b)

We now have a system of ODEs (Eqs. (16a) to (16b)). The leapfrog method (Duane et al., 1987; Radford M. Neal, 2011) is

used to solve the Eqs. (16a) to (16b) and propose new values for the parameters. The accuracy of the leapfrog method depends

on the discretisation step ϵ.

Each HMC iteration consists of two steps (Radford M. Neal, 2011). In the first step, the momentum values for each parameter310

are sampled from a Gaussian distribution independent of the current θ values, ρi ∼N(0,m) where i = 1, . . . ,d. Then using

the current parameter and momentum values, (θt,ρt), the Hamiltonian is simulated using an appropriate time stepping method

such as the leapfrog method (Betancourt, 2017). At the end of Hamiltonian dynamics, the momentum values are negated,

and the new parameter values (θt+1,ρt+1) are accepted or rejected using the Metropolis-Hastings criterion with acceptance

probability α where315

α = min
[
1,exp

(
−U(θt+1) +U(θt)−K(ρt+1) +K(ρt)

)]
. (17)

The HMC is summarised in Algorithm 3. The mixing of the HMC chain depends on the number of leapfrog steps L and the

step size ϵ. L and ϵ can be automatically tuned during the warm-up phase of the algorithm (Hoffman and Gelman, 2014).

The warm-up phase is the period during which posterior samples are discarded and is also called burn-in. In this work, ϵ was

automatically tuned by the dual averaging algorithm while L was manually tuned. Dual averaging automatically adjusts ϵ320

during the warm-up of the HMC algorithm until a specific acceptance rate is achieved. We used an acceptance rate of 0.75,

which is higher than the optimal acceptance rate of RWM based algorithms. This is the mean of various reported values and

the default in TensorFlow probability.
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2.4 Preconditioned Hamiltonian Monte Carlo

To increase the sampling efficiency of HMC, we have to reduce the correlation of the parameters, especially for ODE models.325

This is achieved by introducing a preconditioned matrix, M and hence the name pHMC. This leads to even faster convergence

and higher effective sample sizes for each parameter (Girolami and Calderhead, 2011). In practice, the preconditioned matrix

is the inverse of the covariance matrix of the target posterior. In contrast to HMC, where the momentum is sampled from a

normal distribution, for pHMC, the momentum values are sampled from a multivariate Gaussian distribution with a covariance

matrix as the preconditioned matrix, ρ∼MVN(0,M). The covariance matrix controls the correlation of the parameters. The330

rest of the algorithm for pHMC works as for HMC.

Algorithm 3 Hamiltonian Monte Carlo (HMC), Notation following Radford M. Neal (2011)

Input: S,L,ϵ {S: number of samples, L: number of leapfrog steps, ϵ: leapfrog stepsize.}
Output: θt+1

1: θ0 ∼ π(θ) {Sample initial values from prior}
2: for t = 1 to n do
3: if t = 1 then
4: θt← θ0

5: end if
6: for j = 1 to L do
7: ρt

i ∼N(0,m) {Sample momentum values, where i = 1 . . . ,d and d is the dimension.}
8: (θ∗,ρ∗)← Leapfrog(θt,ρt, ϵ)
9: ρt←−ρ∗

10: α = min
(
1,exp

(
−U(θ∗) +U(θt)−K(ρ∗) +K(ρt)

))

11: u∼ U(0,1)
12: if u≤ α then
13: θt+1← θ∗

14: else
15: θt+1← θt

16: end if
17: end for
18: end for
19: function Leapfrog(θt,ρt, ϵ) {solves the equations to propose new values}
20: ρ∗← ρt− (ϵ/2)∂U

∂θ (θt)
21: θ∗← θt + ϵm−1ρ∗

22: ρ∗← ρ∗+ (ϵ/2)∂U
∂θ (θ∗)

23: return (θ∗,ρ∗)

2.5 Implementation aspects

In this section, we outline some of the more non-standard aspects of implementing the proposed methodology in the proba-

bilistic programming language (PPL) TFP. Probabilistic programming (PP) is a methodology for performing computational

statistical modelling in which all elements of the Bayesian joint posterior π(θ|y,M) are specified in a PPL. Popular PPLs335

include Stan (Carpenter et al., 2017), PyMC3 (Salvatier et al., 2016) and TFP (Dillon et al., 2017). Once specified in a PPL,
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the subsequent Bayesian parameter inference problem can then be handled semi-automatically. We refer the reader to the Code

and Data availability statement for the full implementation and simply remark that the joint posterior for our problem can be

defined in around 70 lines of TFP/JAX code.

We choose to use TFP in this study. From our experience, TFP is the most flexible and extensible PPL in terms of allowing340

advanced model specification and the ability to break out of the high-level interface and perform low-level operations. However,

this flexibility comes at the cost of a steeper learning curve, particularly TFP’s complex batch and event shape semantics (Dillon

et al., 2017). We note that despite TensorFlow in the name, TFP is backend-agnostic and can run on top of various differentiable

programming languages. We choose to run TFP on top of JAX, instead of the default choice of TensorFlow. Anecdotally, our

experience is that TFP on JAX has better runtime performance and is more robust than TFP on TensorFlow, particularly when345

working with ODE-based models. We use JAX with the CPU backend and double precision floating point representation,

although in principle the GPU backend could also be used. TFP already includes an implementation of the HMC and REMC

algorithms, the output of which can be used with TI for computing the marginal likelihood.

JAX can automatically perform arbitrarily composable forward and backward mode automatic differentiation of nearly

arbitrary computer programs. This is used to automatically differentiate the TFP specification of the negative log posterior350

U(θ) with respect to the model parameters θ for use within the HMC algorithm. As this approach is now standard, we refer the

reader to Margossian (2019) for a detailed review.

For the automatic differentiation of the ODE model, we use the continuous adjoint approach. This approach is also called

continuous backpropogation in the Neural ODE literature, see e.g. Kelly et al. (2020) and Höge et al. (2022) for an application

in hydrology. We follow the presentation in (Kidger, 2021) where a new set of adjoint ODEs is from the original continuous355

ODE system. This adjoint system is then discretised (backwards in time) using the same ODE solver as for Eq. (1), an explicit

adaptive Dormund-Prince ODE integrator that is already included in JAX. It is worth remarking that while the continuous

adjoint system is still derived automatically within JAX, the result is distinctly different to backwards differentiation through

the steps of the forward ODE solver at the programmatic level. For more details, we refer the reader to Kidger (2021) for a

discussion of the different methods for automatically differentiating ODE systems and their relative tradeoffs.360

Let V be the solution to Eq. (1). In the simplest case let J = J(V (T )) be some scalar function of the terminal solution value

V (T ) (the approach extends straightforwardly to other functionals). Setting dJ
dV = aV (t) and dJ

dθ = aθ(0) where aV : [0,T ]→
Rn and aθ : [0,T ]→ Rp are the solutions to the following adjoint ODE system

(aV )t =−aV (t)T ∂f

∂V
(t,V,θ), aV (T ) =

dJ

dV (T )
, (18a)

(aθ)t =−aV (t)T ∂f

∂θ
(t,V,θ), aθ(T ) = 0. (18b)365

Note that the adjoint system requires the forward solution to have already been computed and that the adjoint system runs back-

wards in time, i.e. evolving from known states aV (T ) and aθ(T ) at terminal time t = T to the starting time t = 0. Once aθ(0)

has been computed, the required gradient of the functional dJ
dθ = aθ(0) can be computed straightforwardly. This continuous

adjoint ODE approach can be arbitrarily composed with JAX’s programme level automatic differentiation capabilities, mean-
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ing that it is possible to add non-ODE based components (smoothers etc.) to the model and use our framework for computing370

marginal likelihoods.

3 Results and discussion

The purpose of this section is to test the accuracy of REpHMC in calculating the BF by employing it to solve benchmark

problems with complex distributions but well known log marginal likelihoods and thus the BF. We illustrate that the BF can

distinguish between models with an equally good fit by calculating the BF of synthetic discharge data for three different models,375

among which is the data generating model. We repeat the experiment using another data generating model. Finally, the BF is

applied to the real-world discharge data.

3.1 Gaussian shells example

This section aims to show that the the proposed methodology accurately estimates the marginal likelihood of a synthetic

example. In addition, it illustrates the effectiveness of REpHMC in sampling multimodal distributions. The benchmark example380

is the Gaussian shells (Feroz et al., 2009; Allanach and Lester, 2008). This example has two wholly separated Gaussian shells,

making it difficult to sample from. This example has been used to test various techniques for calculating the marginal likelihood

(Thijssen et al., 2016; Henderson and Goggans, 2019). The Gaussian shell likelihood is given as

ℓ(θ) =
1√

2πw2
1

exp
[
− (||θ1− c1|| − r1)2

2w2
1

]
+

1√
2πw2

2

exp
[
− (||θ2− c2|| − r2)2

2w2
2

]
. (19)

The unknown parameters are θ = (θ1, θ2), while the marginalised fixed parameters are r1, r2,w1,w2, c1 and c2. The first shell385

has a radius of r1 and the second shell r2. The first shell is centred at c1 while the second is centred at c2. The variance

(width) of the first shell is w1, and that of shell two is w2. We assign uniform priors to θ1 and θ2 in the range -6 to 6 and the

marginalised parameters are set to w1 = w2 = 0.1, r1 = r2 = 2, c1 = 3.5, c2 =−3.5. We used 20 temperature schedules, since

this is a difficult sampling problem to obtain fast mixing due to the two regions of probability mass. A plot of the samples for the

parameters using various samplers is shown in Fig. 3. The plot shows that REpHMC can sample across the shells compared to390

No-U-Turn sampler (NUTS) and Metropolis-adjusted Langevin algorithm (MALA) which is also a gradient-based algorithm.

The results of the marginal likelihood up to 30 dimensions are shown in Table 2 with agreement with the marginal likelihood

values reported in the literature (Feroz et al., 2009).

3.2 Synthetic examples

In this section we generate synthetic discharge data by using the observed precipitation and observed potential evapotranspira-395

tion as inputs to our models. The following two examples aim to verify the correct implementation and study the behaviour of

the methodology to calculate the marginal likelihood. In the first experiment, data yobs is generated from the simplest model,

M2. In the second experiment, M3 (three buckets model) is the data generating model. For each experiment, the log-marginal
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(a) Posterior samples obtained by NUTS.
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(b) Samples obtained by REpHMC.
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(c) Samples obtained by MALA.
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(d) Target distribution of two dimensional Gaussian shells.

Figure 3. Top left is (a) is NUTS, top right (b) is REpHMC, bottom left (c) is MALA and bottom right (d) is the target distribution. Replica
Exchange preconditioned Hamiltonian Monte Carlo (REpHMC) samples the entire distribution space in contrast to the No-U-Turn Sampler
(NUTS) and Metropolis-adjusted Langevin algorithm (MALA). NUTS is an extension of Hamiltonian Monte Carlo (HMC) sampler that
requires no tuning of the number of leapfrog steps L.
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Table 2. Log marginal likelihood (log p(y)) of the Gaussian shell example. The true values are shown, and the estimates are based on
thermodynamic integration with samples from REpHMC. The results are shown for up to 30 dimensions.

Dimensions ∗Reference log p(y) Estimated log p(y)

2 -1.75 -1.75 ± 0.003
5 -5.67 -5.68 ± 0.006
10 -14.59 -14.60 ± 0.006
20 -36.09 -36.12 ± 0.014
30 -60.13 -60.19 ± 0.025

∗ As reported in Feroz et al. (2009)

likelihood logp(y|Mi) for i = 2,3,4 and the respective Bayes factors are calculated. The deviance information criterion (DIC)

and widely applicable information criterion (WAIC) are also calculated for experiments in Section 3.2.1, Section 3.2.2 and for400

real-world discharge data in Section 3.3.

3.2.1 Experiment one with data generated from the two-buckets model M2

In the first experiment, synthetic discharge data yobs is generated from the simplest model, M2 (two buckets model) to see if

the BF will select M2. We set up the priors as in Table 3. The synthetic discharge is generated to have similar dynamics as

the observed discharge shown in Fig. 4. First, we obtain the daily precipitation and evapotranspiration for the Magela Creek405

catchment in Australia for 1980. The initial time t = 0 corresponds to midnight on January 1, 1980, and the final time T = 366

days to midnight on December 31, 1980 (1980 had a leap year). It is assumed that the total precipitation and evapotranspiration

on a given day is uniformly distributed over the 24 hours from midnight to midnight. This is an acceptable assumption when

modelling the dynamics of a catchment on a multiday time scale.

Our analysis focuses on a three-month period in 1980. This period runs from 01-01-1980 to 31-03-1980, as represented in410

Fig. 5, when the precipitation frequency is highest, and there are no missing data.

We set up the priors according to the following reasoning:

– The top bucket associated with state V1 typically represents the fast dynamics of the catchment system, such as surface

runoff into rivers. The parameters k1 and k12 are the recession coefficients of the top bucket. They represent the flow

rates from the top bucket. Since the parameters have to be positive, we use lognormal priors, the most commonly used415

distribution for dynamic models.

– The lower buckets represent processes with progressively slower dynamics, such as groundwater storage. The parameters

ki and k(i−1),(i) are the recession coefficients for the nth bucket with i = 2,3, . . . ,n.

– The system starts with a nonzero initial condition that mimics the standard procedure of “bootstrapping" the ODE system

for a period TB < 0. For real-world data, the initial conditions are not known and must be identified. The initial condition420

to be identified is V̂i where i = 1,2, . . . ,n.
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Figure 4. Plot of observed discharge, synthetic discharge, and precipitation from 01-01-1980 to 31-12-1980. The observed discharge has
missing values, represented by the broken blue line, mostly in the seventh month. Synthetic discharge data generated via the joint posterior
(before calibration) shows similar overall trends to the observed discharge.

The meaning of the parameters and the priors are shown in Table 3. We follow a Bayesian workflow and do a prior predictive

check. This helps to verify if the priors are reasonable. For the prior predictive check, 50 samples were drawn from the prior

and then evaluated in the likelihood. This gave 50 different data sets for the synthetic discharge. The mean synthetic discharge

is then obtained, and the 95 % pointwise credible intervals are obtained and shown in Fig. 6. The marginal likelihoods for425

M2,M3 and M4 were calculated and the corresponding Bayes factors were calculated. For each model, fifteen different runs of

the marginal likelihood were calculated using REpHMC + TI. This enabled us to get the estimate’s standard deviation, which

is different from the Monte Carlo standard error.

We perform REpHMC with 10 replicas where the likelihood of a replica is raised to an inverse temperature value according

to the schedule in Eq. (14). Each replica was run until IAT < N/50, where N is the number of posterior samples. The IAT430

is the number of samples required to obtain an independent sample and a smaller value is preferable. We found that 4000

posterior samples per replica were enough to rule out non-stationarity. We also did a full run with 20000 posterior samples

per chain, and we saw no significant change in the results. The p-value for Geweke diagnostics was not significant at 5 %

for all parameters and models (p-value > 0.90), indicating there is a high probability that the parameters have converged. The

IAT and Geweke diagnostics were performed using the Python package, pymcmcstat (Miles, 2019). The posterior parameter435

estimates and 95 % credible interval (CI) are in table Table 4. For M2, the true model, the posterior parameters are very close

to the true values and are within the 95 % CI. Moreover, the parameters k1, V̂1, V̂2, Vmax and σ2 are very close to the true
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Figure 5. Plot of observed discharge, synthetic discharge, and precipitation from 01-01-1980 to 31-03-1980. This period has no missing
values and has the highest precipitation frequency and discharge of the year 1980. The synthetic discharge has a similar trend to the observed
discharge. The synthetic discharge here is generated using a different set of parameters compared to that in Fig 4.

Table 3. Description of the parameters and priors. Note that here we have used units more common in the hydrological literature. LN is the
lognormal distribution and IG is the inverse Gamma distribution. The IG was chosen because it is easier to sample than other distributions
for the prior noise parameter, which must be positive.

Parameter Unit Description Prior

k1 d−1 Outflow recession coefficient for bucket 1 LN(1.0,0.25)
k2 d−1 Outflow recession coefficient for bucket 2 LN(0.6,0.25)
k3 d−1 Outflow recession coefficient for bucket 3 LN(0.3,0.25)
k4 d−1 Outflow recession coefficient for bucket 4 LN(0.1,0.25)
k12 d−1 Interbucket recession coefficient 1 to 2 LN(0.8,0.25)
k23 d−1 Interbucket recession coefficient 2 to 3 LN(0.4,0.25)
k34 d−1 Interbucket recession coefficient 3 to 4 LN(0.1,0.25)
V̂1 mm Initial condition on V1 LN(0.0,1.0)
V̂2 mm Initial condition on V2 LN(0.0,1.0)
V̂3 mm Initial condition on V3 LN(0.0,1.0)
V̂4 mm Initial condition on V4 LN(0.0,1.0)

Vmax mm Maximum amount of water the soil can store LN(1.0,0.25)
σ2 mm2d−2 Variance of the Gaussian noise model IG(5.0,0.1)
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Figure 6. Prior predictive check for synthetic data. Fifty prior samples were used to obtain fifty different discharge data sets. The synthetic
mean discharge and the 95 % pointwise confidence intervals are shown.

values. However, the error term σ2 is the same for all three models, as all models fit the data well. Therefore, a model selection

criterion is needed to discriminate between models. Fifteen marginal likelihoods are calculated in parallel for each model.

The mean log marginal likelihood is presented in Table 4. We can calculate the log BF of any model compared to another by440

taking the difference in their log marginal likelihoods. Based on the interpretation of BF in Table 1, there is decisive evidence

in favour of the data generating model M2. The distributions of the log marginal likelihood for each model are shown in box

plots (Fig. 7a). In addition, the DIC and WAIC are shown along with those of the marginal likelihood and they also select

the data generating model. Model M2 has the largest median log marginal likelihood, while model M4 has the lowest. The

prior and posterior distributions for model M2 are in Fig. 8. The prior distribution is in blue, while the posterior is in red. The445

prior range is wide compared to the posterior such that the posterior contours are too small. The posterior marginal densities

are also more contracted compared to the prior densities, as seen on the diagonal of the plots. The prior contours show no

significant correlation between the parameters. The posterior distributions for this model are shown in Fig. 9. The marginal

posterior distributions are on the diagonal. The red dots represent the true parameters. There is also a high correlation between

pairs (k1,k2),(k1,Vmax),(k1,2,k2),(k12,Vmax),(k2,Vmax) and (V̂1, V̂2).450

We also performed graphical posterior predictive checks. Discharge data was generated from the posterior predictive distri-

bution of each model and plotted. There is no noticeable visual difference in discharge (Fig. 10) for all the models since the
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Table 4. True value, posterior mean with 95 % credible intervals of the parameters, and log marginal likelihood of the models for experiment
one. Model M2 has the highest log marginal likelihood and is the true model. The DIC and WAIC are also shown.

parameter True value M2 (95 % CI) M3 (95 % CI) M4 (95 % CI)

k1 1.454 1.454 (1.445, 1.462) 1.438 (1.434, 1.457) 1.089 (1.081, 1.095)
k2 0.248 0.248 (0.248, 0.248) 0.241 (0.241, 0.250) 0.160 (0.129, 0.174)
k3 0.000 - 0.248 (0.247, 0.248) 0.241 (0.196, 0.265)
k4 0.000 - - 0.208 (0.207, 0.208)
k1,2 3.232 3.234 (3.205, 3.263) 3.157 (3.145, 3.256) 1.628 (1.552, 1.670)
k2,3 0.000 - 1.619 (0.993, 1.683) 1.102 (0.921, 1.400)
k3,4 0.000 - - 1.861 (1.105, 2.749)
V̂1 1.081 1.067 (1.039, 1.095) 1.067 (1.038, 1.071) 1.246 (1.181, 1.282)
V̂2 0.813 0.894 (0.787, 0.990) 0.490 (0.483, 0.593) 0.599 (0.474, 0.761)
V̂3 0.000 - 0.520 (0.453, 0.525) 0.731 (0.459, 0.827)
V̂4 0.000 - - 0.576 (0.433, 0.954)

Vmax 2.520 2.520 (2.502, 2.542) 2.573 (2.507, 2.581) 3.106 (2.999, 3.149)
σ2 0.014 0.014 (0.011, 0.016) 0.015 (0.015, 0.016) 0.023 (0.022, 0.027)

logp(y|M) - 217.968 203.383 154.768
DIC - -521.235 -448.980 -449.000

WAIC - -514.354 -501.686 -445.233

-: The parameter is not included in the model.
σ2: error term.
logp(y|M): log marginal likelihood.
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(a) Distribution of the log marginal likelihood for 15 different runs. The boxplot
of the data degenerating model, M2, is the highest while M4 is the lowest. Hence,
M2 has the highest marginal likelihood. M3 has the shortest interquartile range
and, therefore, variability.
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(b) DIC and WAIC for 15 model runs.

Figure 7. For the log marginal likelihood, higher values are preferred, while for the deviance information criterion (DIC) and widely appli-
cable information criterion (WAIC), smaller values are preferred. All techniques select the data-generating model.
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Figure 8. Posterior distributions for model M2. It is difficult to see the correlations due to the high difference in variance between the prior
and posterior distributions. The red represents the posterior distributions and the blue the prior distributions. The posterior distributions have
contracted compared to the priors.

posterior error estimate is too small for all models. We also calculated PPP for the selected model using autocorrelation as a

discrepancy measure. Hence, Eq. (8) becomes

ppp(yobs) =
1
n

n∑

i=1

I
[
(ρrep

i ,θi)≥ (ρobs,θi)
]

(20)455
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Figure 9. Posterior distributions for model M2. There is a high correlation between k1 and Vmax, k1,2 and k2, k1,2 and Vmax. The marginal
posterior distributions are on the diagonal. The black dots represent the true parameters used in the data generating process.

Posterior predictive plots might not tell us if the chosen model fits the data well, especially for dense data sets. Therefore,

formal posterior predictive tests based on the discrepancy measure are needed. Like most statistical tests, the results will depend

on the type of discrepancy measure or the test statistics. Carefully choosing such discrepancy measures is crucial. For example,
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Figure 10. Hydrograph generated from the posterior predictive distribution of each model. It is difficult to choose one model by inspection
as they all fit the data equally. Hence, BF penalises models with more parameters.

we may test whether the model can predict peak discharge values, which would require a different discrepancy measure than if

the aim of our analysis was to predict the mean values. Hence, we suggest using formal posterior predictive tests and graphical460

posterior predictive checks as in this study. The PPP is 0.51, which means that the model has good predictive performance.

This is expected for synthetic data. Values further from 0.50 indicate a model mismatch with the data. Values closer to zero

indicate that the model predictions are lower than the observed data. In contrast, values closer to one point that predictions are

higher than observed data. A plot of the autocorrelations of predicted versus synthetic observed data is shown in Fig. 11. The

proportion of values above the 45o line is the PPP. We also calculated PCPPP for the selected model and got a value of 0.64 >465

0.05, which implies the model is can generate the data. The PCPPP is calibrated based on the prior predictive distribution and

is uniformly distributed. Thus, it has the same interpretation as a classical p-value.
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Figure 11. Autocorrelation of the replicated versus observed synthetic discharge data. The posterior predictive p-value is the proportion of
observations above the 45o line. The autocorrelation of the first point is 1, which isolates it from the other observations.
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3.2.2 Experiment two with data generated from the three-buckets model M3

For the second experiment, the data model is M3. The model M3 has three more parameters than M2 and three fewer parameters

than the model M4. The priors for model M2 and M3 are shown in Table 3. The data in this experiment was also generated470

to follow the same trend as the observed data. All models were fitted to the data, and inference is based on 20,000 posterior

samples with a burn-in of 5,000. As explained above, convergence was checked using IAT and Geweke diagnostics. The

posterior estimates are in Table 5. Although the error term is small for all models, M2 has a higher value than the other two

models, suggesting that it may not have the right complexity. Fifteen marginal likelihoods were also calculated for each model

in parallel. The mean log marginal likelihood is presented in Table 3. The results are also in box plots of Fig. 12a. The box475

plots reveal that M3 has the highest median log marginal likelihood, and M2 the lowest. There is decisive evidence in favour

of model M3, the expected result. The DIC and the WAIC do not show a preference for the true model (M3) over M4. A

difference of at least 5 is usually required for one to prefer any model and a difference of at least 10 for strong preference in

any model. The differences in this experiment are less than 5. The box plots in Fig. 12a show that the DIC and WAIC are very

close for M3 and M4. Like in the previous experiment, a hydrograph from the posterior predictive distribution is shown in480

Fig. 13. From the hydrograph, we cannot determine the best model through visual inspection since all the models fit the data

equally well. Therefore, we require a formal model selection technique like the BF.

Table 5. True value, posterior mean with 95 % credible intervals of parameters and log marginal likelihood of models for experiment two.
M3 the true model has the highest log marginal likelihood. The DIC and WAIC are also included.

parameter true value M2 (95 % CI) M3 (95 % CI) M4 (95 % CI)

k1 1.091 1.109 (1.104, 1.113) 1.090 (1.084, 1.097) 1.089 (1.081, 1.095)
k2 0.188 0.207 (0.206, 0.207) 0.172 (0.160, 0.190) 0.160 (0.129, 0.174)
k3 0.208 - 0.208 (0.207, 0.208) 0.241 (0.196, 0.265)
k4 0.000 - - 0.208 (0.207, 0.208)
k1,2 1.675 1.772 (1.759, 1.786) 1.648(1.613, 1.693) 1.628 (1.552, 1.670)
k2,3 1.050 - 1.520 (1.070, 1.781) 1.102 (0.921, 1.400)
k34 0.000 - - 1.861 (1.105, 2.749)
V̂1 1.317 1.263 (1.224, 1.325) 1.302 (1.242, 1.346) 1.246 (1.181, 1.282)
V̂2 0.936 1.758 (1.622, 1.914) 0.977 (0.733, 1.167) 0.599 (0.474, 0.761)
V̂3 0.910 - 0.856 (0.696, 1.103) 0.731 (0.459, 0.827)
V̂4 0.000 - - 0.576 (0.433, 0.954)

Vmax 3.048 2.929 (2.910, 2.948) 3.081 (3.026, 3.127) 3.106 (2.999, 3.149)
σ2 0.024 0.027 (0.024, 0.030) 0.023 (0.020, 0.027) 0.023 (0.022, 0.027)

logp(y|M) - 161.586 173.845 148.060
DIC - -401.612 -427.913 -426.127

WAIC - -394.247 -420.380 -417.174

-: The parameter is not included in the model.
σ2: error term.
logp(y|M): log marginal likelihood.
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(a) Distribution of the log marginal likelihood for 15 model runs with different
initial parameter values. M3, the data generating model has the highest median,
while M4 has the lowest. M4 has the highest number of parameters, while M2

has the least.
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(b) DIC and WAIC for 15 model runs.

Figure 12. For the log marginal likelihood, higher values are preferred, while for the DIC and WAIC, smaller values are preferred. The log
marginal likelihood selects the data-generating model, while DIC and WAIC do not have any preference for model M3 and M4.
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Figure 13. Hydrograph from the posterior predictive distributions show a good fit for all models. So it is not possible to select one by
inspection. However, the BF could select the data generating model.
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3.3 Real data experiment

This section uses real-world discharge data for Magela Creek in Australia. For each model, 10 chains of the REpHMC were run

as in the previous examples. We obtained 4000 posterior samples per chain, discarding the first 1000 as burn-in. The trace plots485

showed no indication of non-stationarity of the Markov chain, and both Geweke diagnostics and IAT supported convergence.

The Z-statistic, p-value, and IAT are shown in Table 7. All p-values are greater than 0.05, indicating no significant difference

in the means of earlier and later posterior samples and no evidence against convergence. The null hypothesis states that the

mean of the earlier and later posterior samples are equal. Furthermore, the IAT is less than N/50 for all parameters, indicating

well-mixed and stationary chains, where N represents the number of posterior samples. Smaller values of IAT indicate that490

fewer samples are needed to obtain an independent sample in the Markov chain.

Since we do not use an objective Bayesian approach, we used two sets of priors, where the second set is a sensitivity

analysis. The first set of priors has higher variances for some parameters and is less informative than the second set (Table 6). It

is common practice to try different priors and to check if the parameter estimates change with different priors. This is known as

prior-sensitivity analysis. The models converge faster with the second set of priors. The first set of priors (Table 3) is the same495

as in the previous sections. For the second set of priors, we used lognormal priors with lower variances for some parameters

compared to the first set of priors. The mean values used for the priors are also different from those of the first set of priors.

The prior to the error term remains unchanged.

Table 6. Second set of priors. LN is the lognormal distribution and IG is the inverse Gamma distribution

Parameter Prior distribution

k1 LN(0.8, 0.25)

k2, k3, k4 LN(0.2, 0.25)

k12, k23, k34 LN(0.6, 0.25)

V̂1, V̂2, V̂3 , V̂4, Vmax LN(0.0, 0.25)

σ2 IG(5.0, 0.1)

We checked the precision of our chosen model by comparing predicted and observed discharges using a posterior predictive

check based on a second set of priors. The observed and predicted discharge plots are shown in Fig. 16. The plots of the500

predicted and observed autocorrelations with PPP are in Fig. 17. The PPP is 0.395 which is not too close to 0.5 and the PCPPP

is 0.511. Hence, one can conclude that the model fits the data based on autocorrelation. Instead of autocorrelation, another

metric could be used for the posterior predictive check depending on the objective of the model. The Nash Sutcliffe efficiency

(NSE) for the chosen model is 0.397 and the Kling Gupta efficiency (KGE) is 0.524. This means that the model performs

better than using the mean observed discharge. Knoben et al. (2019) found that the KGE is < -0.41 when the model performs505

poorer than the mean observed discharge. The marginal posterior distributions for the model M4 are shown in Fig. 14. We have

also presented the posterior distributions of the parameters in model M3 in Fig. 15. There is no noticeable correlation between
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parameters when real-world discharge data is used. However, Vmax plays a major role in the dynamics of the model. A more

realistic prior for Vmax based on the soil physics of Megala Creek Australia will reduce the model error.

The results of the second set of priors are in Table 8. The selected model did not change when we used diffuse priors. The510

error in the second set of models is lower than in the first set. The model M3 is always preferred while M4 is always the least

supported by the data. The error term, its precision, effective sample size (ESS), and the number of parameters influence the

marginal likelihood. We also applied two fully Bayesian information criteria, DIC and WAIC. Unlike BF, all these information

criteria preferred M4. However, the difference in DIC or WAIC between M3 and M4 is less than 10.

The RWM, NUTS and MALA were also applied to all the three models with real world data. Even the other gradient-based515

algorithms NUTS and MALA could not sample the parameter space. Attempts to improve algorithms by trying various values

for the initial step size in the case of NUTS and the step size for MALA did not make any difference. This further confirms the

fact that combining replica exchange with an algorithm improves mixing and convergence.

Table 7. Convergence diagnostics for real-world data. Z-statistic, p-value and IAT. The null hypothesis is that the mean of earlier posterior
samples is the same as that of later posterior samples in a Markov chain. All p-values are above 0.05, indicating no significant difference in
the mean of earlier and later posterior samples and no evidence against convergence. The IAT is the number of samples required to obtain an
independent sample in the Markov chain and smaller values are preferred.

Model
M2 M3 M4

parameter Z-statistic (p-value) IAT Z-statistic (p-value) IAT Z-statistic (p-value) IAT
k1 0.029 (0.977) 8.489 -0.169 (0.866) 5.561 -0.001 (0.999) 4.811
k2 0.631 (0.528) 3.254 0.520 (0.603) 15.302 0.221 (0.825) 16.99
k3 - - -0.432 (0.666) 14.723 0.137 (0.891) 9.892
k4 - - - -0.371 (0.710) 8.542
k1,2 0.136 (0.892) 21.421 0.423 (0.672) 22.547 0.358 (0.720) 12.855
k2,3 - - 0.399 (0.690) 20.578 -0.253 (0.800) 21.233
k3,4 - - - - 0.291 (0.771) 9.495
V̂1 -0.801 (0.423) 29.976 0.084 (0.933) 7.650 0.037 (0.970) 11.571
V̂2 -0.809 (0.419) 40.986 -0.015 (0.988) 8.317 0.045 (0.964) 20.099,
V̂3 - - -0.226 (0.821) 15.710 0.264 (0.792) 8.548
V̂4 - - - - -0.402 (0.688) 12.131

Vmax -0.146 (0.884) 15.897 -0.184 (0.854) 5.786 0.032 (0.975) 3.953
σ2 < -0.0001(1.000) 9.092 0.018 (0.985) 1.761 0.001 (1. 000) 2.167

3.3.1 Hydrograph of model M3

Based on the hydrograph Fig. 16, most of the model predictions are very close to the observed discharge and within 50 %520

pointwise credible intervals. However, two peaks are not captured in the model. The first peak discharge period was from

04-02-1980 to 05-02 1980. The observed precipitation during this period is 41.4 mmd−1 to 122 mmd−1 on 04-02-1980 and
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05-02-1980 respectively. The observed discharge on these days is 62.09 mmd−1 and 21.82 mmd−1 respectively. It is illogical

that the discharge is reduced with similar weather conditions. The second peak event occurred from 19-03-1980 to 20-03-1980.

The precipitation on 19-03-1980 was 39.5 mmd−1, and on 20-03-1980, it was 28.3 mmd−1 with potential evapotranspiration525

similar to other days. This observed discharge is irrational because the discharge from 27-02-1980 (0 mmd−1 of precipitation)

to 29-02-1980 (22 mmd−1 of precipitation) is 18.3 mmd−1. An alternative explanation for the mismatch in peak discharge

could be that the field capacity of the soil changed during these periods and is not captured in our models.

Table 8. Posterior summary statistics and log marginal likelihood for models with the second set of priors. Surprisingly, Model M3 is still
preferred even though with a slightly higher error term and wider credible intervals. The answer in preference of M3 might lie in the effective
sample size (ESS). M3 has a higher effective sample size for the error term than the other two models. The error term in M3 has an ESS of
2647.0, M2 of 546.0, and M4 of 2257.0. Thus, M3 has more information than M2 with fewer parameters and M4 with more parameters. The
DIC and WAIC select M4, and the difference between M4 and M3 is smaller than 10 which is usually the threshold for strong preference
for one model.

M2 (95 % CI) M3 (95 % CI) M4 (95 % CI)

k1 1.093 (0.802, 1.385) 0.926 (0.689, 1.222) 0.915 (0.601, 1.228)
k2 0.229 (0.117, 0.337) 0.253 (0.148, 0.375) 0.243 (0.133, 0.368)
k3 - 0.215 (0.120, 0.319) 0.242 (0.131, 0.358)
k4 - - 0.218 (0.124, 0.324)
k1,2 1.052 (0.639, 1.494) 1.103 (0.744, 1.480) 1.326 (0.808, 1.889)
k2,3 - 1.841 (0.978, 2.728) 2.818 (1.791, 4.171)
k3,4 - - 1.363 (0.785, 1.948)
V̂1 1.032 (0.575, 1.559) 1.016 (0.527, 1.496) 1.017 (0.551, 1.492)
V̂2 1.146 (0.560, 1.776) 1.053 (0.534, 1.516) 1.038 (0.619, 1.609)
V̂3 - 1.112 (0.663, 1.714) 1.021 (0.524, 1.521)
V̂4 - - 1.084 (0.607, 1.611)

Vmax 2.862 (1.820, 4.070) 2.702 (1.758, 3.882) 1.449 (0.948 ,2.043)
σ2 6.060 (5.389, 6.763) 5.916 (5.279, 6.585) 5.818 (5.143, 6.444)

logp(y|M) -3416.325 -541.647 -3766.742
DIC 981.150 974.878 969.586

WAIC 990.836 982.127 975.032

-: The parameter is not included in the model.
σ2: error term.
logp(y|M): log marginal likelihood.

3.4 Convergence

3.4.1 Model convergence time530

All models converge by 3000 samples, even for real-world data. The models were run on high-performance computers. The

model runtime of Gaussian shell examples ranges from 6 seconds for 2 dimensions to 24 seconds for 30 dimensions. Syn-

thetic examples converge in 2 to 4 hours, depending on the parameter’s dimension. On the contrary, with real data, the models

converge in 6 to 9 hours, depending on the parameter space. Models can converge faster with proper tuning of the number of
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leapfrog steps. With large datasets, REpHMC can be combined with subsampling without replacement to accelerate conver-535

gence. The REpHMC converges in minutes if we are interested only in parameter estimation. The convergence is even faster

for statistical models.

3.4.2 Convergence of marginal likelihood

The convergence of the thermodynamic integration estimate of the marginal likelihood depends on the number of inverse

temperatures. The marginal likelihood was stabilised by eight temperature values when calibrating with the real data, but the540

present results are based on 10 values as recommended by Calderhead and Girolami (2009).
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Figure 14. Posterior distributions of the 13 parameters for model M4 using the second set of priors. There is no obvious correlation between
the parameters. The marginal posterior distributions are on the diagonal.
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4 Conclusions

We have introduced a methodology for simultaneous Bayesian parameter estimation and model selection. The methodology

includes formal model diagnostics, which check for goodness-of-fit and prior data conflict. The method uses a new gradient-

based algorithm REpHMC to draw posterior samples, TI for the calculation of marginal likelihood and PCPPP for model545

diagnostics. The REpHMC and TI were validated on the Gaussian shells example, which is a difficult sampling benchmark

problem since it has isolated modes. The REpHMC is effective in sampling the entire parameter space for models with isolated

modes. This sets it apart from other gradient-based algorithms such as HMC, NUTS and MALA. Also, we have shown that

BF selects the data generating model in two experiments, while DIC and WAIC correctly select the true model in one of two

experiments. Also, none of the other mentioned gradient-based algorithms worked when real-world data was used with our550

developed model. In addition, formal posterior predictive checks have been introduced to determine if a model can accurately

predict observed or desired values, such as the minimum or peak discharge. The method was employed to discharge data from

Magela Creek in Australia. We also calculated NSE and KGE for the chosen model with real-world data. The framework

has been implemented in open-source software TFP which supports most algorithms. The REpHMC can be applied to any

hydrological model. Our developed model performed better than using the mean as a predictor for real discharge data. However,555

the model does not capture peak discharge values. Therefore, some improvements in that regard need to be made.

By combining a gradient-based algorithm HMC and REMC, we get a very powerful algorithm that can sample complex

posteriors thanks to the exchange of information between parallel running chains. We have also illustrated that the BF is a

reliable Bayesian tool for model selection in contrast to two common Bayesian-based information criteria for model selection.

Future work could combine REMC with NUTS algorithm to automatically tune all parameters in the HMC. Also, introducing560

subsampling in the case of big data or models with millions of parameters will reduce the inference time. Future work could

focus on improving the model goodness-of-fit, as the KGE indicates. Furthermore, one could develop a discrepancy measure

for the posterior predictive check to test whether the selected model can capture peak discharge values. On the practical side,

this study could be extended to the multi-catchment setting. Also, different types of conceptual hydrological models could be

compared using this approach.565
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Glossary

AIC Akaike information criteria. 1

BF Bayes factor. 1, 2, 3, 4, 8, 17, 19, 22, 26, 28, 29, 31, 37

BIC Bayesian information criterion. 1

CI credible interval. 20570

DIC deviance information criterion. 19, 22, 28, 29, 31, 32, 37

DREAM differential evolution adaptive Metropolis. 4

ESS effective sample size. 31

HBV Hydrologiska Byråns Vattenbalansavdelning. 2, 3, 6

HMC Hamiltonian Monte Carlo. 2, 4, 12, 13, 14, 15, 16, 37575

IAT integrated autocorrelation time. 13, 20, 28, 30, 31

KGE Kling Gupta efficiency. 30, 37

MALA Metropolis-adjusted Langevin algorithm. 17, 18, 31, 37

MCMC Markov Chain Monte Carlo. 11, 12

NSE Nash Sutcliffe efficiency. 30, 37580

NUTS No-U-Turn sampler. 17, 18, 31, 37

ODE Ordinary differential equation. 3, 15, 16

ODEs Ordinary differential equations. 2, 5, 6, 14

PCPPP prior calibrated posterior predictive p-value. 3, 9, 26, 30, 37

pHMC preconditioned Hamiltonian Monte Carlo. 2, 10, 12, 15585

PMC population Monte Carlo. 12
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PP probabilistic programming. 15

PPC posterior predictive check. 8

PPL probabilistic programming language. 15, 16

PPP posterior predictive p-value. 8, 9, 24, 26, 30590

REHMC Replica exchange Hamiltonian Monte Carlo. 9, 12, 13

REMC Replica exchange Monte Carlo. 2, 10, 12, 16, 37

REpHMC Replica exchange preconditioned Hamiltonian Monte Carlo. 2, 3, 10, 12, 13, 17, 18, 19, 20, 30, 33, 37

RWM random walk Metropolis. 4, 12, 14, 31

TFP TensorFlow probability. 2, 15, 16, 37595

TI thermodynamic integration. 2, 3, 9, 10, 12, 16, 20, 37

WAIC widely applicable information criterion. 19, 22, 28, 29, 31, 32, 37
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