Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-84
https://doi.org/10.5194/egusphere-2023-84
01 Feb 2023
 | 01 Feb 2023

Mammalian bioturbation amplifies rates of both, hillslope sediment erosion and accumulation, in coastal Chile

Paulina Grigusova, Annegret Larsen, Roland Brandl, Camilo del Río, Nina Farwig, Diana Kraus, Leandro Paulino, Patricio Pliscoff, and Jörg Bendix

Abstract. Soil bioturbation activity affects soil texture, bulk density, soil water content and redistribution of nutrients. All of these parameters influences sediment redistribution, which shapes the earth surface. Hence it is important to include bioturbation into erosion models. However, up to present, the inclusion of bioturbation into erosion models was limited. This is because to realistically include bioturbation into the modelling, the interplay between bioturbation, sediment redistribution and environmental parameters is not understood.

Here, we included bioturbation into a soil erosion model and interpreted the impacts of bioturbation on sediment redistribution. To do this, we measured the needed soil properties and location of burrows created by bioturbating animals in four research sites located along the Chilean climate gradient. Then, we parametrized a semi-empirical erosion model by applying machine learning algorithms to upscale soil properties and burrow distribution. We ran the model for a time period of 6 years under two conditions: With and without bioturbation. We validated the model using several sediment fences in the field. We estimated the modelled sediment redistribution and surface runoff in all climate zones. Lastly, we identified environmental parameters determining the positive or negative impact of bioturbation on sediment redistribution.

We found that the model with integrated bioturbation performed much better (R2 = 0.71, RMSE = 0.63) than the model without integrated bioturbation (R2 = 0.17, RMSE = 1.18), meaning that model runs which considered bioturbation predicted the sediment redistribution more realistically. Furthermore, bioturbation increased sediment redistribution in all but the humid climate zone, especially in the Mediterranean zone. The quantity of sediment redistributed due to bioturbation was reliant on an interplay between elevation, slope, surface roughness and sink connectivity. Overall, bioturbation enhances sediment erosion in areas where more erosion is expected, and enhances sediment accumulation in areas which are more prone to accumulate sediment. In other words, considering bioturbation when studying earth surface evolution means an amplification of existing tendencies in sediment redistribution, and leads to a faster hillslope relief equalisation.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

14 Aug 2023
Mammalian bioturbation amplifies rates of both hillslope sediment erosion and accumulation along the Chilean climate gradient
Paulina Grigusova, Annegret Larsen, Roland Brandl, Camilo del Río, Nina Farwig, Diana Kraus, Leandro Paulino, Patricio Pliscoff, and Jörg Bendix
Biogeosciences, 20, 3367–3394, https://doi.org/10.5194/bg-20-3367-2023,https://doi.org/10.5194/bg-20-3367-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
In our study, we included bioturbation into a soil erosion model and ran the model for several...
Share