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Abstract 42 

Animal burrowing activity affects soil texture, bulk density, soil water content and redistribution of 43 

nutrients. All of these parameters in turn influence sediment redistribution, which shapes the earth 44 

surface. Hence it is important to include bioturbation into hillslope sediment transport models. However, 45 

the inclusion of burrowing animals into hillslope-wide models has thus far been limited, and largely 46 

omitted vertebrate bioturbators, which can be major agents of bioturbation, especially in drier areas. 47 

Here, we included vertebrate bioturbator burrows into a semi-empirical Morgan-Morgan-Finney soil 48 

erosion model to allow a general approach to for assessing the impacts of bioturbation on sediment 49 

redistribution within four sites along the Chilean climate gradient. For this, we predicted the distribution 50 

of burrows by applying machine learning techniques in combination with remotely sensed data into the 51 

hillslope catchment. Then, we adjusted the spatial model parameters at predicted burrow locations 52 

based on field and laboratory measurements. We validated the model using field sediment fences. We 53 

estimated the impact of bioturbator burrows on surface processes. Lastly, we analyse how the impact 54 

of bioturbation on sediment redistribution depends on the burrow structure, climate, topography, and 55 

adjacent vegetation.  56 

Including bioturbation greatly increased model performance and demonstrates the overall importance 57 

of vertebrate bioturbators in enhancing both sediment erosion and accumulation along hillslopes, though 58 

this impact is clearly staggered according to climatic conditions. Bioturbation had contrasting effects on 59 

sediment redistribution in arid than in semi-arid and Mediterranean, as well as in humid climate zone. 60 

Burrowing vertebrates increased sediment accumulation by 137.8 % ±16.4 % in the arid zone (3.53 kg 61 

ha-1 year-1 vs. 48.79 kg ha-1 year-1), sediment erosion by 6.5 % ±0.7 % in the semi-arid zone (129.16 kg 62 

ha-1 year-1 vs. 122.05 kg ha-1 year-1) and sediment erosion by 15.6 % ±0.3 % in the Mediterranean zone 63 

(4602.69 kg ha-1 year-1 vs. 3980.96 kg ha-1 year-1). Bioturbating animals seem to play only a negligible 64 

role in the humid zone. Within all climate zones, bioturbation did not uniformly increase erosion or 65 

accumulation within the whole hillslope catchment. This depended on adjusting environmental 66 

parameters. Bioturbation increased erosion with increasing slope, sink connectivity and topography 67 

ruggedness, decreasing vegetation cover and soil wetness. Bioturbation increased sediment 68 

accumulation with increasing surface roughness, soil wetness and vegetation cover. 69 
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1. Introduction 83 

Bioturbation was shown to shape the land surface (Hazelhoff et al., 1981; Istanbulluoglu, 2005; Taylor 84 

et al., 2019; Tucker and Hancock, 2010; Whitesides and Butler, 2016; Wilkinson et al., 2009; Corenblit 85 

et al., 2021) by influencing surface microtopography (Reichman and Seabloom, 2002; Kinlaw and 86 

Grasmueck, 2012; Debruyn and Conacher, 1994), and soil properties such as soil porosity, permeability 87 

and infiltration (Reichman and Seabloom, 2002; Yair, 1995; Hancock and Lowry, 2021; Ridd, 1996; Hall 88 

et al., 1999; Coombes, 2016; Larsen et al., 2021). Cumulatively, these modifications lead to changes in 89 

sediment redistribution (Gabet et al., 2003; Nkem et al., 2000; Wilkinson et al., 2009) and hence have 90 

the potential to affect surface topography and nutrient redistribution on large spatial and temporal scales. 91 

To quantify these effects, the shared role of climate, landscape characteristics and burrowing dynamics 92 

on sediment redistribution needs to be understood. 93 

On a local scale, currently used field methods to monitor sediment redistribution under real-life condition 94 

are mainly erosion pins, splash boards, or rainfall simulators (Imeson and Kwaad, 1976; Wei et al., 2007; 95 

Le Hir et al., 2007; Li et al., 2019a; Li et al., 2019b; Li et al., 2018; Voiculescu et al., 2019; Chen et al., 96 

2021; Übernickel et al., 2021a). The monitoring of box experiments yields a high spatio-temporal 97 

resolution, and can also be linked with mathematical equations, such as random walks (Boudreau, 1986; 98 

Wheatcroft et al., 1990), stochastic differential equations (Boudreau, 1989; Milstead et al., 2007), finite 99 

difference mass balancing (Soetaert et al., 1996; François et al., 1997) or Markov chain theory (Jumars 100 

et al., 1981; Foster, 1985; Trauth, 1998; Shull, 2001) to describe sediment redistribution.  101 

Previously used methods have, however, several limitations when studying bioturbation. Field 102 

measurements likely lead to an underestimation of sediment fluxes, as they are one-time or seasonal 103 

measurements, and thus do not capture the continuous excavation of the sediment by the animal 104 

(Grigusova et al., 2022) at a high temporal resolution. Box experiments and from them derived 105 

mathematical equations describe bioturbation as an isolated process and ignore adjacent environmental 106 

parameters (such as climate or vegetation). However, the field measurements showed both, positive 107 

(Hazelhoff et al., 1981; Black and Montgomery, 1991; Chen et al., 2021) and negative impact of 108 

bioturbation on erosion (Imeson and Kwaad, 1976; Hakonson, 1999). Also, previous field based studies 109 

observed an increased bioturbation activity with higher (Milstead et al., 2007; Meserve, 1981; Tews et 110 

al., 2004; Wu et al., 2021; Ferro and Barquez, 2009), but also with lower vegetation cover (Simonetti, 111 

1989; Zhang et al., 2020; Zhang et al., 2019; Qin et al., 2021). Furthermore, soil mixing rates are not 112 

homogenous throughout the year but depend on the animal phenological cycles (Eccard and Herde, 113 

2013; Jimenez et al., 1992; Katzman et al., 2018; Malizia, 1998; Morgan and Duzant, 2008; Monteverde 114 

and Piudo, 2011; Gray et al., 2020; Yu et al., 2017). 115 

Another approach offer raster-based soil erosion and landscape evolution models which integrate co-116 

dependencies between bioturbation relevant environmental parameters (Black and Montgomery, 1991; 117 

Meysman et al., 2003; Yoo et al., 2005; Schiffers et al., 2011). Most common soil erosion models are 118 

empirical (Wischmeier and Smith, 1978; Williams, 1975; Renard et al., 1991), process-based (Morgan 119 

et al., 1998; ROO et al., 1996; Nearing et al., 1989; Beasley et al., 1980), or semi-empirical models, the 120 

latter of which are a combination of both (Morgan et al., 1984; Beven and Kirkby, 1979). 121 

Process-based models are based on a mechanistic understanding of the underlying physical, chemical, 122 

and biological processes that govern the behaviour of the system being studied. They must be 123 
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parametrised for each site; however, these models explicitly represent the governing equations and 124 

simulate the system's behaviour by numerically solving these equations. Process-based models are 125 

generally considered to be more realistic and accurate than empirical models because they capture the 126 

fundamental processes that drive the system's behaviour. However, process-based models can be 127 

computationally expensive, require more data and knowledge of system properties, and may require 128 

complex numerical algorithms (Morgan et al., 1998; ROO et al., 1996; Nearing et al., 1989; Beasley et 129 

al., 1980).  130 

Within empirical models, on the other hand, the physical equations are completely replaced by 131 

empirically determined equations which only hold for the specific area they are derived for. These 132 

models are generally simpler, less computationally expensive, and require more data and knowledge of 133 

system properties than process-based models. However, empirical models also tend to be less accurate 134 

than process-based models, particularly when applying beyond the range of data used to fit the model. 135 

In contrast to physical-based models, empirical models may not be applicable to new or different 136 

conditions, as they are based on observed relationships and do not capture the underlying processes 137 

that govern system behaviour (Wischmeier and Smith, 1978; Williams, 1975; Renard et al., 1991). 138 

Semi-empirical models combine the advantages of the both model types (Morgan et al., 1984; Morgan, 139 

2001; Morgan and Duzant, 2008; Devia et al., 2015; Lilhare et al., 2015).  140 

Most landscape models do not yet implement impacts of bioturbators on water and sediment fluxes 141 

(Brosens et al., 2020; Anderson et al., 2019; Braun et al., 2016; Cohen et al., 2015; Cohen et al., 2010; 142 

Carretier et al., 2014; Welivitiya et al., 2019). There are numerous models describing benthic soil mixing 143 

(Francois et al. 1997, Francois et al. 2002, Kadko and Heath 1984, Croix et al. 2002), biodiffusion caused 144 

by all invertebrate bioturbators (Maysman et al. 2005, Rakotomalala et al. 2015, Morris et al. 2006) or 145 

vertical soil mixing and lateral sediment redistribution caused by single invertebrate species (Orvain et 146 

al. 2006, Román – Sánchez et al. 2019, Orvain 2005, Orvain  2003, Sanford 2008). However, there are 147 

also models which described the impact of bioturbation on sediment redistribution by the vertebrate 148 

animal species: such as the impact of pocket gophers on non-linear hillslope diffusion (Gabet 2000) or 149 

on the creation of Mima mounds (Gabet et al. 2014). Several models include soil vertical mixing caused 150 

by bioturbation and its effect on landscape evolution on a millennial scale. This rather large spatio-151 

temporal scale however means an omission of the natural variability in burrow sizes and densities, 152 

climate zones and seasonality. In these models, soil erosion is proportionally increasing with increasing 153 

bioturbation, vertical soil mixing rates are uniform, and bioturbation is positively linked with vegetation 154 

cover (Temme and Vanwalleghem, 2016; Vanwalleghem et al., 2013; Yoo and Mudd, 2008; Pelletier et 155 

al., 2013). None of the previous studies included vertebrate bioturbator burrows of various sizes and 156 

spatial distribution by adjusting the soil properties and topography into a raster-based area-wide soil 157 

erosion model. This approach would enable to understand impact of all vertebrate bioturbators by 158 

considering the spatial distribution and variable impacts of bioturbator burrows on sediment 159 

redistribution. For this, bioturbation has to be included into erosion models at a spatial resolution which 160 

allows to imitate the surface processes occurring within and near the burrow, and at a temporal 161 

resolution which captures the animal daily burrowing behaviour. 162 

A suitable model which can be extended to include continuous bioturbating activity is the semi-empirical 163 

Morgan – Morgan – Finney soil erosion model (Morgan et al., 1984; Morgan, 2001). This model was 164 
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successfully tested in several climate zones and land use types, such as Mediterranean sites (Jong et 165 

al., 1999),  rainfed agrosystems, fields and pastures (López-Vicente et al., 2008), East-African Highlands 166 

(Vigiak et al., 2005) or humid forests (Vieira et al., 2014). One of the recently developed improvements 167 

of this model is the Daily Morgan – Morgan – Finney model (DMMF), which introduces subsurface flow, 168 

vegetation structures (type, size, height, root depth), and enables modelling at a high spatial (0.5 m) and 169 

temporal (daily) resolution (Choi et al., 2017). These improvements yield the potential to integrate the 170 

bioturbation into the model, as the burrowing activity is not constant and depends on vegetation structure 171 

(Tews et al., 2004; Ferro and Barquez, 2009).   172 

In this study, we include vertebrate bioturbator burrows into a semi-empirical soil erosion model (DMMF) 173 

at a daily temporal and 0.5 m spatial resolution. For this, we predict the distribution of burrows by 174 

applying machine learning techniques in combination with using remotely sensed data as predictors.  175 

Then, we adjust soil properties, topography and vegetation properties at predicted burrow locations 176 

based on field and laboratory measurements. We validate the model using field sediment fences. We 177 

run the model for a time period of 6 years, once with and without burrow adjustments. We estimate the 178 

impact of bioturbator burrows on sediment redistribution (including accumulation, erosion, and 179 

excavation), and surface runoff within four sites along the Chilean climate gradient. Lastly, we analyse 180 

how the impact of bioturbation on sediment redistribution depends on the burrow structure, climate, 181 

topography, and adjacent vegetation. Our study shows the importance of including bioturbation into 182 

erosion modelling, and describes the interplay between bioturbation, environmental parameters such 183 

as… and sediment redistribution.  184 

 185 

2. Study area 186 

Our study was performed along a climate and vegetation gradient in Chile (Übernickel et al., 2021b), 187 

comprising four study sites in the Chilean Coastal Cordillera: Pan de Azúcar (PdA) National Park (NP), 188 

Santa Gracia (SG), La Campana (LC) NP, and Nahuelbuta (NA) NP (Fig. 1). PdA NP is located in the 189 

arid zone in a fog-laden environment in the southern part of the Atacama Desert, with almost no rainfall. 190 

The vegetation cover is less than 5 % and dominated by small desert shrubs, several types of cacti and 191 

biocrusts  (Lehnert et al., 2018). SG is a natural reserve located in the semi-arid zone near La Serena, 192 

which is dominated by goat grazing. The vegetation consists of shrubs and cacti, covering up to 40 % 193 

of the study area. LC NP is part of the Mediterranean-type climate zone in the Valparaiso Region and is 194 

also affected by cattle. The study site is dominated by an evergreen sclerophyllous forest with endemic 195 

palms. The canopy reaches a height of up to 9 m, and the understory consists of deciduous shrubs and 196 

herbs. NA is located in the humid-temperate zone and characterized by a dense evergreen Araucaria 197 

forest comprising broadleaved trees with heights of up to 14 m. The ground is covered by bamboo, 198 

shrubs, and herbs (Bernhard et al., 2018; Oeser et al., 2018). The most common bioturbating vertebrate 199 

animal species recorded within these sites are carnivores of the family Canidae (Lycalopex culpaeus, 200 

Lycalopex griseus) as well as rodents of the families Abrocomidae (Abrocoma bennetti), Chnichillidae 201 

(Lagidium viscacia), Cricetidae (Abrothrix andinus, Phyllotis xanthopygus, Phyllotis limatus, Phyllotis 202 

darwini) and Octogontidae (Cerqueira, 1985; Jimenez et al., 1992; Übernickel et al., 2021a). 203 

 204 
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 205 

Figure 1. Study area and study sites. Black lines outline the hillslope catchments. Along the blue lines, 206 

the in situ data (mound locations, soil samples, vegetation mapping) were collected. (a) Position of the 207 

study sites along the climate gradient. PdA = Pan de Azúcar, SG = Santa Gracia, LC = La Campana, 208 

NA = Nahuelbuta; Positions of plots in (b) PdA; (c) SG; (d) LC; and (e) NA. The background image is an 209 

RGB-composite calculated from WorldView-2 satellite imagery. Images were obtained with single 210 

license from GAF AG. Scale bar is the same for (b), (c), (d) and (e). 211 

 212 

3. Methodology 213 

We combined semi-empirical soil erosion modelling with in-situ measurements, remote sensing data 214 

and machine learning methods (Fig. 2). Along 8 hillslope catchments within 4 climate zones we mapped 215 

locations of burrows, estimated the vegetation cover and extracted soil samples. We analyzed the soil 216 

samples in the laboratory. Then we used remote sensing datasets and machine learning to upscale 217 

burrow distribution, vegetation cover and soil properties into the hillslope catchments. The hillslope 218 

catchment-wide predictions, the topographical information retrieved from LiDAR data (Kügler et al., 219 

2022) and the climate information retrieved from climate stations were the input parameters for our soil 220 

erosion model. We ran the model with and without bioturbation. We included the bioturbation into the 221 

model by adjusting the input parameters at the predicted burrow locations, by including the continuous 222 

burrowing activity and soil mixing (Grigusova et al., 2021), and the seasonality (Kraus et al., 2022).and 223 

the animal phenological cycle as found in (Jimenez et al., 1992). The models were validated using self-224 

constructed sediment traps. We studied the modeled surface runoff and sediment redistribution. Lastly, 225 

we analyzed if and how the impact of bioturbation on sediment redistribution depends on environmental 226 

parameters (topography, landscape connectivity and vegetation).  227 

 228 

 229 
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230 

Figure 2. Flow chart of our study. Green color indicates in-situ input data, blue indicates remote sensing 231 

input data. Red indicates Model parametrization. Yellow indicates model output and analysis. Grey 232 

indicates model validation.  233 

 234 

3.1 In-situ data 235 

The study set-up consisted of eight hillslope catchments: one north-facing and one south-facing hillslope 236 

catchment per study site. We defined a line with a width of one meter from the top to the base of each 237 

hillslope catchment (see blue line, Fig. 1). We subdivided the track into tiles of 1 m2. We saved the GPS 238 

information of each tile. 239 

Within each tile of the line, we mapped burrow presence, land cover and extracted soil samples. A 240 

burrow consisted of an entrance and a mound (Fig. 3a). Each 1 m2 tile with a burrow was described as 241 

a presence data point, tiles without a burrow as absence data points. We noted the size of the burrow, 242 

vegetation cover and land cover types (bare soil, herbs, shrubs, trees) within the tile. We extracted 162 243 

soil samples from soil without a mound at a depth of 10 cm. Additionally, we took a photo of the surface 244 

every second tile along the track.  245 

To validate the model output, we set up sediment traps (Fig. 3b), with six traps per site, two of which 246 

were located at the hillslope catchment base and four were located on two random positions within the 247 

hillslope catchment. The sediment traps consisted of geotextile vertically attached to wooden poles for 248 

stability. The traps had a length of 2 m – 5 m, a width of ~1.5 m and a height of ~1 m. 1.5 m of geotextile 249 

was laid down at the surface uphill the wooden poles to enable the collection of sediment. The sediment 250 

accumulated within the traps was collected after 1 year and its mass [cm3] and dry weight [kg] were 251 

estimated.  252 

Climate information was retrieved from climate stations located adjacent to the hillslope catchments 253 

which provide climate data in 5 minute intervals (Übernickel et al. 2021). To force the model on an hourly 254 

basis, hourly air temperature, precipitation total and intensity, wind speed, wind direction and humidity 255 

was calculated for the study period from 1st April 2016 to 1st December 2021. Evapotranspiration was 256 

estimated by the Penman-Monteith equation (Penman, 1948). 257 

 258 
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 259 

Figure 3. In-situ constructions. (a) Example of a burrow consisting of burrow entrance and mound. (b) 260 

Fence construction used for the collection of eroded sediment to validate the model. Both photos by 261 

Paulina Grigusova.  262 

 263 

3.2 Estimation of soil properties  264 

We estimated several soil properties from the soil samples and photos collected in-situ ( (Grigusova et 265 

al., 2022). We estimated the rock coverage on the surface and debris from the photos taken every 266 

second tile. For this, the photos were firstly classified into 5 classes. The classification was unsupervised 267 

using k-means (Fig. A1). Then we calculated the ratio of pixels classified as skeleton and / or debris to 268 

the overall amount of all pixels to determine the amount of both parameters in percent.   269 

In the lab, we estimated soil water content, bulk density, soil particle density, soil texture (sand, silt, clay, 270 

coarse / middle / fine sand, coarse / middle / fine silt), soil skeleton, organic matter and organic carbon.  271 

Gravimetric soil water content [%] (GSWC) described the mass of water within the soil sample and was 272 

estimated as in Eq (1): 273 

𝐺𝑆𝑊𝐶 =
(𝑆𝑚−𝑆𝑑)

𝑆𝑑
∗ 100  ,         (1) 274 

where Sm [g] is the mass of moist soil measured directly after the extraction and Sd [g] is the mass of 275 

soil dried at 105 °C for at least 24 hours. Bulk density [g cm-3] (BD) was calculated as following: 276 

𝐵𝐷 =
𝑆𝑑

𝑆𝑣
     ,          (2) 277 

where Sv [cm-3] is the volume of the sample. Soil particle density [g cm-3] (SPD) was calculated as in Eq 278 

(3): 279 

𝑆𝑃𝐷 =
𝑑𝑚

𝑆𝑣
  ,  ,          (3) 280 

where dm [g] is the dry mass of soil particles excluding pores. 281 

Particle size distribution [%] – clay (< 0.002 mm), coarse, middle and fine silt (0.002 mm to 0.02 mm), 282 

and coarse, middle and fine sand (0.02 mm to 2 mm) was estimated using a PARIO method (Durner et 283 

al., 2017). Soil skeleton was estimated as the ratio of particles with a diameter above 2 mm. Ratio of 284 

organic matter (OM) was estimated as in Eq. (4) 285 

𝑂𝑀 = 1 −
𝑆𝑐

𝑆𝑑
  ,         (4) 286 

where Sc is the weight [g] of the sample dried at 500 °C for 16 hours.  287 
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We used pedotransfer functions to determine porosity, saturated soil moisture, hydraulic conductivity, 288 

water content at field capacity, and permanent wilting point. Pore ratio (θs) was estimated from bulk and 289 

particle density as in Eq. (5): 290 

𝜃𝑠 =
𝐵𝐷

𝑆𝑃𝐷
           (5) 291 

Saturated water content [g g-1] (Ws) was estimated as in Eq. (6): 292 

𝑊𝑠 =  θs
𝑝𝑤

𝐵𝐷
  ,            (6) 293 

where pw [g cm-3] is the density of water which is set to be 1 g cm-3  (Pollacco, 2008).  294 

Hydraulic conductivity Ks [m s-1] was estimated as in Eq. (8): 295 

𝐾𝑠 = 1.15741 ∗ 0.0000001 ∗ exp (𝑥)  ,      (7) 296 

where x for sandy soil is: 297 

𝑥 = 9.5 − 1.471 ∗ (𝐵𝐷 ∗ 𝐵𝐷) − 0.688 ∗ 𝑂𝑀 + 0.0369 ∗ (𝑂𝑀 ∗ 𝑂𝑀) − 0.332 ∗ 𝐶𝑆  ,  (8) 298 

and x for loamy and clayey soils is: 299 

𝑥 = −43.1 + 64.8 ∗ 𝐵𝐷 − 22.21 ∗ (𝐵𝐷 ∗ 𝐵𝐷) + 7.02 ∗ 𝑂𝑀 − 0.1562 ∗ (𝑂𝑀 ∗ 𝑂𝑀) + 0.985 ∗ ln(𝑂𝑀) −300 

0.01332 ∗ 𝐶 ∗ 𝑂𝑀 − 4.71 ∗ 𝐵𝐷 ∗ 𝐶𝑆  ,      (9) 301 

where C is percentage of clay and CS is percentage of clay and silt (Wösten, 1997). To estimate water 302 

content at field capacity [%] (FC) and permanent wilting point (PWP), we applied functions by (Tomasella 303 

et al., 2000) as these were developed for South American soils: 304 

𝐹𝐶 = 4.046 + 0.426 ∗ 𝑆𝑖 + 0.404 ∗ 𝐶 ,       (10) 305 

𝑃𝑊𝑃 = 0.91 + 0.15 ∗ 𝑆𝑖 + 0.396 ∗ 𝐶 ,       (11) 306 

where Si is the percentage of silt.  307 

 308 

3.3 Processing of remote sensing data 309 

The digital elevation models (DEM) were calculated from the LiDAR data (Kügler et al., 2022; Horn, 310 

1981) at a resolution of 0.5 m. Slope was calculated according to Horn (1981). Manning’s surface 311 

roughness coefficient was estimated following (Li and Zhang, 2001). Topographic position index (TPI) 312 

and Topographic ruggedness index (TRI) were calculated according to (Wilson et al., 2007). TPI subtract 313 

the mean elevation of pixels in a specified range from the elevation of the central pixel. Positive values 314 

represent hills while negative values represent valleys. The TRI adds together the elevation differences 315 

between a grid cell and its eight neighbours. It measures the relative level of topography irregularity, the 316 

higher the value, the more irregular the topography. Plan and profile curvature were determined after 317 

(Zevenbergen and Thorne, 1987). Connectivity indices, Sinks, Wetness index, Flow direction, Flow path, 318 

Catchment slope and Catchment were calculated in SAGA GIS. 319 

Single license stereo WorldView-2 images with a resolution of 0.5 m were retrieved from GAF Munich 320 

GmbH. The topographic correction of WorldView-2 images was done using the LiDAR data, solar 321 

elevation angle, solar zenith angle and azimuth angle according to Goslee (2019). The digital surface 322 

models (DSMs) were calculated from the stereo images. Additionally, we extracted single bands and 323 

calculated the normalized difference vegetation index (NDVI). 324 

 325 

3.4 The erosion model  326 

3.4.1 Daily Morgan-Morgan-Finney model 327 
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The DMMF model is a combined soil erosion model used to estimate surface runoff and sediment flux 328 

on a field scale on a daily basis. Spatially, the DMMF model represents an area as several 329 

interconnected elements (e.g. pixels) of uniform topography, soil characteristics, land cover type, and 330 

vegetation structure. Through coupling, the model operates with flow direction algorithms: each element 331 

receives water and sediments from upslope elements and delivers the generated surface runoff and 332 

eroded soils to downslope elements. On a temporal scale, the model estimates surface runoff and 333 

sediment flux of each element on a daily basis. The model input parameters include climate, topography, 334 

soil properties and land cover information (Choi et al., 2017). Data pre-processing, modelling and 335 

analysis (see Fig. 2) was done in R statistic environment. The raster data were cropped to the size of 336 

the hillslope catchments (Fig. 1). Input parameters are listed in Table 1 and plotted in Fig. A2.  337 

During the model simulation, water and sediment are transferred from pixels located at higher elevations 338 

to pixels situated at lower elevations. This occurs in two stages: The first stage is the hydrological phase 339 

where the model calculates surface runoff which happens when the amount of surface water input 340 

exceeds the water-holding capacity. The amount of surface runoff is computed by taking the infiltration 341 

capacity of the surface, the volume of surface water input, and the fraction of the impervious area of a 342 

pixel into account. Infiltration capacity represents the maximum amount of surface water that can 343 

penetrate the subsurface layer. It is determined by the percentage of the impervious area and the 344 

available pore space. 345 

The second stage is the sediment phase, where the model estimates the sediment budget for each 346 

particle size class, based on the surface conditions. The model calculates the detachment and 347 

deposition of sediments in a step-by-step process. The sources of sediments are detached particles 348 

from the pixel itself due to rainfall and surface runoff, and delivered soil particles from higher elevation 349 

pixels. The detachment of soil particles by rainfall occurs when raindrops hit the ground with enough 350 

energy to detach soil particles from the surface. Rainfall has different impacts on areas with and without 351 

canopy cover, as canopy cover changes the kinetic energy of raindrops.  352 

The amount of soil particles detached by raindrops is calculated based on the soil particle detachability, 353 

the percentage of each particle size class, the bare soil surface area, and the kinetic energy of effective 354 

rainfall. The amount of detached soil particles by surface runoff is calculated based on the soil particle 355 

detachability, the amount of runoff, the slope angle of the pixel, and the proportion of the bare surface 356 

area. The third source of sediment is from higher elevation pixels and is averaged by the surface area 357 

of the pixel. 358 

Once sediments are delivered to the surface runoff, a portion of the suspended sediments settles to the 359 

bottom due to gravitational force. To calculate this settling, the model requires the flow velocity of the 360 

runoff and the settling velocity of each particle size class, which are influenced by the flow depth, slope 361 

angle of the pixel, and Manning's roughness coefficient (Choi et ail. 2019). 362 

 363 

3.4.2 Estimation of spatial parameters 364 

For spatial parameterization of the DMMF model, we predicted land cover, soil properties and burrow 365 

distribution onto the hillslope catchments using machine learning techniques.  366 

We used the approach Meyer et al. 2018. The most important predictors were selected by forward 367 

feature selection. The quality of the random forest models was assessed by Leave-Location-Out cross 368 
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validation. We trained the model stepwise, using in-situ data collected from seven of the hillslope 369 

catchments and validated the model using in-situ data from the remaining hillslope catchment (Meyer et 370 

al., 2018). The prediction was done at 0.5 m spatial resolution. We used the WorldView-2 layers obtained 371 

with a single license from GAF, NDVI, DEM, DSM, slope and roughness as predictors. The PAN-372 

sharpening of the WV-2 layers was done by GAF. 373 

For the area-wide prediction of burrow locations across the hillslope catchments, we used the burrow 374 

presence and absence data (section 3.1) as the response data within the RF models. The accuracy was 375 

0.82 for PdA, 0.77 for SG, 0.75 for LC and 0.85 for NA. The prediction of soil properties was done using 376 

soil properties estimated along the track line (see section 3.1) as response data within the RF models. 377 

All of the models reached a high accuracy (see Table A1).  378 

To obtain land cover classification, we used as the response within the RF models the land cover 379 

measured in-situ. The classes were soil without rocks, rocks, biocrusts, grass/herbs, shrubs and trees. 380 

Predictor values for each class were extracted from at least 100 polygons per site and class. The 381 

accuracy of the RF models was 0.71 for PdA, 0.81 for SG, 0.83 for LC and 0.75 for NA.  382 

The vegetation height measured in plots was averaged for each class per site. All pixels classified as 383 

respective class were assigned the same vegetation height information. Vegetation density was 384 

estimated per hillslope catchment as the amount of vegetation individuals per m2. Vegetation diversity 385 

was calculated by Shannon index  (Shannon, 1948). The interception area was the area not covered by 386 

vegetation (herbs, shrubs or trees).  387 

 388 

 389 

3.4.3 Inclusion of bioturbation 390 

In the grid cells with predicted burrow locations, we adapted the values of input parameters to include 391 

bioturbation. The adaptations varied with climate zone and burrow size. The size, geometric structure 392 

and excavation rates of burrowing animalswere previously estimated at a high spatial and temporal 393 

resolution (Grigusova et al., 2022). Based on this results, we firstly adjusted the microtopography. We 394 

modified the layer depth to represent burrow entrance and elevation to represent animal mound. Mounds 395 

were always located downslope of burrow entrances in the direction of flow.  396 

Secondly, we adjusted the soil properties. Soil properties texture and organic carbon were estimated 397 

from soil extracted from mounds in Kraus et al. (2022). In this study we additionally estimated bulk 398 

density, initial water content, soil skeleton, porosity, saturated water content, available water capacity 399 

and water content at field capacity from the same dataset (see section 3.2). We calculated the median 400 

value of each property for the samples extracted from mounds and for the samples extracted from soil 401 

without mounds. Then, we estimated the change in percent between these two values. This was then 402 

used to adjust the soil property for each pixel including a mound.  403 

Thirdly, modelled mound pixels had to be cleared from ground vegetation cover. For this, we removed 404 

ground vegetation cover from pixels with burrow locations and decreased ground vegetation cover, 405 

height, diameter and amount of ground vegetation individuals from adjacent pixels as measured in situ. 406 

Then, the amount of rocks and debris was set as estimated from soil samples (section 3.2) 407 

Animal activity has been found to be highly variable throughout the year (Grigusova et al., 2022; Kraus 408 

et al., 2022). The density of burrows does not stay stable throughout the year but increases or decreases 409 



 

12 
 

depending on the season and climate zone. We therefore artificially removed or added burrows into the 410 

hillslope catchments at the particular seasons. For this, we adapted the density of soil, the topography 411 

and vegetation cover accordingly. We created a 3D-model of the burrow structure, adjusted subsurface 412 

soil properties and properties of soil excavated to the surface; the removed vegetation within the pixel 413 

with a predicted burrow and decreased adjacent vegetation cover.  Animal burrowing activity varies 414 

throughout the course of the year, and there is a three-month period during which they are mostly active, 415 

which we considered using/doing xxx 416 

Lastly, we also included the vertical movement of sediment particles from deeper soil layers to the 417 

surface in dependence on climate. Animals were found to reconstruct their burrows after each rainfall 418 

event (Grigusova et al., 2022). Corresponding with these findings, we increased the entrance depth and 419 

mound height by 30% after each rainfall event, which represents the averaged value found in the 420 

previous study (Grigusova et al., 2022).  421 

For the validation, we ran the model for the time periods between the installation of sediment fences 422 

and the collections of sediment. We compared the mass and weight of modelled and collected sediment 423 

and estimated R2 and RMSE. To test the importance of the inclusion of individual bioturbation 424 

parameters into the model, we ran the model under 4 conditions: (i) No burrows; (ii) Solely entrances; 425 

(iii) Solely mounds; (iv) Entire burrows (entrances and mounds). 426 

 427 

Table 1. Model input layers and respective changes to layer values at the predicted burrow locations. 428 

Ground vegetation was removed from the respective pixels, while tree canopy was not changed. The 429 

values were estimated as described in 3.5.2. Using the adjusted values, we calculated 430 

evapotranspiration using the Penman-Monteith equation, surface roughness from the elevation layer, 431 

and hydraulic conductivity, water content at field capacity and saturated water content using 432 

pedotransfer functions.  433 

   Pixel value at burrow locations 

Derivation Parameter Units PdA SG LC NA 

DEM Elevation m asl +0.24 +0.23 +0.36 +0.19 

Surface roughness - - - - - 

Depth m -0.23 -0.41 -0.22 -0.04 

Soil samples Water content % +120 -6  -68  -62  

Bulk density g cm-3 - -6  -17  - 

Sand % -29 -12  +57  -43  

Silt % +54  +22  +23  ns 

Clay % +145  +44  +19  -73  

Organic carbon % +168  +72  +105  +25  

Pedotransfer 

functions 

Hydraulic conductivity m s-1 - - - - 

Water content at field 

capacity 

% - - - - 

Saturated water content % - - - - 

Ground vegetation cover % 0 0 0 0 
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Land cover 

classification 

Soil and debris % 100 100 100 100 

Skeleton % 0 0 0 0 

Average plant height m 0 0 0 0 

Average plant diameter m 0 0 0 0 

Number of plants n m-2 0 0 0 0 

 434 

3.5 DMMF model sensitivity test  435 

We conducted a sensitivity test to identify those input parameters which significantly influence the model 436 

output. For this, we first estimated the mean value of each input parameter. Then, we created an artificial 437 

hillslope catchment of 100 m * 100 m. To start the test, each pixel received the mean value of each 438 

parameter. We ran the model for one rainfall event. Then, we stepwise changed the single input 439 

parameter values from their minimum to their maximum values while we did not adjust any other 440 

parameters. To quantify the significance of the input variations, we conducted a t-test (Table A2). For 441 

this, we compared the amount of redistributed sediment of each model run to the first model run.  442 

 443 

3.6 Impact of burrows on surface processes 444 

We estimated burrow density, as a ratio of pixels with predicted burrows to all pixels. Additionally, we 445 

calculated the ratio of pixels which are part of a burrow aggregation to all pixels which include a burrow. 446 

Burrow aggregation describes at least 4 neighboring pixels with predicted burrows. We calculated the 447 

amount of excavated sediment as a sum of burrow density and the burrow excavation rate as estimated 448 

in Grigusova et al. (2022). 449 

To estimate the impact of burrows on sediment redistribution and surface runoff, we ran the DMMF 450 

model for the time period from 1st April 2016 until 31th December 2021 for all hillslope catchments. We 451 

ran the model (i) with no burrows and (ii) with entire burrows. We estimated (i) sediment redistribution 452 

(accumulation - erosion) and (ii) surface runoff. We analyzed the redistribution and runoff on the plot (1 453 

m2) and hillslope catchment (1 ha) scale. 454 

Lastly, to analyze under which biotic and abiotic environmental parameters (topography, vegetation 455 

cover) the bioturbation enhances sediment erosion or accumulation, we set-up a generalized additive 456 

model (GAM) (Wood, 2006). For this, we first subtracted the output of the model with no burrows from 457 

the output of the model with entire burrows. Within each pixel, two processes are happening 458 

simultaneously: a certain amount of sediment erodes, and a certain amount of sediment accumulates. To 459 

estimate the sediment redistribution for each pixel of each model run, we estimate which of these processes 460 

dominated. Positive pixel values thus mean, bioturbation enhanced sediment accumulation, negative 461 

pixel values mean, bioturbation enhanced sediment erosion. We tested the following environmental 462 

parameters: mound density, vegetation cover, elevation, slope, aspect, TRI, TPI, curvature and 463 

connectivity and wetness index. The model performance was evaluated by the percentage of explained 464 

data variance. We analyzed the impact of environmental parameters within 1-meter and within 10-meter 465 

distance from the burrows.  466 

 467 

4 Results 468 

4.1 Model sensitivity test and accuracy 469 
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Parameters which significantly influenced the model output were precipitation, slope, vegetation cover, 470 

surface roughness, silt content and water content (Table A2). There was correlation between some of 471 

the spatial model parameters (Fig. A10), especially between the initial and saturated water content; 472 

between water content and vegetation cover; and between clay content and field capacity. However, a 473 

high correlation between spatial parameters does not mean that these parameters impact the sediment 474 

redistribution in a similar way.  475 

We quantified the model performance by comparing the modelled and measured sediment 476 

redistribution. The performance varied depending on the burrow inclusion (Figure 4 and 5). The 477 

performance of the model without any bioturbation was lower (R2 = 0.73, RMSE = 1.50, MSE = 2.27), 478 

as when burrow entrances (R2 = 0.81, RMSE = 1.34, MSE = 1.16) or mounds (R2 = 0.83, RMSE = 1.10, 479 

MSE = 1.22) were included. The model had the highest performance when entire burrows were included 480 

(R2 = 0.85, RMSE = 1.01, MSE = 1.01). However, as the scatterplots showed, the model performance 481 

seemed to be determined strongly by one measurement (Fig. 5). For this reason, we calculated the 482 

metrics without this measurement (Fig. A2). The model without any burrows (R2 = 0.17, RMSE = 1.18, 483 

MSE = 1.39) in this case performed much lower than models with burrows. The model performance 484 

continuously strongly increased when burrow entrances (R2 = 0.48, RMSE = 0.61, MSE = 0.78), or 485 

mounds (R2 = 0.51, RMSE = 0.75, MSE = 0.57) were included. The model with whole burrows reached 486 

the highest performance (R2 = 0.71, RMSE = 0.63, MSE = 0.39). When we compare the modelled 487 

redistribution to the sediment redistribution estimated using  Time-of-Flight cameras in Grigusova et al. 488 

(2022), the differences appear to be minor (R2 = 0.62, RMSE = 0.12, MSE = 0.35).  489 

 490 

 491 

Figure 4. R2 and RMSE of the Morgan-Morgan-Finney soil erosion model. For dataset A, we compared 492 

the amount of sediment collected in all sediment fences with the modelled eroded sediment (see Fig. 493 

A3). For dataset B, we removed one measurement, as the R2 seemed to be defined by this 494 

measurement (see Fig. A4). For Scenario A, we did not include any burrows into the model. For scenario 495 

B, we included burrow entrances and for scenario C, we included mounds. For scenario D, we included 496 

whole burrows into the model. The adjustments made to include entrances, mounds and burrows into 497 

the model are described in section 3.5.2.  498 

 499 
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 500 

 501 

Figure 5. Measured and modelled redistributed sediment without an outlier. (a) Model without 502 

bioturbation. (b) Model with entrances. (c) Model with mounds. (d) model with burrows. 503 

 504 

4.2 Model output: Surface runoff and sediment redistribution 505 

Hillslope catchment – wide sediment redistribution (1 ha resolution) was the highest in humid NA, 506 

followed by Mediterranean LC, semi-arid SG and arid PdA (Fig. 6a, 6b, 8). In NA, LC and SG, the erosion 507 

processes dominated, while in PdA, more sediment accumulated than eroded. The impact of burrows 508 

on sediment redistribution was significant in arid PdA, semi-arid SG and Mediterranean LC. Burrows 509 

increased sediment redistribution by 137.8 % ±16.4 % in arid PdA (3.53 kg ha-1 year-1 vs. 48.79 kg ha-1 510 

year-1), by 6.5 % ±0.7 % in semi-arid SG (129.16 kg ha-1 year-1 vs. 122.05 kg ha-1 year-1) and by 15.6 % 511 

±0.3 % in Mediterranean LC (4602.69 kg ha-1 year-1 vs. 3980.96 kg ha-1 year-1). Overall, bioturbation 512 

increased sediment accumulation in the arid zone (as the magnitude of the sediment excavation by the 513 

animal exceeded sediment erosion which occurs during rainfall events), but increased sediment erosion 514 

in semi-arid and Mediterranean climate (where animal burrowing activity and rainfall is present). The 515 

largest impact was found under Mediterranean conditions. We found no significant effect on 516 

redistribution in the humid zone (Figure 7). However, impact of bioturbation varied throughout the 517 

hillslope catchment (Figure 7, 8 and 9) – it depended on a specific context if bioturbation supports 518 

sediment erosion or accumulation. 519 

Surface runoff was the highest in humid NA, followed by Mediterranean LC, arid PdA and semi-arid SG 520 

(Figure 6c). The impact of burrows on surface runoff was significant in all climate zones. Burrows 521 

increased surface runoff in PdA by 34 %, in SG by 40% and in LC by 4.1 %; and decreased surface 522 

runoff by 5.9 % in NA. Hillslope catchment-wide maps are shown in Fig. A6-A8.  523 

 524 
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 525 

 526 

Figure 6. Summary of model outputs across the climate gradient. PdA is arid Pan de Azúcar, SG is 527 

semi-arid Santa Gracia, LC is Mediterranean La Campana, NA is humid Nahuelbuta. Graphs (a) and 528 

(b) show the modelled sediment redistribution. Positive values indicate sediment accumulation; negative 529 

values indicate sediment erosion, in(a) sediment redistribution is shown on a pixel scale in kg m-2 year-530 

1, while in(b) sediment redistribution is shown on the hillslope catchment scale in kg ha-1 year-1. The 531 

impact of bioturbation on sediment redistribution was estimated by a t-test and was significant in three 532 

sites: PdA***, SG** and LC***. Bioturbation increased sediment redistribution by 137.8 % in PdA, by 6.5 533 

% in SG and by 15.6 % in LC. For hillslope catchment-wide maps see Fig. A6-A8. Graph (c) represents 534 

the modelled surface runoff on the hillslope catchment scale in m3 ha-1 year-1. The impact of bioturbation 535 

on surface runoff was estimated by a t-test and was significant at all sites. Bioturbation increased surface 536 

runoff in PdA by 34 %, in SG by 40 % and in LC by 4.1 %; and decreased surface runoff by 5.9 % in 537 

NA. For hillslope catchment-wide maps see Fig. A6.  538 

 539 
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 540 

Figure 7. Comparison of the model outputs with and without bioturbation of each pixel (0.5 m) in all 541 

study sites. The x-axis shows the output of the model with bioturbation, the y-axis the model output 542 

without bioturbation. PdA is arid Pan de Azúcar, SG is semi-arid Santa Gracia, LC is Mediterranean La 543 

Campana, NA is humid Nahuelbuta. Points represent single pixel values; lines show linear regressions 544 

for the sites. The lower R, the higher the impact of burrows on sediment redistribution at the resolution 545 

of 0.5 m. The black dashed line symbolizes a perfect correlation – along this line the bioturbation would 546 

have no effect on sediment redistribution. Bioturbation lead to more accumulation if the regression line 547 

representing results from a particular climate zone is steeper than the perfect correlation line. 548 

Bioturbation lead to more erosion if the regression line representing results from a particular climate 549 

zone is flatter than the perfect correlation line.  Bioturbation increases sediment accumulation in arid 550 

PdA (through the high burrowing rate, more sediment is accumulated on the surface than eroded during 551 

rainfall events). Bioturbation increases sediment erosion in semi-arid SG and Mediterranean LC. 552 

Absolutely, the highest impact on sediment redistribution is in the Mediterranean climate zone. The 553 

lowest impact is in the humid zone.  554 

 555 
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 556 

Figure 8. Hillslope catchment-wide predicted sediment redistribution. Colours indicate sediment 557 

redistribution. Grey shadows indicate the hill shading calculated from LiDAR data. (a) Pan de Azúcar, 558 

(b) Santa Gracia, (c) La Campana, (d) Nahuelbuta. 559 

 560 

4.3 Role of continuous burrowing activity on sediment redistribution 561 

We included the excavation of the sediment by the animal itself into the model. The density of burrows 562 

was the highest in arid PdA, then Mediterranean LC, semi-arid SG and the lowest in humid NA. Burrows 563 

were mostly distributed within groups of several burrows in Mediterranean LC and semi-arid SG, while 564 

they were more evenly distributed in arid PdA and humid NA. The burrows were of largest size in 565 

Mediterranean LC, followed by arid PdA, semi-arid SG and humid NA. Similarly, the highest volume of 566 

excavated sediment at the beginning of the modelling period was in Mediterranean LC and arid PdA. 567 

The volume of excavated sediment during the burrow reconstruction after rainfall events was the highest 568 

in humid NA, followed by Mediterranean LC, semi-arid SG and arid PdA. The percentage of sediment 569 

excavated by the animal to sediment redistributed during rainfall events was 128 % in PdA, 24 % in SG, 570 

33.5 % in LC and 5.6 % in NA. 571 

 572 

Table 2. Impact of animal bioturbation activity on overall sediment redistribution on various scales. The 573 

bioturbation activity was estimated using Time-of-Flight based cameras in Grigusova et al. 2022. This 574 

study showed that animals reconstruct their burrows after each rainfall events. During this process, 10 575 

% of the overall sediment burrow volume is relocated from within the burrow to the surface. We 576 
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integrated this process into our model and calculated the percentage of newly excavated sediment by 577 

the animals to the amount of sediment which was redistributed during rainfalls for the period of one year.  578 

Parameter Units PdA SG LC NA 

 

Burrow density ha-1 91.35 71.50 84.36 13.30 

Burrow aggregations % 24 62 73 5 

Burrow size m3 0.015 0.012 0.047 0.008 

Sediment at the surface at the start of modelling  m3 ha-1 1.35 0.88 4.11 0.10 

Sediment excavated after each rainfall m3 ha-1 0.07 0.04 0.22 0.01 

Number of rainfall events year-1 3 7 16 137 

Sediment excavated by the animal after the rain  m3 ha-1 year-1 0.21 0.28 3.52 0.69 

Sediment redistributed due to rainfall m3 ha-1 year-1 0.44 1.17 10.51 12.21 

Excavated sediment to redistributed sediment % 47 24 33.5 5.6 

 579 

4.4 Role of adjacent environment 580 

We subtracted the output of the model with included burrows from the output of the model without 581 

burrows (Figure A8). Although, the burrows on average enhanced sediment erosion on the hillslope 582 

catchment – scale, the high–resolution maps unveiled that burrows enhance sediment erosion within 583 

some pixels while they rather increased sediment accumulation within others.  584 

The amount of data variance explained by the GAM models (see section 3.6.) differed between models 585 

(Table A3). Models estimating the impact of environmental parameters on sediment redistribution within 586 

1-meter distance from the burrows, explained 3.84 % of variance in PdA, 37.1 % in SG, 46 % in LC and 587 

42. % in NA. Models estimating the impact of environmental parameters on sediment redistribution 588 

within 10-meter distance from the burrows, explained 1.99 % of variance in PdA, 12.8 % in SG, 52 % in 589 

LC and 72.9 % in NA. The parameters selected for SG were slope, roughness, curvature, TRI and NDVI. 590 

Parameters selected for LC were elevation, slope, NDVI, sinks and roughness. Parameters selected for 591 

NA were elevation, slope, aspect, TRI, sinks and roughness (Figure 10).   592 

Bioturbation strongly increased sediment redistribution (erosion and accumulation) at high values of 593 

elevation, slope, surface roughness TRI, sinks and topographic wetness index, at the middle values of 594 

elevation and aspect, and at low values of profile curvature and NDVI. From these parameters, 595 

bioturbation increased sediment erosion at high and middle values of elevation, at high values of slope, 596 

sinks and TRI, and at low values of profile curvature. Bioturbation increased sediment accumulation at 597 

high values of surface roughness and topographic wetness index and at low values of NDVI (Fig. A3 – 598 

A8).  599 

Bioturbation somewhat enhanced sediment erosion at medium values of surface roughness, NDVI and 600 

sinks, and at low values of topographic wetness index. Bioturbation somewhat increased sediment 601 

accumulation at low values of slope and TRI, at low and medium values of elevation and at high values 602 

of profile curvature.  603 

 604 
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 605 

Figure 9. Hillslope catchment-wide impact of bioturbation on sediment redistribution. Colour indicates 606 

the impact. Positive values indicate bioturbation enhanced sediment accumulation, negative values 607 

indicate bioturbation enhanced sediment erosion. Grey shadows indicate the hill shading calculated 608 

from LiDAR data. (a) Pan de Azúcar, (b) Santa Gracia, (c) La Campana, (d) Nahuelbuta. 609 

 610 
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 611 

Figure 10. This figure is a conceptual summary of the detailed results from figures A3 – A8. Bioturbation 612 

increases erosion or accumulation depending on the values of environmental parameters. The 613 

dependencies are the same for all climate zones. The figure is the conceptual summary for all climate 614 

zones, therefore, there are no values stated on the x- and y-axes. The x-axis shows if bioturbation 615 

increases erosion or accumulation. The y-axis are environmental parameters. Line thicknesses indicate 616 

the magnitude of impact. Please note that bioturbation has no impact on sediment redistribution in 617 

regions with low sink connectivity and topographic ruggedness. The relationship between the values of 618 

environmental parameters and the impact of bioturbation is not linear: Bioturbation can have the same 619 

impact on sediment redistribution at high or low values of an environmental parameter, but a contrasting 620 

impact at middle values of this parameter (as in this case for elevation, slope or surface roughness).  621 

 622 

5.Discussion 623 

5.1 The inclusion of bioturbation increases model performance 624 

Overall, our DMMF model including bioturbation performed much better than the model without 625 

bioturbation. The DMMF model without bioturbation performed worse (RMSE of 1.18 kg ha-1 year-1 and 626 

R2 of 0.17) than the model with bioturbation (RMSE was 0.63 kg ha-1 year-1 and R2 was 0.71).  627 

We hence argue that the higher accuracy of our model can be explained with the inclusion of 628 

bioturbation. This is confirmed by the fact that our model run without bioturbation performed similarly to 629 
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previously run models without bioturbation: In earlier studies, the accuracy of the MMF model reached 630 

an RMSE in between 4.9 and 8.2 kg ha-1 year-1, with an estimated R2 of in between 0.21 and 0.57 (Jong 631 

et al., 1999; Vigiak et al., 2005; López-Vicente et al., 2008; Vieira et al., 2014; Choi et al., 2017). 632 

However, we acknowledge that previous studies were all conducted in more temperate climate zones. 633 

To be able to compare our results with previous studies, we calculated the model performance 634 

considering solely the Mediterranean and humid climate zone, which are more similar in climate to the 635 

more temperate locations of previous studies. The performance of the model was still high (R2 = 0.72, 636 

RMSE = 0.45 kg ha-1 year-1), confirming the conclusion that bioturbation increased model performance.  637 

We compared the modelled impact of bioturbation on sediment redistribution with the impact of 638 

bioturbation estimated in previous studies. In the humid zone, our model predicted an erosion up to 3.5 639 

kg m-2 year-1. This estimation is in line with erosion rates established by in-situ measurements in other 640 

studies conducted in a more humid climate zone (between 1.5 kg m-2 year-1 and 3.7 kg m-2 year-1) (Black 641 

and Montgomery, 1991; Yoo and Mudd, 2008; Yoo et al., 2005; Rutin, 1996). This also confirms the 642 

reliability of our approach. Previous authors estimated the impacts using rainfall simulators, erosion pins 643 

or splash boards. The measurements were conducted for a time period between 3 months and 3 years 644 

and the sites were revisited for each estimation. We do not compare our results with studies which 645 

previously applied models to estimate impacts of bioturbation, as, to our knowledge, none of the 646 

previous studies integrated vertebrate burrow structures into a soil erosion model and ran the model on 647 

a daily basis. 648 

 649 

5.2 The relevance of bioturbation for sediment redistribution depends on the environmental  650 

context 651 

On the hillslope catchment scale (1 ha), our study finds that bioturbation increases erosion in semi-arid 652 

and Mediterranean zone, accumulation in the arid zone and has no impact within the humid zone (Figure 653 

6b). In contrast, bioturbation increases both, erosion, and accumulation, on the plot scale (1 m2) (Figure 654 

6a). On this scale, in the arid and semi-arid zone, sediment erosion and accumulation were predicted to 655 

be about equal (erosion and accumulation both up to 0.1 kg m-2 year-1 in the arid zone, and erosion and 656 

accumulation both up to 0.2 kg m-2 year-1 in the semi-arid zone (see Figure 6a)). Bioturbation marginally 657 

increased erosion and decreased accumulation in the semi-arid zone but reduced by twofold 658 

accumulation in the arid zone. In contrast, in the Mediterranean and humid zone, erosion was predicted 659 

to be almost double when compared to accumulation (predicted erosion up to 2.5 kg m -2 year-1,, and 660 

accumulation up to 1.4 kg m-2 year-1). Inclusion of bioturbation increased erosion up to 3 kg m-2 year-1, 661 

and accumulation up to 1.6 kg m-2 year-1 in the Mediterranean zone, while it had no significant effect in 662 

the humid zone. We argue that sediment redistribution due to bioturbation is heavily influenced by meso-663 

topographic structures which determine the flow path of surface runoff and influence the infiltration 664 

processes. Due to this, the erosion and accumulation on the plots scale is heavier impacted by 665 

bioturbation with increasing surface runoff.  666 

Our study found an increase of erosion in the semi-arid and Mediterranean climate zone to be between 667 

6.5 % and 15.6 % due to bioturbation. Previous studies found that already a small increase of erosion 668 

has significant impacts on the whole hillslope catchment. A 10% increase in erosion rates over a 10-669 
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year period can lead to significant changes in the landscape, including e.g. a 20-30% reduction in soil 670 

thickness and an increase in sediment transport in nearby rivers (Kuhn 2016).  671 

According to our analysis, bioturbation increases erosion or accumulation of sediment mostly based on 672 

an interplay between topographic structures elevation, slope and TRI (Figure 10). Over all research 673 

sites, this study found that bioturbation leads to an increase in surface erosion in areas where erosional 674 

processes dominate (upper, and/or steeper slopes), and tends to increase sediment accumulation in 675 

areas where sediment is naturally deposited, e.g. lower slopes or shallow depressions (Figure 10). This 676 

finding is based on the fact that erosion in general is positively affected by slope, and negatively by 677 

surface roughness and vegetation (Rodríguez-Caballero et al., 2012; Wang et al., 2013; Kirols et al., 678 

2015). Additionally, the redistribution of sediment is largely affected by topographic meso-/macroforms, 679 

such as rills or cliffs. These can be quantified by topographic ruggedness index (TRI) which describes 680 

the amount of elevation drop between adjusting cells of DEM (Wilson et al., 2007). At high values of this 681 

index, we would therefore expect high erosion rate, due to concentrated runoff within the connected rills 682 

or undisturbed flow of runoff from the cliffs downslope.  683 

Our data show that one burrow provides up to 0.43 m3 of additional loose sediment at the surface (Table 684 

2), while the surface roughness increases up to 200 % (Grigusova et al., 2022). When including burrows 685 

into the model, at the slope values from 0 to 5 degrees, the presence of burrows had no impact on 686 

sediment redistribution. From 5 degrees onwards it increased sediment erosion proportionally to the 687 

slope of the hillside (an increased erosion from 0.4 g ha-1 year-1 in the semi-arid zone until up to 150 kg 688 

ha-1 year-1 in the Mediterranean zone, Fig. A3 – A6). Similarly, at locations with elevation drops ranging 689 

from 0 m until 0.2 m (lower TRI values), the presence of burrows had no impact. However, at locations 690 

with elevation drops of 0.2 until 0.5 m (higher TRI values), bioturbation increases sediment erosion by 691 

1.5 kg ha-1 year-1 (Fig. A3 – A8). Lastly, bioturbation proportionally increased accumulation when the 692 

surface roughness values were above 0.5 (an increased accumulation from 0.2 g ha-1 year-1 in semi-arid 693 

zone until 5000 kg ha-1 year-1 in the Mediterranean zone, Fig. A3 – A6).  694 

We conclude that in locations with slope values over 5 degrees, or at locations with sudden drops in 695 

elevation (high TRI), and connected rills, more sediment is eroding than accumulating. Here, additional 696 

surface sediments generated by bioturbators provides more source material for erosion and thus 697 

bioturbation increases sediment erosion at these locations (Figure 10 and 11). In contrast, at locations 698 

with a slope below 5 degrees, where processes are dominantly controlled by surface roughness, 699 

sediment accumulation caused by bioturbation increases proportionally when the surface roughness 700 

has a value above 0.5. This is likely because burrows through their above-ground structures heavily 701 

increase surface roughness (Grigusova et al., 2022), and hence the presence of bioturbating animals 702 

leads to an increase in sediment accumulation.  703 

Additionally, we hypothesize that it is not only the additional availability of sediment on the surface and 704 

the topography of the vicinity which controls the contribution of bioturbation to sediment surface flux, but 705 

also the spatial distribution of animal burrows. We interpret that in locations with high burrow 706 

aggregation, surface flow might be redirected and centralized around the aggregates and thus increase 707 

sediment erosion in the areas adjacent burrow aggregates (Figure 11). This mechanism could explain 708 

why bioturbation promotes sediment erosion especially in the Mediterranean zone where burrows are 709 
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more aggregated. The relative role of burrow aggregation should be studied in detail and included in 710 

future studies. 711 

 712 

 713 

Figure 11. Context dependency of sediment redistribution. (a) Pan de Azúcar, (b) Santa Gracia, (c) La 714 

Campana, and (d) Nahuelbuta. Brown arrows indicate the direction and magnitude of overall sediment 715 

redistribution within each climate zone. Blue arrows indicate the direction of flow (runoff vs. infiltration). 716 

Half-moons indicate the distribution and size of the burrows. 717 

 718 

 719 

6. Conclusion 720 

Our study found that the inclusion of vertebrate bioturbators’ burrows into a soil erosion model 721 

significantly increases its reliability. Vertebrate bioturbators increase sediment accumulation in the arid 722 

climate zone, sediment erosion in the semi-arid and Mediterranean zone and have no impact on 723 

sediment redistribution in the humid. Our study furthermore shows that the impact of bioturbation heavily 724 

depends on the adjacent environmental parameters. The burrows increase sediment erosion at high 725 

and low values of elevation, at high values of slope, sink connectivity and topography ruggedness, and 726 

at low values of vegetation cover. The burrows increase accumulation at high values of surface 727 

roughness and soil wetness. This means that overall, on geological time scales, as burrowing animals 728 

increase both, erosion in steeper zones, and accumulation in areas with gentler slopes and higher 729 

roughness, hillslope relief should become faster equalised and overall, more flat. This tendency is most 730 

pronounced in the Mediterranean zone with high burrow density and excavation rates, as well as 731 

comparably high precipitation rates.  732 
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 754 

Supplementary material 755 

Table A1: R2 and RMSE of random forest models trained for the prediction of soil properties needed for 756 

model parametrization. RMSE is root mean square error.  757 

Variable R2 RMSE 

Soil water content 0.80 0.05 

Bulk density 0.60 0.22 

Porosity 0.63 0.09 

Silt 0.64 0.04 

Middle silt 0.64 0.04 

Sand 0.68 0.09 

Middle sand 0.64 0.05 

Organic components 0.77 0.05 

Organic carbon  0.70 0.03 

 758 

Table A2. Model sensitivity analysis. For the analysis, the minimum, maximum and mean value of each 759 

parameter was calculated. The model was run for a hillslope catchment of 1km2 with homogenous mean 760 

parameters. Then, the minimum and maximum values of each parameter were tested. Each parameter 761 

was stepwise changed to its minimum or maximum value while the remaining parameters stayed 762 

homogenous. The significance of the parameter was estimated by a t-test conducted between the 763 
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erosion estimated by the model with homogenous mean parameters and the erosion estimated by the 764 

model with varying minimum and maximum parameter values. Only significant parameters are shown.   765 

  766 

 767 

Table A3. Summary of GAM models. We analyzed the impact of parameters within a 1-meter and 10-768 

meter distance from burrows. The Stars indicate p-values of the selected parameters. p*** < 0.001, p** 769 

< 0.01, p* < 0.05, p. < 0.1. One GAM model was run per parameter. Only results for models with an 770 

explained variance above 5 % are shown.   771 

Parameters Within 1 meter from burrows Within 10 meters from burrows 

 PdA SG LC NA PdA SG LC NA 

Explained 

Variance 

3.8 % 37 % 46 % 42 % 2.0 % 13 % 52 % 73 % 

Burrow 

density 

.    .    

Elevation   *** *** *  * *** 

Slope  ***     * ** 

Aspect . **  * *   . 

Roughness  ***     ** * 
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TPI         

TRI  **  **     

Plan 

curvature 

 .      . 

Profile curv.  ** .      

NDVI   **   **  . 

Sinks    * *** *  *  

Wetness    **     

Flow 

direction 

        

Flow path         

Catchment   *   *    

Catchment 

slope 

 ***  .     

 772 

Table A4. Review of studies which integrated any kind of bioturbation into models. Previous models 773 

integrated either benthic, invertebrate or single species of vertebrate bioturbators. Models applied 774 

either described the vertical soil mixing or long-term landscape evolution models. None of the previous 775 

studies included vertebrate burrows of bioturbators into an erosion model which would be capable to 776 

capture the daily redistribution processes.  777 

References Bioturbators Integrated processes Targeted process Model 

Francois et al. 

1997, Francois et 

al. 2002, Kadko 

and Heath 1984, 

Croix et al. 2002 

and several 

others 

Various 

benthic 

bioturbators 

Equations describing 

soil mixing within a 

floodplain 

Vertical soil mixing 

within a floodplain 

Mathematical 

equations 

Orvain et al. 

2006, Román – 

Sánchez et al. 

2019, Orvain 

2005, Orvain  

2003, Sanford 

2008 and several 

others 

Various 

invertebrates 

Equations describing 

vertical soil mixing 

Influence of vertical 

soil mixing on 

lateral redistribution 

Mathematical 

equations 

Gabet 2000 Pocket 

gophers 

Equation describing 

diffusion caused by 

gopher bioturbation 

Relief changes over 

40 000 years, 

lateral redistribution 

Landscape 

evolution 

Gabet et al. 2014 Pocket 

gophers 

Equations describing 

sediment 

accumulation caused 

by gophers 

Relocation of 

sediment to create 

Mima mounds 

Landscape 

evolution 

Temme and 

Vanwalleghem 

2016 

Not specified 

invertebrates 

Bioturbation causes 

soil mixing between 

model layers. Mixing 

Soil and landscape 

evolution 

Landscape 

evolution 
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Vanwalleghem et 

al. 2013  

is proportional to 

depth in the profile, 

soil thickness, and 

soil carbon content, 

and layer distance 

Landscape 

evolution 

Yoo and Mudd 

2008 

Bioturbation is 

considered as the 

cause of colluvial 

transport. Colluvial 

fluxes are calculated 

as a function of soil 

thickness and slope 

gradient on sloping 

grounds 

Landscape 

evolution 

Pelletier et al. 

2013 

Vertical soil mixing. 

Rate increases 

linearly with 

aboveground 

biomass. 

creep including 

abiotic and 

bioturbation-driven 

transport 

Landscape 

evolution 

Van der Meij et 

al.2020 

Vertical soil mixing. 

Rate depends on 

vegetation type. 

Soil and landscape 

evolution 

Landscape 

evolution 

Our model Vertebrates The model includes 

burrow structure, 

adjusted soil 

properties and 

adjusted vegetation 

cover. Burrow 

distribution 

determined by 

machine learning. 

Daily lateral 

sediment 

redistribution  

Daily erosion 

model 

 778 

 779 

 780 

Figure A1. Example of the unsupervised k-means classification of the surface photo from La Campana. 781 

Original photo was taken by Paulina Grigusova. The collection of in-situ data is explained in section 3.1., 782 

the estimation of soil properties in section 3.2. The image was classified into 5 classes using 783 

unsupervised k-means classification; the land cover was then assigned manually. In some cases, like 784 
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in this case for rocks, multiple k-means classes stand for the same land cover. These were then unified 785 

to the class “rocks”. 786 

 787 

 788 

 789 

Figure A2. Measured and modelled redistributed sediment for different scenarios. (a) Model without 790 

bioturbation. (b) Model with entrances. (c) Model with mounds. (d) model with burrows.  791 

 792 

 793 

 794 

 795 

 796 
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 797 

Figure A3. Environmental parameters influencing impact of bioturbation on sediment redistribution in 798 

Santa Gracia within 1-meter distance from burrows. Positive values indicate bioturbation enhances 799 

sediment accumulation at the respective parameter values, negative values indicate bioturbation 800 

enhances sediment erosion at the respective parameter values. 801 

 802 

 803 

Figure A4. Environmental parameters influencing impact of bioturbation on sediment redistribution in 804 

Santa Gracia within 10-meter distance from burrows. Positive values indicate bioturbation enhances 805 

sediment accumulation at the respective parameter values, negative values indicate bioturbation 806 

enhances sediment erosion at the respective parameter values. 807 

 808 

 809 
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 810 

Figure A5. Environmental parameters influencing impact of bioturbation on sediment redistribution in 811 

La Campana within 1-meter distance from burrows. Positive values indicate bioturbation enhances 812 

sediment accumulation at the respective parameter values, negative values indicate bioturbation 813 

enhances sediment erosion at the respective parameter values. 814 

 815 

 816 

Figure A6. Environmental parameters influencing impact of bioturbation on sediment redistribution in 817 

La Campana within 10-meter distance from burrows. Positive values indicate bioturbation enhances 818 

sediment accumulation at the respective parameter values, negative values indicate bioturbation 819 

enhances sediment erosion at the respective parameter values. 820 

 821 
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 822 

 823 

Figure A7. Environmental parameters influencing impact of bioturbation on sediment redistribution in 824 

Nahuelbuta 1-meter distance from burrows. Positive values indicate bioturbation enhances sediment 825 

accumulation at the respective parameter values, negative values indicate bioturbation enhances 826 

sediment erosion at the respective parameter values. 827 

 828 

Figure A8. Environmental parameters influencing impact of bioturbation on sediment redistribution in 829 

Nahuelbuta 10-meter distance from burrows. Positive values indicate bioturbation enhances sediment 830 

accumulation at the respective parameter values, negative values indicate bioturbation enhances 831 

sediment erosion at the respective parameter values. 832 

 833 
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 834 

Figure A9.  Burrow aggregation concentrates the runoff and increases erosion. Example for the north-835 

facing hillside in Mediterranean La Campana for the time period of one year. (a) Sediment erosion as 836 

estimated by model without bioturbation. (b) Sediment erosion as estimated by model with bioturbation. 837 

(c) Sediment erosion as estimated by model with bioturbation with predicted burrow locations. (d) 838 

Surface runoff as estimated by model without bioturbation. (e) Surface runoff as estimated by model 839 

with bioturbation. (f) Surface runoff as estimated by model including bioturbation and predicted burrow 840 

locations. Black colour indicates, at least one burrow was located within this pixel. Four neighbouring 841 

pixels which contain a burrow form a burrow aggregation.   842 

 843 



 

34 
 

 844 

Figure A10. Correlation matrix between the model input parameters. 845 

 846 
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