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Abstract 42 

Soil bioturbation activity affects soil texture, bulk density, soil water content and redistribution of 43 

nutrients. All of these parameters influences sediment redistribution, which shapes the earth surface. 44 

Hence it is important to include bioturbation into erosion models. However, up to present, the inclusion 45 

of bioturbation into erosion models was limited. This is because to realistically include bioturbation into 46 

the modelling, the interplay between bioturbation, sediment redistribution and environmental parameters 47 

is not understood.  48 

Here, we included bioturbation into a soil erosion model and interpreted the impacts of bioturbation on 49 

sediment redistribution. To do this, we measured the needed soil properties and location of burrows 50 

created by bioturbating animals in four research sites located along the Chilean climate gradient. Then, 51 

we parametrized a semi-empirical erosion model by applying machine learning algorithms to upscale 52 

soil properties and burrow distribution. We ran the model for a time period of 6 years under two 53 

conditions: With and without bioturbation. We validated the model using several sediment fences in the 54 

field. We estimated the modelled sediment redistribution and surface runoff in all climate zones. Lastly, 55 

we identified environmental parameters determining the positive or negative impact of bioturbation on 56 

sediment redistribution. 57 

We found that the model with integrated bioturbation performed much better (R2 = 0.71, RMSE = 0.63) 58 

than the model without integrated bioturbation (R2 = 0.17, RMSE = 1.18), meaning that model runs which 59 

considered bioturbation predicted the sediment redistribution more realistically. Furthermore, 60 

bioturbation increased sediment redistribution in all but the humid climate zone, especially in the 61 

Mediterranean zone. The quantity of sediment redistributed due to bioturbation was reliant on an 62 

interplay between elevation, slope, surface roughness and sink connectivity. Overall, bioturbation 63 

enhances sediment erosion in areas where more erosion is expected, and enhances sediment 64 

accumulation in areas which are more prone to accumulate sediment. In other words, considering 65 

bioturbation when studying earth surface evolution means an amplification of existing tendencies in 66 

sediment redistribution, and leads to a faster hillslope relief equalisation.   67 

 68 
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1. Introduction 83 

Bioturbation was shown to shape the land surface (Hazelhoff et al., 1981; Istanbulluoglu, 2005; Taylor 84 

et al., 2019; Tucker and Hancock, 2010; Whitesides and Butler, 2016; Wilkinson et al., 2009; Corenblit 85 

et al., 2021) by influencing surface microtopography (Reichman and Seabloom, 2002; Kinlaw and 86 

Grasmueck, 2012; Debruyn and Conacher, 1994), and soil properties such as soil porosity, permeability 87 

and infiltration (Reichman and Seabloom, 2002; Yair, 1995; Hancock and Lowry, 2021; Ridd, 1996; Hall 88 

et al., 1999; Coombes, 2016; Larsen et al., 2021). Cumulatively, these modifications lead to changes in 89 

sediment redistribution (Gabet et al., 2003; Nkem et al., 2000; Wilkinson et al., 2009) and hence have 90 

the potential to affect surface topography and nutrient redistribution on large spatial and temporal scale. 91 

To quantify these effects, the shared role of climate, landscape characteristics and burrowing dynamics 92 

on sediment redistribution needs to be understood. 93 

On a local scale, currently used field methods to monitor sediment redistribution under real-life condition 94 

are mainly erosion pins, splash boards, or rainfall simulators (Imeson and Kwaad, 1976; Wei et al., 2007; 95 

Le Hir et al., 2007; Li et al., 2019a; Li et al., 2019b; Li et al., 2018; Voiculescu et al., 2019; Chen et al., 96 

2021; Übernickel et al., 2021a). The monitoring of box experiments yields a high spatio-temporal 97 

resolution, and can also be linked with mathematical equations, such as random walks (Boudreau, 1986; 98 

Wheatcroft et al., 1990), stochastic differential equations (Boudreau, 1989; Milstead et al., 2007), finite 99 

difference mass balancing (Soetaert et al., 1996; François et al., 1997) or Markov chain theory (Jumars 100 

et al., 1981; Foster, 1985; Trauth, 1998; Shull, 2001) to describe sediment redistribution. Another 101 

approach offer raster-based soil erosion and landscape evolution models which integrate co-102 

dependencies between bioturbation relevant environmental parameters (Black and Montgomery, 1991; 103 

Meysman et al., 2003; Yoo et al., 2005; Schiffers et al., 2011). Most common soil erosion models are 104 

empirical (Wischmeier and Smith, 1978; Williams, 1975; Renard et al., 1991), process-based (Morgan 105 

et al., 1998; ROO et al., 1996; Nearing et al., 1989; Beasley et al., 1980), or semi-empirical models, the 106 

latter of which are a combination of both (Morgan et al., 1984; BEVEN and KIRKBY, 1979). Empirical 107 

models are limited to one study site, but they provide highly accurate predictions at low computational 108 

costs, as they are based on simple mathematical equations. In contrast, process-based models require 109 

an intensive parametrisation and calibration process, however, once calibrated, they can be applied to 110 

almost any site (Lal, 2001; Merritt et al., 2003). Semi-empirical models combine semi-empirical 111 

equations with a physical basis and thus include the advantages of the both model types (Morgan et al., 112 

1984; Morgan, 2001; Morgan and Duzant, 2008; Devia et al., 2015; Lilhare et al., 2015).  113 

Previously used methods have, however, several limitations when studying bioturbation. Field 114 

measurements likely lead to an underestimation of sediment fluxes, as they are one-time or seasonal 115 

measurements, and thus do not capture the continuous excavation of the sediment by the animal 116 

(Grigusova et al., 2022) at a high temporal resolution. Box experiments and from them derived 117 

mathematical equations describe bioturbation as an isolated process and ignore surrounding 118 

environmental parameters (such as climate or vegetation). Most erosion or landscape evolution models 119 

do not yet implement impacts of bioturbators on water and sediment fluxes (Brosens et al., 2020; 120 

Anderson et al., 2019; Braun et al., 2016; Cohen et al., 2015; Cohen et al., 2010; Carretier et al., 2014; 121 

Welivitiya et al., 2019). Models which include bioturbation as an input factor still have large limitations. 122 

They predict landscape evolution on a millennial scale, but ignore processes acting on a daily basis. 123 
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This rather large spatio-temporal scale also means an omission of the natural variability in burrow sizes 124 

and densities, climate zones and seasonality (Temme and Vanwalleghem, 2016; Vanwalleghem et al., 125 

2013; Yoo and Mudd, 2008; Pelletier et al., 2013). The most significant limitation is, however, that in all 126 

models bioturbation is hard-coded to have predefined effects on the environment: (i) soil erosion is 127 

proportionally increasing with increasing bioturbation, (ii) vertical soil mixing rates are uniform, and (iii) 128 

bioturbation is positively linked with vegetation cover. Thus, none of these models consider that the 129 

interaction of bioturbation with environmental parameters and the effect on sediment redistribution may 130 

not be uniform but context dependent. However, the field measurements showed both, positive 131 

(Hazelhoff et al., 1981; Black and Montgomery, 1991; Chen et al., 2021) and negative impact of 132 

bioturbation on erosion (Imeson and Kwaad, 1976; Hakonson, 1999). Also, previous field based studies 133 

observed an increased bioturbation activity with higher (Milstead et al., 2007; Meserve, 1981; Tews et 134 

al., 2004; Wu et al., 2021; Ferro and Barquez, 2009), but also with lower vegetation cover (Simonetti, 135 

1989; Zhang et al., 2020; Zhang et al., 2019; Qin et al., 2021). Furthermore, soil mixing rates are not 136 

homogenous throughout the year but depend on the animal phenological cycles (Eccard and Herde, 137 

2013; Jimenez et al., 1992; Katzman et al., 2018; Malizia, 1998; Morgan and Duzant, 2008; Monteverde 138 

and Piudo, 2011; Gray et al., 2020; Yu et al., 2017). 139 

To improve this, bioturbation has to be included into erosion models at a high spatial and temporal 140 

resolution under real-life conditions across several climate zones. A suitable model which can be 141 

extended to include continuous bioturbating activity is the semi-empirical Morgan – Morgan – Finney 142 

soil erosion model (Morgan et al., 1984; Morgan, 2001). This model was successfully tested in several 143 

climate zones and land use types, such as Mediterranean sites (Jong et al., 1999),  rainfed agrosystems, 144 

fields and pastures (López-Vicente et al., 2008), East-African Highlands (Vigiak et al., 2005) or humid 145 

forests (Vieira et al., 2014). One of the recently developed improvements of this model is the Daily 146 

Morgan – Morgan – Finney model (DMMF), which introduces subsurface flow, vegetation structures 147 

(type, size, height, root depth), and enables modelling at a high spatial (0.5 m) and temporal (daily) 148 

resolution (Choi et al., 2017). These improvements yield the potential to integrate the bioturbation into 149 

the model, as the burrowing activity is not constant and depends on vegetation structure (Tews et al., 150 

2004; Ferro and Barquez, 2009).   151 

To study the interplay between bioturbation, environmental parameters and sediment redistribution 152 

along a climate gradient, we (i) include bioturbation into a semi-empirical soil erosion model (DMMF) at 153 

a high temporal and spatial resolution. We specifically not presuppose a homogenous relationship 154 

between bioturbation, sediment transport and vegetation cover. Based on (i), we (ii) identify 155 

environmental parameters which determine if the bioturbation enhances sediment erosion or sediment 156 

accumulation.  In order to do this, we included bioturbation into the DMMF while considering (i) variable 157 

co-dependency between bioturbation and vegetation type, density and height; (ii) various burrow sizes 158 

and burrow densities, (iii) variable soil mixing rates due to continuous reconstruction of the burrow by 159 

the animal depending on season and (iv) variable influence of bioturbation on litter and coarse grain 160 

size. Furthermore, we set up generalized additive models to unveil significant environmental parameters 161 

that determine the impact of bioturbation on sediment redistribution. Lastly, we analyse how the impact 162 

of bioturbation on sediment redistribution depends on the burrow structure, climate, topography and 163 
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surrounding vegetation. Our study shows the importance of including bioturbation into erosion modelling 164 

and the interplay between bioturbation, environmental parameters and sediment redistribution. 165 

 166 

2. Study area 167 

Our study was performed along a climate and vegetation gradient in Chile (Übernickel et al., 2021b), 168 

comprising four study sites in the Chilean Coastal Cordillera: Pan de Azúcar (PdA) National Park (NP), 169 

Santa Gracia (SG), La Campana (LC) NP, and Nahuelbuta (NA) NP (Fig. 1). PdA NP is located in the 170 

arid zone in a fog-laden environment in the southern part of the Atacama Desert, with almost no rainfall. 171 

The vegetation cover is less than 5 % and dominated by small desert shrubs, several types of cacti and 172 

biocrusts  (Lehnert et al., 2018). SG is a natural reserve located in the semi-arid zone near La Serena, 173 

which is dominated by goat grazing. The vegetation consists of shrubs and cacti, covering up to 40 % 174 

of the study area. LC NP is part of the Mediterranean-type climate zone in the Valparaiso Region and is 175 

also affected by cattle. The study site is dominated by an evergreen sclerophyllous forest with endemic 176 

palms. The canopy reaches a height of up to 9 m, and the understory consists of deciduous shrubs and 177 

herbs. NA is located in the humid-temperate zone and characterized by a dense evergreen Araucaria 178 

forest comprising broadleaved trees with heights of up to 14 m. The ground is covered by bamboo, 179 

shrubs, and herbs (Bernhard et al., 2018; Oeser et al., 2018). The most common bioturbating vertebrate 180 

animal species recorded within these sites are carnivores of the family Canidae (Lycalopex culpaeus, 181 

Lycalopex griseus) as well as rodents of the families Abrocomidae (Abrocoma bennetti), Chnichillidae 182 

(Lagidium viscacia), Cricetidae (Abrothrix andinus, Phyllotis xanthopygus, Phyllotis limatus, Phyllotis 183 

darwini) and Octogontidae (Cerqueira, 1985; Jimenez et al., 1992; Übernickel et al., 2021a). 184 

 185 

 186 

Figure 1. Study area and study sites. Black lines outline the catchments. Along the blue lines, the in situ 187 

data (mound locations, soil samples, vegetation mapping) were collected. (a) Position of the study sites 188 

along the climate gradient. PdA = Pan de Azúcar, SG = Santa Gracia, LC = La Campana, NA = 189 

Nahuelbuta; Positions of plots in (b) PdA; (c) SG; (d) LC; and (e) NA. The background image is an RGB-190 
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composite calculated from WorldView-2 satellite imagery. Images were obtained with single license from 191 

GAF AG.  192 

 193 

3. Methodology 194 

We combined semi-empirical soil erosion modelling with in-situ measurements, remote sensing data 195 

and machine learning methods (Fig. 2). Along 8 catchments within 4 climate zones we mapped locations 196 

of burrows, estimated the vegetation cover and extracted soil samples. We analyzed the soil samples 197 

in the laboratory. Then we used remote sensing datasets and machine learning to upscale burrow 198 

distribution, vegetation cover and soil properties into the catchments. The catchment-wide predictions, 199 

the topographical information retrieved from LiDAR data (Kügler et al., 2022) and the climate information 200 

retrieved from climate stations were the input parameters for our soil erosion model. We ran the model 201 

with and without bioturbation. We included the bioturbation into the model by adjusting the input 202 

parameters at the predicted burrow locations, by including the continuous burrowing activity and soil 203 

mixing (Grigusova et al., 2021), and the seasonality (Kraus et al., 2022).and the animal phenological 204 

cycle as found in (Jimenez et al., 1992). The models were validated using self-constructed sediment 205 

traps. We studied the modeled surface runoff and sediment redistribution. Lastly, we analyzed if and 206 

how the impact of bioturbation on sediment redistribution depends on environmental parameters 207 

(topography, landscape connectivity and vegetation).  208 

 209 

 210 

211 

Figure 2. Flow chart of our study. Green color indicates in-situ input data, blue indicates remote sensing 212 

input data. Red indicates Model parametrization. Yellow indicates model output and analysis. Grey 213 

indicates model validation.  214 

 215 

3.1 In-situ data 216 

The study set-up consisted of eight hillside catchments: one north-facing and one south-facing hillside 217 

catchment per study site. We defined a line with a width of one meter from the top to the base of each 218 
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hillside catchment (see blue line, Fig. 1). We subdivided the track into tiles of 1 m2. We saved the GPS 219 

information of each tile. 220 

Within each tile of the line, we mapped burrow presence, land cover and extracted soil samples. A 221 

burrow consisted of an entrance and a mound (Fig. 3a). Each 1 m2 tile with a burrow was described as 222 

a presence data point, tiles without a burrow as absence data points. We noted the size of the burrow, 223 

vegetation cover and land cover types (bare soil, herbs, shrubs, trees) within the tile. We extracted 162 224 

soil samples from soil without a mound at a depth of 10 cm. Additionally, we took a photo of the surface 225 

every second tile along the track.  226 

To validate the model output, we set up sediment traps (Fig. 3b), with six traps per site, two of which 227 

were located at the catchment base and four were located on two random positions within the catchment. 228 

The sediment traps consisted of geotextile vertically attached to wooden poles for stability. The traps 229 

had a length of 2 m – 5 m, a width of ~1.5 m and a height of ~1 m. 1.5 m of geotextile was laid down at 230 

the surface uphill the wooden poles to enable the collection of sediment. The sediment accumulated 231 

within the traps was collected after 1 year and its mass [cm3] and dry weight [kg] were estimated.  232 

Climate information was retrieved from climate stations located adjacent to the catchments which 233 

provide climate data in 5 minute intervals (Übernickel et al. 2021). To force the model on an hourly basis, 234 

hourly air temperature, precipitation total and intensity, wind speed, wind direction and humidity was 235 

calculated for the study period from 1st April 2016 to 1st December 2021. Evapotranspiration was 236 

estimated by the Penman-Monteith equation (Penman, 1948). 237 

 238 

 239 

Figure 3. In-situ constructions. (a) Example of a burrow consisting of burrow entrance and mound. (b) 240 

Fence construction used for the collection of eroded sediment to validate the model. Both photos by 241 

Paulina Grigusova.  242 

 243 

3.2 Estimation of soil properties  244 

We estimated several soil properties from the soil samples and photos collected in-situ ( (Grigusova et 245 

al., 2022). We estimated above-ground skeleton and debris from the photos taken every second tile. 246 

For this, the photos were firstly classified into 5 classes. The classification was unsupervised using k-247 

means (Fig. A1). Then we calculated the ratio of pixels classified as skeleton and / or debris to the 248 

overall amount of all pixels to determine the amount of both parameters in percent.   249 
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In the lab, we estimated soil water content, bulk density, soil particle density, soil texture (sand, silt, clay, 250 

coarse / middle / fine sand, coarse / middle / fine silt), soil skeleton, organic matter and organic carbon.  251 

Gravimetric soil water content [%] (GSWC) described the mass of water within the soil sample and was 252 

estimated as in Eq (1): 253 

𝐺𝑆𝑊𝐶 =
(𝑆𝑚−𝑆𝑑)

𝑆𝑑
∗ 100  ,         (1) 254 

where Sm [g] is the mass of moist soil measured directly after the extraction and Sd [g] is the mass of 255 

soil dried at 105 °C for at least 24 hours. Bulk density [g cm-3] (BD) was calculated as following: 256 

𝐵𝐷 =
𝑆𝑑

𝑆𝑣
     ,          (2) 257 

where Sv [cm-3] is the volume of the sample. Soil particle density [g cm-3] (SPD) was calculated as in Eq 258 

(3): 259 

𝑆𝑃𝐷 =
𝑑𝑚

𝑆𝑣
  ,  ,          (3) 260 

where dm [g] is the dry mass of soil particles.  261 

Particle size distribution [%] – clay (< 0.002 mm), coarse, middle and fine silt (0.002 mm to 0.02 mm), 262 

and coarse, middle and fine sand (0.02 mm to 2 mm) was estimated using a PARIO method (Durner et 263 

al., 2017). Soil skeleton was estimated as the ratio of particles with a diameter above 2 mm. Ratio of 264 

organic matter (OM) was estimated as in Eq. (4) 265 

𝑂𝑀 =
𝑆𝑐

𝑆𝑑
  ,         (4) 266 

where Sc is the weight [g] of the sample dried at 500 °C for 16 hours.  267 

We used pedotransfer functions to determine porosity, saturated soil moisture, hydraulic conductivity, 268 

water content at field capacity, and permanent wilting point. Pore ratio (θs) was estimated from bulk and 269 

particle density as in Eq. (5): 270 

𝜃𝑠 =
𝐵𝐷

𝑆𝑃𝐷
           (5) 271 

Saturated water content [g g-1] (Ws) was estimated as in Eq. (6): 272 

𝑊𝑠 =  θs
𝑝𝑤

𝐵𝐷
  ,            (6) 273 

where pw [g cm-3] is the density of water which is set to be 1 g cm-3  (Pollacco, 2008).  274 

Hydraulic conductivity Ks [m s-1] was estimated as in Eq. (8): 275 

𝐾𝑠 = 1.15741 ∗ 0.0000001 ∗ exp (𝑥)  ,      (7) 276 

where x for sandy soil is: 277 

𝑥 = 9.5 − 1.471 ∗ (𝐵𝐷 ∗ 𝐵𝐷) − 0.688 ∗ 𝑂𝑀 + 0.0369 ∗ (𝑂𝑀 ∗ 𝑂𝑀) − 0.332 ∗ 𝐶𝑆  ,  (8) 278 

and x for loamy and clayey soils is: 279 

𝑥 = −43.1 + 64.8 ∗ 𝐵𝐷 − 22.21 ∗ (𝐵𝐷 ∗ 𝐵𝐷) + 7.02 ∗ 𝑂𝑀 − 0.1562 ∗ (𝑂𝑀 ∗ 𝑂𝑀) + 0.985 ∗ ln(𝑂𝑀) −280 

0.01332 ∗ 𝐶 ∗ 𝑂𝑀 − 4.71 ∗ 𝐵𝐷 ∗ 𝐶𝑆  ,      (9) 281 

where C is percentage of clay and CS is percentage of clay and silt (Wösten, 1997). To estimate water 282 

content at field capacity [%] (FC) and permanent wilting point (PWP), we applied functions by (Tomasella 283 

et al., 2000) as these were developed for South American soils: 284 

𝐹𝐶 = 4.046 + 0.426 ∗ 𝑆𝑖 + 0.404 ∗ 𝐶 ,       (10) 285 

𝑃𝑊𝑃 = 0.91 + 0.15 ∗ 𝑆𝑖 + 0.396 ∗ 𝐶 ,       (11) 286 

where Si is the percentage of silt.  287 

 288 
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3.3 Processing of remote sensing data 289 

The digital elevation models (DEM) were calculated from the LiDAR data (Kügler et al., 2022; Horn, 290 

1981) at a resolution of 0.5 m. Slope was calculated according to Horn (1981). Manning’s surface 291 

roughness coefficient was estimated following (Li and Zhang, 2001). Topographic position index (TPI) 292 

and Topographic ruggedness index were calculated according to (Wilson et al., 2007). Plan and profile 293 

curvature were determined after (Zevenbergen and Thorne, 1987). Connectivity indices, Sinks, Wetness 294 

index, Flow direction, Flow path, Catchment slope and Catchment were calculated in SAGA GIS. 295 

Single license stereo WorldView-2 images with a resolution of 0.5 m were retrieved from GAF Munich 296 

GmbH. The topographic correction of WorldView-2 images was done using the LiDAR data, solar 297 

elevation angle, solar zenith angle and azimuth angle according to Goslee (2019). The digital surface 298 

models (DSMs) were calculated from the stereo images. Additionally, we extracted single bands and 299 

calculated the normalized difference vegetation index (NDVI). 300 

 301 

3.4 The erosion model  302 

3.4.1 Daily Morgan-Morgan-Finney model 303 

The DMMF model is a combined soil erosion model used to estimate surface runoff and sediment flux 304 

on a field scale on a daily basis. Spatially, the DMMF model represents an area as several 305 

interconnected elements (e.g. pixels) of uniform topography, soil characteristics, land cover type, and 306 

vegetation structure. Through coupling, the model operates with flow direction algorithms: each element 307 

receives water and sediments from upslope elements and delivers the generated surface runoff and 308 

eroded soils to downslope elements. On a temporal scale, the model estimates surface runoff and 309 

sediment flux of each element on a daily basis. The model input parameters include climate, topography, 310 

soil properties and land cover information (Choi et al., 2017). Data pre-processing, modelling and 311 

analysis (see Fig. 2) was done in R statistic environment. The raster data were cropped to the size of 312 

the catchments (Fig. 1). Input parameters are listed in Table 1 and plotted in Fig. A2.  313 

 314 

3.4.2 Estimation of spatial parameters 315 

For spatial parameterization of the DMMF model, we upscaled land cover, soil properties and burrow 316 

distribution onto the catchments using machine learning techniques. For each parameter, we trained 317 

one random forest (RF) model per site. The upscaling was done at 0.5 m spatial resolution. We used 318 

the WorldView-2 layers, NDVI, DEM, DSM, slope and roughness as predictors while the response data 319 

were the parameters which we measured in-situ (soil properties, vegetation, burrow locations). The most 320 

important predictors were selected by forward feature selection. The quality of the random forest models 321 

was assessed by Leave-Location-Out cross validation. We trained the model stepwise, using in-situ 322 

data collected from seven of the catchments and validated the model using in-situ data from the 323 

remaining catchment (Meyer et al., 2018).  324 

For the area-wide upscaling of burrow locations across the catchments, we used the burrow presence 325 

and absence data (section 3.1) as the response data within the RF models. The accuracy was 0.82 for 326 

PdA, 0.77 for SG, 0.75 for LC and 0.85 for NA.  327 
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The upscaling of soil properties was done using soil properties estimated along the track line (see 328 

section 3.1) as response data within the RF models. All of the models reached a high accuracy (Table 329 

A1).  330 

To upscale the vegetation cover and type, we used as the response within the RF models the land cover 331 

measured in-situ. The classes were soil without rocks, rocks, biocrusts, grass/herbs, shrubs and trees. 332 

Predictor values for each class were extracted from at least 100 polygons per site and class. The 333 

accuracy of the RF models was 0.71 for PdA, 0.81 for SG, 0.83 for LC and 0.75 for NA. The vegetation 334 

height measured in plots was averaged for each class per site. All pixels classified as respective class 335 

were assigned the same vegetation height information. Vegetation density was estimated per catchment 336 

as the amount of vegetation individuals per m2. Vegetation diversity was calculated by Shannon index  337 

(Shannon, 1948). The interception area was the area not covered by vegetation (herbs, shrubs or trees).  338 

 339 

3.4.3 Inclusion of bioturbation 340 

In the grid cells with predicted burrow locations, we adapted the values of input parameters to include 341 

bioturbation. The adaptations varied with climate zone and burrow size. The size, geometric structure 342 

and excavation rates of burrowing animalswere previously estimated at a high spatial and temporal 343 

resolution (Grigusova et al., 2022). Based on this results, we firstly adjusted the microtopography. We 344 

modified the layer depth to represent burrow entrance and elevation to represent animal mound. Mounds 345 

were always located downslope of burrow entrances in the direction of flow.  346 

Secondly, we adjusted the soil properties. Soil properties texture and organic carbon were estimated 347 

from soil extracted from mounds in Kraus et al. (in review). In this study we additionally estimated bulk 348 

density, initial water content, soil skeleton, porosity, saturated water content, available water capacity 349 

and water content at field capacity from the same dataset (see section 3.2). We calculated the median 350 

value of each property for the samples extracted from mounds and for the samples extracted from soil 351 

without mounds. Then, we estimated the change in percent between these two values. This was then 352 

used to adjust the soil property for each pixel including a mound.  353 

Thirdly, modelled mound pixels had to be cleared from ground vegetation cover. For this, we removed 354 

ground vegetation cover from pixels with burrow locations and decreased ground vegetation cover, 355 

height, diameter and amount of ground vegetation individuals from surrounding pixels as measured in 356 

situ. Then, the amount of above-ground skeleton and debris was set as estimated from soil samples 357 

(section 3.2) 358 

Animal activity has been found to be highly variable throughout the year (Grigusova et al., 2022; Kraus 359 

et al., 2022). The density of burrows does not stay stable throughout the year but increases or decreases 360 

depending on the season and climate zone. For this, we artificially removed or added burrows into the 361 

catchments at the particular seasons. Furthermore, the animals do not burrow at the same pace in the 362 

course of the year. There is a 3-month period, during which they are highly active.   363 

Lastly, we also included the vertical movement of sediment particles from deeper soil layers to the 364 

surface in dependence on climate. The animals were found to reconstruct their burrows after each 365 

rainfall event (Grigusova et al., 2022). Corresponding with these findings, we increased the entrance 366 

depth and mound height by 30% after each rainfall event.    367 

 368 
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Table 1. Model input layers and respective changes to layer values at the predicted burrow locations. 369 

Ground vegetation was removed from the respective pixels, while tree canopy was not changed. The 370 

values were estimated as described in 3.5.2. Using the adjusted values, we calculated 371 

Evapotranspiration using Penman-Monteith equation, surface roughness from the elevation layer, and 372 

hydraulic conductivity, water content at field capacity and saturated water content using pedotransfer 373 

functions.  374 

   Pixel value at burrow locations 

Parameter 

group 

Parameter Units PdA SG LC NA 

Topography Elevation m asl +0.24 +0.23 +0.36 +0.19 

 Surface roughness - - - - - 

 Depth m -0.23 -0.41 -0.22 -0.04 

Soil Water content % +120 -6  -68  -62  

 Bulk density g cm-3 - -6  -17  - 

 Sand % -29 -12  +57  -43  

 Silt % +54  +22  +23  ns 

 Clay % +145  +44  +19  -73  

 Organic carbon % +168  +72  +105  +25  

 Hydraulic conductivity m s-1 - - - - 

 Water content at field 

capacity 

% - - - - 

 Saturated water content % - - - - 

Cover Ground vegetation cover % 0 0 0 0 

 Soil and debris % 100 100 100 100 

 Skeleton % 0 0 0 0 

 Average plant height m 0 0 0 0 

 Average plant diameter m 0 0 0 0 

 Number of plants n m-2 0 0 0 0 

 375 

3.5 DMMF model sensitivity test and validation  376 

We conducted a sensitivity test to identify the input parameters, which significantly influence the model 377 

output. For this, we estimated the mean, minimum and maximum values of each input parameter. For 378 

this, we first created an artificial catchment of 100 m * 100 m. Then, each pixel received a mean value 379 

of each parameter. We ran the model under these conditions. The model output described: (i) sediment 380 

erosion, (ii) sediment accumulation and (iii) surface runoff. We estimated sediment redistribution by 381 

subtracting the erosion from accumulation for each pixel. Then, we stepwise changed the input 382 

parameter values from their minimum to their maximum values while we did not adjust any other 383 

parameters. To quantify the significance of the input variations, we conducted a t-test (Fig A2). For this, 384 

we compared the amount of redistributed sediment of each model run to the first model run with 385 

homogeneous parameters. 386 
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For the validation, we ran the model for the time periods between the installation of sediment fences 387 

and the collections of sediment. We compared the mass and weight of modelled and collected sediment 388 

and estimated R2 and RMSE. To test the importance of the inclusion of individual bioturbation 389 

parameters into the model, we ran the model under 4 conditions: (i) No burrows; (ii) Solely entrances; 390 

(iii) Solely mounds; (iv) Entire burrows (entrances and mounds). 391 

 392 

3.6 Impact of burrows on surface processes 393 

We estimated burrow density, as a ratio of pixels with predicted burrows to all pixels. Additionally, we 394 

calculated the ratio of pixels which are part of a burrow aggregation to all pixels which include a burrow. 395 

Burrow aggregation describes at least 4 neighboring pixels with predicted burrows. We calculated the 396 

amount of excavated sediment as a sum of burrow density and the burrow excavation rate as estimated 397 

in Grigusova et al. (2022). 398 

To estimate the impact of burrows on sediment redistribution and surface runoff, we ran the DMMF 399 

model for the time period from 1st April 2016 until 31th December 2021 for all catchments. We ran the 400 

model (i) with no burrows and (ii) with entire burrows. We estimated (i) sediment redistribution 401 

(accumulation - erosion) and (ii) surface runoff. We analyzed the redistribution and runoff on the plot (1 402 

m2) and catchment (1 ha) scale. 403 

Lastly, to analyze under which biotic and abiotic environmental parameters (topography, vegetation 404 

cover) the bioturbation enhances sediment erosion or accumulation, we set-up a generalized additive 405 

model (GAM) (Wood, 2006). For this, we first subtracted the output of the model with no burrows from 406 

the output of the model with entire burrows. Positive pixel values thus meant, bioturbation enhanced 407 

sediment accumulation, negative pixel values meant, bioturbation enhanced sediment erosion. We 408 

tested following environmental parameters: mound density, vegetation cover, elevation, slope, aspect, 409 

TRI, curvature and connectivity and wetness index. The model performance was evaluated by the 410 

percentage of explained data variance. We analyzed the impact of environmental parameters within 1-411 

meter and within 10-meter distance from the burrows.  412 

 413 

4 Results 414 

4.1 Model sensitivity test and accuracy 415 

Parameters which significantly influenced the model output were precipitation, slope, vegetation cover, 416 

surface roughness, silt content and water content (Table A2). We quantified the model performance by 417 

comparing the modelled and measured sediment redistribution. The performance varied depending on 418 

the burrow inclusion (Figure 4). The performance of the model without any bioturbation was lower (R2 = 419 

0.73, RMSE = 1.50, MSE = 2.27), as when burrow entrances (R2 = 0.81, RMSE = 1.34, MSE = 1.16) or 420 

mounds (R2 = 0.83, RMSE = 1.10, MSE = 1.22) were included. The model had the highest performance 421 

when entire burrows were included (R2 = 0.85, RMSE = 1.01, MSE = 1.01). However, as the scatterplots 422 

showed, the model performance seemed to be determined strongly by one measurement (Fig. A3). For 423 

this reason, we calculated the metrics without this measurement (Fig. A4). The model without any 424 

burrows (R2 = 0.17, RMSE = 1.18, MSE = 1.39) in this case performed much lower than models with 425 

burrows. The model performance continuously strongly increased when burrow entrances (R2 = 0.48, 426 

RMSE = 0.61, MSE = 0.78), mounds (R2 = 0.51, RMSE = 0.75, MSE = 0.57) were included. The model 427 
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with whole burrows reached the highest performance (R2 = 0.71, RMSE = 0.63, MSE = 0.39). When we 428 

compare the modelled redistribution to the sediment redistribution estimated by Time-of-Flight cameras 429 

in Grigusova et al. (2022), then the differences are minor (R2 = 0.62, RMSE = 0.12, MSE = 0.35).  430 

 431 

 432 

Figure 4. R2 and RMSE of the Morgan-Morgan-Finney soil erosion model. For dataset A, we compared 433 

the amount of sediment collected in all sediment fences with the modelled eroded sediment (see Fig. 434 

A3). For dataset B, we removed one measurement, as the R2 seemed to be defined by this 435 

measurement (see Fig. A4). For Scenario A, we did not include any burrows into the model. For scenario 436 

B, we included burrow entrances and for scenario C, we included mounds. For scenario D, we included 437 

whole burrows into the model. The adjustments made to include entrances, mounds and burrows into 438 

the model are described in section 3.5.2.  439 

 440 

4.2 Model output: Surface runoff and sediment redistribution 441 

Catchment – wide sediment redistribution (1 ha resolution) was the highest in humid NA, followed by 442 

Mediterranean LC, semi-arid SG and arid PdA (Fig. 5a, 5b, 6). In NA, LC and SG, the erosion processes 443 

dominated, while in PdA, more sediment accumulated than eroded. The impact of burrows on sediment 444 

redistribution was significant in PdA, SG and LC. Burrows increased sediment erosion by 137.8 % in 445 

PdA (3.53 kg ha-1 year-1 vs. 48.79 kg ha-1 year-1), by 6.5 % in SG (129.16 kg ha-1 year-1 vs. 122.05 kg ha-446 

1 year-1) and by 15.6 % in LC (4602.69 kg ha-1 year-1 vs. 3980.96 kg ha-1 year-1).  447 

Surface runoff was the highest in humid NA, followed by Mediterranean LC, arid PdA and semi-arid SG 448 

(Figure 5c). The impact of burrows on surface runoff was significant in all climate zones. Burrows 449 

increased surface runoff in PdA by 34 %, in SG by 40% and in LC by 4.1 %; and decreased surface 450 

runoff by 5.9 % in NA. Catchment-wide maps are shown in Fig. A6-A8.  451 

 452 

https://doi.org/10.5194/egusphere-2023-84
Preprint. Discussion started: 1 February 2023
c© Author(s) 2023. CC BY 4.0 License.



 

14 
 

 453 

 454 

Figure 5. Summary of model outputs across the climate gradient. (a) and (b) Modelled sediment 455 

redistribution. Positive values indicate sediment accumulation; negative values indicate sediment 456 

erosion. (a) Sediment redistribution on a pixel scale in kg m-2 year-1. (b) Sediment redistribution on the 457 

catchment scale in kg ha-1 year-1. The impact of bioturbation on sediment redistribution was estimated 458 

by a t-test and was significant in PdA***, SG** and LC***. Bioturbation increased sediment erosion by 459 

137.8 % in PdA, by 6.5 % in SG and by 15.6 % in LC. For catchment-wide maps see Fig. A6-A8). (c) 460 

Modelled surface runoff on the catchment scale in m3 ha-1 year-1. Impact of bioturbation on surface runoff 461 

was estimated by a t-test and was significant at all sites. Bioturbation increased surface runoff in PdA 462 

by 34 %, in SG by 40 % and in LC by 4.1 %; and decreased surface runoff by 5.9 % in NA. For catchment-463 

wide maps see Fig. A6.  464 

 465 
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 466 

Figure 6. Catchment-wide predicted sediment redistribution. Colours indicate sediment redistribution. 467 

Positive values indicate sediment accumulation; negative values indicate sediment erosion. Grey 468 

shadows indicate the hill shading calculated from LiDAR data. (a) Pan de Azúcar, (b) Santa Gracia, (c) 469 

La Campana, (d) Nahuelbuta. 470 

 471 

4.3 Role of continuous burrowing activity on sediment redistribution 472 

We included the excavation of the sediment by the animal itself into the model. The density of burrows 473 

was the highest in PdA, then LC, SG and the lowest in NA (Table 2). The burrow aggregations were 474 

most predominant in LC and SG, almost non-existent in NA. The burrows were of largest size in LC, 475 

followed by PdA, SG and NA. Similarly, the highest volume of excavated sediment at the beginning of 476 

the modelling period was in LC and PdA. After each rainfall event, the animals reconstructed their 477 

burrows as described in Grigusova et al. 2022. Due to various number of rainfall events, the volume of 478 

excavated sediment during our modelling period was the highest in NA, followed by LC, SG and PdA. 479 

However, when the percentage of sediment which was excavated before and during the modelling to 480 

the amount of sediment redistributed during rainfall events was 47 % in PdA, 24 % in SG, 33.5 % in LC 481 

and 5.6 % in NA.  482 

 483 

Table 2. Impact of animal bioturbation activity on overall sediment redistribution on various scales. The 484 

bioturbation activity was estimated using Time-of-Flight based cameras in Grigusova et al. 2022. This 485 
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study showed that animals reconstruct their burrows after each rainfall events. During this process, 10 486 

% of the overall sediment burrow volume is relocated from within the burrow to the surface. We 487 

integrated this process into our model and calculated the percentage of newly excavated sediment by 488 

the animals to the amount of sediment which was redistributed during rainfalls for the period of one year.  489 

Parameter Units PdA SG LC NA 

 

Burrow density ha-1 91.35 71.50 84.36 13.30 

Burrow aggregations % 24 62 73 5 

Burrow size m3 0.015 0.012 0.047 0.008 

Sediment at the surface at the start of modelling  m3 ha-1 1.35 0.88 4.11 0.10 

Sediment excavated after each rainfall m3 ha-1 0.07 0.04 0.22 0.01 

Number of rainfall events year-1 3 7 16 137 

Sediment excavated by the animal after the rain  m3 ha-1 year-1 0.21 0.28 3.52 0.69 

Sediment redistributed due to rainfall m3 ha-1 year-1 0.44 1.17 10.51 12.21 

Excavated sediment to redistributed sediment % 47 24 33.5 5.6 

 490 

4.4 Role of surrounding environment 491 

We subtracted the output of the model with included burrows from the output of the model without 492 

burrows (Figure A8). Although, the burrows on average enhanced sediment erosion on the catchment 493 

– scale, the high–resolution maps unveiled that burrows enhance sediment erosion within some pixels 494 

while they rather increased sediment accumulation within others.  495 

The amount of data variance explained by the GAM models (see section 3.6.) differed between models 496 

(Table A3). Models estimating the impact of environmental parameters on sediment redistribution within 497 

1-meter distance from the burrows, explained 3.84 % of variance in PdA, 37.1 % in SG, 46 % in LC and 498 

42. % in NA. Models estimating the impact of environmental parameters on sediment redistribution 499 

within 10-meter distance from the burrows, explained 1.99 % of variance in PdA, 12.8 % in SG, 52 % in 500 

LC and 72.9 % in NA. The parameters selected for SG were slope, roughness, curvature, TRI and NDVI. 501 

Parameters selected for LC were elevation, slope, NDVI, sinks and roughness. Parameters selected for 502 

NA were elevation, slope, aspect, TRI, sinks and roughness (Table 3).   503 

Bioturbation strongly increased sediment redistribution (erosion and accumulation) at high values of 504 

elevation, slope, surface roughness TRI, sinks and topographic wetness index, at the middle values of 505 

elevation and aspect, and at low values of profile curvature and NDVI. From these parameters, 506 

bioturbation increased sediment erosion at high and middle values of elevation, at high values of slope, 507 

sinks and TRI, and at low values of profile curvature. Bioturbation increased sediment accumulation at 508 

high values of surface roughness and topographic wetness index and at low values of NDVI (Fig. A9 – 509 

A14).  510 

Bioturbation somewhat enhanced sediment erosion at medium values of surface roughness, NDVI and 511 

sinks, and at low values of topographic wetness index. Bioturbation somewhat increased sediment 512 

accumulation at low values of slope and TRI, at low and medium values of elevation and at high values 513 

of profile curvature.  514 

 515 
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 516 

Figure 7. Catchment-wide impact of bioturbation on sediment redistribution. Colour indicates the impact. 517 

Positive values indicate bioturbation enhanced sediment accumulation, negative values indicate 518 

bioturbation enhanced sediment erosion. Grey shadows indicate the hill shading calculated from LiDAR 519 

data. (a) Pan de Azúcar, (b) Santa Gracia, (c) La Campana, (d) Nahuelbuta. 520 

 521 

 522 
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Table 3. Parameters influencing impact of bioturbation on sediment redistribution. The catchment-wide 537 

analysis showed that bioturbation has varying impact on sediment redistribution (see Fig. 5,7). The x-538 

axis shows the parameter values. The y-axis shows the amount of sediment which was redistributed 539 

due to bioturbation. Red colour indicates that at these parameter values, bioturbation caused sediment 540 

accumulation. Blue colour indicates that at these parameter values, bioturbation enhanced sediment 541 

erosion. One GAM model was run per site. The lines are not smooth as this is a conceptual figure only. 542 

For regression fits as estimated by the GAMs see Fig. A9-A14. For the amount of explained variance of 543 

each GAM model see Tab. A2.   544 
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Aspect   

 

 

TRI   

 

 

Profile curvature  

 

 

NDVI  
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Sinks connectivity  

 

 

Topographic wetness index  

 

 

 545 

5.Discussion 546 

5.1 The inclusion of bioturbation increases model performance 547 

Overall, our DMMF model including bioturbation performed much better than the model without 548 

bioturbation. The DMMF model without bioturbation performed worse (RMSE of 1.18 kg ha-1 year-1 and 549 

R2 of 0.17) than the model with bioturbation (RMSE was 0.63 kg ha-1 year-1 and R2 was 0.71).  550 

We hence argue that the higher accuracy of our model can be explained with the inclusion of 551 

bioturbation. This is confirmed by the fact that our model run without bioturbation performed similarly to 552 

previously run models without bioturbation: In earlier studies, the accuracy of the MMF model reached 553 

an RMSE in between 4.9 and 8.2 kg ha-1 year-1, with an estimated R2 of in between 0.21 and 0.57 (Jong 554 

et al., 1999; Vigiak et al., 2005; López-Vicente et al., 2008; Vieira et al., 2014; Choi et al., 2017). 555 

However, we acknowledge that previous studies were all conducted in more temperate climate zones. 556 

To be able to compare our results with previous studies, we calculated the model performance 557 

considering solely the Mediterranean and humid climate zone. Here, our model performed better than 558 

when we considered all climate zones (R2 = 0.72, RMSE = 0.45 kg ha-1 year-1), confirming the conclusion 559 

that bioturbation increased model performance. Additionally, we compared the model output with the 560 

values on sediment redistribution estimated in previous studies. Again, these were solely conducted in 561 

more humid climate regions. In the humid zone, our model predicted an erosion up to 3.5 kg m-2 year-1. 562 

This estimation is in line with erosion rates due to bioturbation established by in-situ measurements in 563 

other studies (between 1.5 kg m-2 year-1 and 3.7 kg m-2 year-1) (Black and Montgomery, 1991; Yoo and 564 

Mudd, 2008; Yoo et al., 2005; Rutin, 1996). This also confirms the reliability of our approach. 565 

 566 
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5.2 The relevance of bioturbation for sediment redistribution depends on the landscape context 567 

On the catchment scale (1 ha), our study finds that bioturbation increases erosion in all climatic zones 568 

except within the humid zone (Figure 5b). In contrast, bioturbation increases both, erosion and 569 

accumulation, on the plot scale (1 m2) (Figure 5a). On this scale, in the arid and semi-arid zone, sediment 570 

erosion and accumulation were predicted to be about equal ((erosion and accumulation both up to 0.1 571 

kg m-2 year-1 in the arid zone, and erosion and accumulation both up to 0.2 kg m-2 year-1 in the semi-arid 572 

zone (see Figure 5a)). Bioturbation marginally increased erosion and decreased accumulation in the 573 

semi-arid zone, but reduced by twofold the accumulation in the arid zone. In contrast, in the 574 

Mediterranean and humid zone, erosion was predicted to be almost double when compared to 575 

accumulation (predicted erosion up to 2.5 kg m-2 year-1, and accumulation up to 1.4 kg m-2 year-1). 576 

Inclusion of bioturbation increased erosion up to 3 kg m-2 year-1, and accumulation up to 1.6 kg m-2 year-577 

1 in the Mediterranean zone, while it had no significant effect in humid zone. We argue that sediment 578 

redistribution due to bioturbation is heavily influenced by meso-topographic structures which determine 579 

the creation of surface runoff. Due to this, the erosion and accumulation on the plots scale is heavier 580 

impacted by bioturbation with increasing surface runoff.  581 

According to our analysis, bioturbation increases erosion or accumulation of sediment mostly based on 582 

an interplay between topographic structures elevation, slope and TRI (Table 3). Over all research sites, 583 

this study found that bioturbation leads to an increase in surface erosion in areas where erosional 584 

processes dominate (upper, and/or steeper slopes), and tends to increase sediment accumulation in 585 

areas where sediment is naturally deposited, e.g. lower slopes or shallow depressions (Figure 8). This 586 

finding is based on the fact that erosion in general is positively affected by slope, and negatively by 587 

surface roughness and vegetation (Rodríguez-Caballero et al., 2012; Wang et al., 2013; Kirols et al., 588 

2015). Additionally, the redistribution of sediment is largely affected by topographic meso-/macroforms, 589 

such as rills or cliffs. These can be quantified by topographic ruggedness index (TRI) which describes 590 

the amount of elevation drop between adjusting cells of DEM (Wilson et al., 2007). At high values of this 591 

index, we would therefore expect high erosion rate, due to concentrated runoff within the connected rills 592 

or undisturbed flow of runoff from the cliffs downslope.  593 

Our data show that one burrow provides up to 0.43 m3 of additional loose sediment at the surface (Table 594 

2), while the surface roughness increases up to 200 % (Grigusova et al., 2022). When including burrows 595 

into the model, at the slope values from 0 to 5 degrees, the presence of burrows had no impact on 596 

sediment redistribution. From 5 degrees onwards it increased sediment erosion proportionally to the 597 

slope of the hillside (an increased erosion from 0.4 g ha-1 year-1 in the semi-arid zone until up to 150 kg 598 

ha-1 year-1 in the Mediterranean zone, Fig. A9 and A12). Similarly, at locations with sudden elevation 599 

drops 0 m until 0.2 m (lower TRI values), the presence of burrows had no impact. However, at locations 600 

with elevation drops of 0.2 until 0.5 m (higher TRI values), bioturbation increases sediment erosion by 601 

1.5 kg ha-1 year-1 (Fig. A9, A12-A14). Lastly, bioturbation proportionally increased accumulation when 602 

the surface roughness values were above 0.5 (an increased accumulation from 0.2 g ha-1 year-1 in semi-603 

arid zone until 5000 kg ha-1 year-1 in the Mediterranean zone, Fig. A9 and A12).  604 

We conclude that in locations with slope values over 5 degrees, or at locations with sudden drops in 605 

elevation (high TRI) and connected rills, more sediment is eroding than accumulating. Here, additional 606 

surface sediments generated by bioturbators provides more source material for erosion and thus 607 
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bioturbation increases sediment erosion at these locations (Table 3). In contrast, at locations with a 608 

slope below 5 degrees, where processes are dominantly controlled by surface roughness, sediment 609 

accumulation caused by bioturbation increases proportionally when the surface roughness has a value 610 

above 0.5. This is likely because burrows through their above-ground structures heavily increase surface 611 

roughness (Grigusova et al., 2022), and hence the presence of bioturbating animals leads to an increase 612 

in sediment accumulation.  613 

Additionally, we hypothesize that it is not only the additional availability of sediment on the surface and 614 

the topography of the vicinity which controls the contribution of bioturbation to sediment surface flux, but 615 

also the spatial distribution of animal burrows. We interpret that in locations with high burrow 616 

aggregation, surface flow might be redirected and centralized around the aggregates and thus increase 617 

the sediment erosion in the areas surrounding burrow aggregates (Figure A15). This mechanism could 618 

explain, why bioturbation promotes sediment erosion especially in the Mediterranean zone. The relative 619 

role of burrow aggregation should be studied in detail and included in future studies. 620 

 621 

Figure 8. Bioturbation amplifies erosion within the erosion zone and accumulation within the 622 

accumulation zone. The zones were defined based on the values of surrounding environmental 623 

parameters. The arrow direction indicates decrease or increase of sediment amount within a pixel and 624 

thus erosion or accumulation. The arrow thickness indicates the amount of redistributed sediment. 625 

Please note that the location of the erosion zone on the upper hillside and of the accumulation zone on 626 

the lower hillside is purely conceptual. Should the respective values of environmental parameters listed 627 

for the erosion zone be found on the lower hillside, it would still be erosion zone. Vice versa for the 628 

accumulation zone. The importance of the parameters is ranked and described in section 5.3. 629 

 630 

 631 

6. Conclusion 632 

In summary, our results show that the presence of animal burrows leads to an increase in erosion and 633 

net sediment loss. According to our results, bioturbation enhances sediment erosion in areas where 634 
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more erosion is expected and enhances sediment accumulation in areas which are more prone to 635 

accumulate sediment.   636 

On geological time scales, as burrowing animals increase both, erosion in steeper zones, and 637 

accumulation in areas with gentler slopes and higher roughness, hillslope relief should become faster 638 

equalised and overall more flat. This tendency is the most pronounced in the Mediterranean zone with 639 

high burrow density and excavation rates, as well as high precipitation rates. Our study furthermore 640 

shows that the impact of bioturbation heavily depends on the surrounding environmental parameters.  641 
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 660 

Figure 9. Context dependency of sediment redistribution. (a) Pan de Azúcar, (b) Santa Gracia, (c) La 661 

Campana, (d) Nahuelbuta. Brown arrows indicate the direction and magnitude of overall sediment 662 

redistribution within each climate zone. Blue arrows indicate the direction of flow (runoff vs. infiltration). 663 

Half-moons indicate the distribution and size of burrows. The dashed line indicates the median value of 664 

each parameter for the first four parameters. 665 

 666 

Supplementary material 667 

Table A1: R2 and RMSE of random forest models trained for the prediction of soil properties needed for 668 

model parametrization. RMSE is root mean square error.  669 

Variable R2 RMSE 

Soil water content 0.80 0.05 

Bulk density 0.60 0.22 

Porosity 0.63 0.09 

Silt 0.64 0.04 

Middle silt 0.64 0.04 

Sand 0.68 0.09 

Middle sand 0.64 0.05 

Organic components 0.77 0.05 

Organic carbon  0.70 0.03 

 670 
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Table A2. Model sensitivity analysis. For the analysis, the minimum, maximum and mean value of each 672 

parameter was calculated. The model was run for a catchment of 1km2 with homogenous mean 673 

parameters. Then, the minimum and maximum values of each parameter were tested. Each parameter 674 

was stepwise changed to its minimum or maximum value while the remaining parameters stayed 675 

homogenous. The significance of the parameter was estimated by a t-test conducted between the 676 

erosion estimated by the model with homogenous mean parameters and the erosion estimated by the 677 

model with varying minimum and maximum parameter values. Only significant parameters are shown.   678 

Abbre

viation 

Parameter mean 

value 

min 

value 

max 

value 

mean 

erosion 

min 

erosion  

max 

erosion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Erosion in kg 

m-1 

R precipitation 19.9 0.2 65.6 0.07 0 4.1 

P_c clay content 10.61 3.87 34.64 0.07 0.07 0.07 

P_z silt content 38.49 13.32 59.59 0.07 0.04 0.11 

P_s sand content 47.04 24.13 79.17 0.07 0.07 0.07 

theta_i

nit 

water content 3.87 2.38 12.68 0.07 0.09 0.06 

n_s roughness 0.97 0 236.7

5 

0.07 0.34 0.01 

GC vegetation  79.54 50.38 92.48 0.07 0.01 0.004 

DEM Slope of DEM 18.21 0 89.78 0.07 0 inf. 

 679 

 680 

Table A3. Summary of GAM models. We analyzed the impact of parameters within a 1-meter and 10-681 

meter distance from burrows. The Stars indicate p-values of the selected parameters. p*** < 0.001, p** 682 

< 0.01, p* < 0.05, p. < 0.1. One GAM model was run per parameter. Only results for models with an 683 

explained variance above 5 % are shown.   684 

Parameters Within 1 meter from burrows Within 10 meters from burrows 

 PdA SG LC NA PdA SG LC NA 

Explained 

Variance 

3.8 % 37 % 46 % 42 % 2.0 % 13 % 52 % 73 % 

Burrow 

density 

.    .    

Elevation   *** *** *  * *** 

Slope  ***     * ** 

Aspect . **  * *   . 

Roughness  ***     ** * 

TPI         
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TRI  **  **     

Plan 

curvature 

 .      . 

Profile curv.  ** .      

NDVI   **   **  . 

Sinks    * *** *  *  

Wetness    **     

Flow 

direction 

        

Flow path         

Catchment   *   *    

Catchment 

slope 

 ***  .     

 685 

 686 

 687 

Figure A1. Example of the unsupervised k-means classification of the surface photo from La Campana. 688 

Original photo was taken by Paulina Grigusova. The collection of in-situ data is explained in section 3.1., 689 

the estimation of soil properties in section 3.2. The image was classified into 5 classes using 690 

unsupervised k-means classification; the land cover was then assigned manually. In some cases, like 691 

in this case for rocks, multiple k-means classes stand for the same land cover. These were then unified 692 

to the class “rocks”. 693 
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 695 

Figure A2. Input parameter values per site. The barplots show all pixel values within the researched 696 

catchments for each site. The seemingly black lines outside of whiskers are as well outliers.  697 

 698 
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 699 

Figure A3. Measured and modelled redistributed sediment for different scenarios. (a) Model without 700 

bioturbation. (b) Model with entrances. (c) Model with mounds. (d) model with burrows.  701 
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 703 

 704 

Figure A4. Measured and modelled redistributed sediment without an outlier. (a) Model without 705 

bioturbation. (b) Model with entrances. (c) Model with mounds. (d) model with burrows. 706 
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708 

Figure A5. Predicted mounds in all climate zones. (a) Pan de Azúcar, (b) Santa Gracia, (c) La Campana, 709 

(d) Nahuelbuta. Grey shadows indicate the hill shading calculated from LiDAR data. 710 

 711 
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 712 

Figure A6. Catchment-wide predicted surface runoff. Colors indicate surface runoff. (a) Pan de Azúcar, 713 

(b) Santa Gracia, (c) La Campana, (d) Nahuelbuta. Grey shadows indicate the hill shading calculated 714 

from LiDAR data. 715 
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 717 

Figure A7. Catchment-wide predicted sediment redistribution. Colours indicate sediment redistribution. 718 

Positive values indicate sediment accumulation; negative values indicate sediment erosion. Grey 719 

shadows indicate the hill shading calculated from LiDAR data. a) Pan de Azúcar, (b) Santa Gracia, (c) 720 

La Campana, (d) Nahuelbuta. 721 

 722 

 723 
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 724 

Figure A8. Catchment-wide impact of bioturbation on sediment redistribution. Colour indicates the 725 

impact. Positive values indicate bioturbation enhanced sediment accumulation, negative values indicate 726 

bioturbation enhanced sediment erosion. Grey shadows indicate the hill shading calculated from LiDAR 727 

data. (a) Pan de Azúcar, (b) Santa Gracia, (c) La Campana, (d) Nahuelbuta. 728 

 729 

 730 

 731 
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Figure A9. Environmental parameters influencing impact of bioturbation on sediment redistribution in 732 

Santa Gracia within 1-meter distance from burrows. Positive values indicate bioturbation enhances 733 

sediment accumulation at the respective parameter values, negative values indicate bioturbation 734 

enhances sediment erosion at the respective parameter values. 735 

 736 

 737 

Figure A10. Environmental parameters influencing impact of bioturbation on sediment redistribution in 738 

Santa Gracia within 10-meter distance from burrows. Positive values indicate bioturbation enhances 739 

sediment accumulation at the respective parameter values, negative values indicate bioturbation 740 

enhances sediment erosion at the respective parameter values. 741 

 742 

 743 

 744 

Figure A11. Environmental parameters influencing impact of bioturbation on sediment redistribution in 745 

La Campana within 1-meter distance from burrows. Positive values indicate bioturbation enhances 746 

sediment accumulation at the respective parameter values, negative values indicate bioturbation 747 

enhances sediment erosion at the respective parameter values. 748 
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 750 

Figure A12. Environmental parameters influencing impact of bioturbation on sediment redistribution in 751 

La Campana within 10-meter distance from burrows. Positive values indicate bioturbation enhances 752 

sediment accumulation at the respective parameter values, negative values indicate bioturbation 753 

enhances sediment erosion at the respective parameter values. 754 

 755 

 756 

 757 

Figure A13. Environmental parameters influencing impact of bioturbation on sediment redistribution in 758 

Nahuelbuta 1-meter distance from burrows. Positive values indicate bioturbation enhances sediment 759 

accumulation at the respective parameter values, negative values indicate bioturbation enhances 760 

sediment erosion at the respective parameter values. 761 

https://doi.org/10.5194/egusphere-2023-84
Preprint. Discussion started: 1 February 2023
c© Author(s) 2023. CC BY 4.0 License.



 

36 
 

 762 

Figure A14. Environmental parameters influencing impact of bioturbation on sediment redistribution in 763 

Nahuelbuta 10-meter distance from burrows. Positive values indicate bioturbation enhances sediment 764 

accumulation at the respective parameter values, negative values indicate bioturbation enhances 765 

sediment erosion at the respective parameter values. 766 

 767 

 768 

Figure A15.  Burrow aggregation concentrates the runoff and increases erosion. Example for the north-769 

facing hillside in Mediterranean La Campana for the time period of one year. (a) Sediment erosion as 770 

estimated by model without bioturbation. (b) Sediment erosion as estimated by model with bioturbation. 771 

(c) Sediment erosion as estimated by model with bioturbation with predicted burrow locations. (d) 772 

Surface runoff as estimated by model without bioturbation. (e) Surface runoff as estimated by model 773 
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with bioturbation. (f) Surface runoff as estimated by model including bioturbation and predicted burrow 774 

locations. Black colour indicates, at least one burrow was located within this pixel. Four neighbouring 775 

pixels which contain a burrow form a burrow aggregation.   776 

 777 
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