Preprints
https://doi.org/10.5194/egusphere-2023-749
https://doi.org/10.5194/egusphere-2023-749
03 May 2023
 | 03 May 2023
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

An Updated Modeling Framework to Simulate Los Angeles Air Quality. Part 1: Model Development, Evaluation, and Source Apportionment

Elyse A. Pennington, Yuan Wang, Benjamin C. Schulze, Karl M. Seltzer, Jiani Yang, Bin Zhao, Zhe Jiang, Hongru Shi, Melissa Venecek, Daniel Chau, Benjamin N. Murphy, Christopher M. Kenseth, Ryan X. Ward, Havala O. T. Pye, and John H. Seinfeld

Abstract. This study describes a modeling framework, model evaluation, and source apportionment to understand the causes of Los Angeles (LA) air pollution. A few major updates are applied to the Community Multiscale Air Quality (CMAQ) Model with high spatial resolution (1 km × 1 km). The updates include dynamic traffic emissions based on real-time on-road information and recent emission factors and secondary organic aerosol (SOA) schemes to represent volatile chemical products (VCP). Meteorology is well-predicted compared to ground-based observations, and the emission rates from multiple sources (i.e., on-road, volatile chemical product, area, point, biogenic, and sea spray) are quantified. Evaluation of the CMAQ model shows that ozone is well-predicted despite inaccuracies in nitrogen oxide (NOx) predictions. Particle matter (PM) is underpredicted compared to concurrent measurements made with an aerosol mass spectrometer (AMS) in Pasadena. Inorganic aerosol is well-predicted while SOA is underpredicted. Modeled SOA consists of mostly organic nitrates and products from oxidation of alkane-like intermediate volatility organic compounds (IVOCs) and has missing components that behave like less-oxidized oxygenated organic aerosol (LO-OOA). Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated (VOC-sensitive) with the largest sensitivity of O3 to changes in VOCs in the urban core. Differing oxidative capacities in different regions impact the nonlinear chemistry leading to PM and SOA formation, which is quantified in this study.

Elyse A. Pennington et al.

Status: open (until 16 Jun 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-749', Anonymous Referee #1, 26 May 2023 reply

Elyse A. Pennington et al.

Elyse A. Pennington et al.

Viewed

Total article views: 203 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
147 49 7 203 17 1 3
  • HTML: 147
  • PDF: 49
  • XML: 7
  • Total: 203
  • Supplement: 17
  • BibTeX: 1
  • EndNote: 3
Views and downloads (calculated since 03 May 2023)
Cumulative views and downloads (calculated since 03 May 2023)

Viewed (geographical distribution)

Total article views: 291 (including HTML, PDF, and XML) Thereof 291 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Discussed

Latest update: 08 Jun 2023
Download
Short summary
To assess the ozone and particulate matter pollution in LA, we improved the CMAQ model by employing dynamic traffic emissions and new secondary organic aerosol (SOA) schemes to represent volatile chemical products (VCP). Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated with the largest sensitivity of O3 to changes in VOC in the urban core. The improvement and remaining issues shed light on the future direction of the model development.