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Abstract 32 

This study describes a modeling framework, model evaluation, and source apportionment to 33 
understand the causes of Los Angeles (LA) air pollution. A few major updates are applied to the 34 
Community Multiscale Air Quality (CMAQ) Model with high spatial resolution (1 km x 1 km). 35 
The updates include dynamic traffic emissions based on real-time on-road information and recent 36 
emission factors and secondary organic aerosol (SOA) schemes to represent volatile chemical 37 



products (VCP). Meteorology is well-predicted compared to ground-based observations, and the 38 
emission rates from multiple sources (i.e., on-road, volatile chemical product, area, point, biogenic, 39 
and sea spray) are quantified. Evaluation of the CMAQ model shows that ozone is well-predicted 40 
despite inaccuracies in nitrogen oxide (NOx) predictions. Particle matter (PM) is underpredicted 41 
compared to concurrent measurements made with an aerosol mass spectrometer (AMS) in 42 
Pasadena. Inorganic aerosol is well-predicted while SOA is underpredicted. Modeled SOA 43 
consists of mostly organic nitrates and products from oxidation of alkane-like intermediate 44 
volatility organic compounds (IVOCs) and has missing components that behave like less-oxidized 45 
oxygenated organic aerosol (LO-OOA). Source apportionment demonstrates that the urban areas 46 
of the LA Basin and vicinity are NOx-saturated (VOC-sensitive) with the largest sensitivity of O3 47 
to changes in VOCs in the urban core. Differing oxidative capacities in different regions impact 48 
the nonlinear chemistry leading to PM and SOA formation, which is quantified in this study.  49 

 50 

1. Introduction 51 

Air quality is influenced by particle- and gas-phase species which can impact human and 52 
environmental health. Particulate matter (PM), or aerosols, affect human health (Lim et al., 53 
2012), climate (Intergovernmental Panel on Climate Change, 2014), and visibility (Hyslop, 54 
2009). A major fraction of PM in urban areas is organic (Q. Zhang et al., 2007), which itself is 55 
largely secondary in nature (Jimenez et al., 2009). Secondary organic aerosol (SOA) comprises 56 
thousands of species which are formed via complex chemistry that also produces ozone (O3). O3 57 
is an oxidant which can damage human (Nuvolone et al., 2018) and plant (Sandermann Jr, 1996) 58 
health. Reactive organic gases (ROG) are necessary precursors to these pollutants and span a 59 
range of properties, including vapor pressure and oxygen-to-carbon ratio. Volatile organic 60 
compounds (VOCs) and nitrogen oxides (NOx) control O3 and SOA formation, and semivolatile 61 
organic compounds (SVOCs) and intermediate volatility organic compounds (IVOCs) have high 62 
potential to form SOA (Robinson et al., 2007). 63 

The Los Angeles Basin has a long history of air pollution resulting from substantial 64 
anthropogenic emissions and unique meteorology. On-road mobile emissions have historically 65 
been the most important source of atmospheric pollution in the LA Basin, but emissions have 66 
decreased as emissions control technologies (i.e., catalytic converters) have improved, vehicle 67 
fuel efficiencies have increased, and electric vehicles have become more prevalent (Khare & 68 
Gentner, 2018). Other sources of emissions have become more important, particularly VOC and 69 
SVOC emissions from volatile chemical products (VCPs). VCPs are consumer and industrial 70 
products that utilize evaporative organics (Seltzer et al., 2021) and can form SOA (Qin et al., 71 
2021). Asphalt emissions can also form SOA, and are likely important in LA where the urban 72 
land fraction and temperatures are both high (Khare et al., 2020). In addition to organic emission 73 
reductions, NOx emissions from on-road vehicles have decreased. Moreover, NOx emissions 74 
from off-road vehicles have become almost equally important to on-road NOx emissions in LA 75 
(Khare & Gentner, 2018). As total emissions have decreased, ambient levels of most criteria 76 
pollutants have decreased, including NOx, carbon monoxide (CO), and sulfur oxides (SOx) (US 77 
EPA, 2013). However, O3 in LA has increased in the past decade (US EPA, 2013) because of the 78 
nonlinear atmospheric chemistry leading to its formation (Seinfeld & Pandis, 2016; Le et al., 79 
2020). The LA Basin also displays a temperature inversion layer which leads to strong 80 
atmospheric stability with a low flow rate out of the Basin. The complex interactions between 81 
emissions, meteorology, and chemistry will be investigated in this study. 82 



Predicting air quality using chemical transport models (CTMs) is challenging. 83 
Developing a model that best represents the complexity of atmospheric chemistry—particularly 84 
SOA formation—in a reasonable computation time involves a tradeoff in chemical detail. 85 
Models exist which represent gas-phase and heterogeneous chemistry (e.g., Carter, 2010; 86 
Yarwood et al., 2010; Goliff et al., 2013, Keller & Evans, 2019), and researchers have 87 
traditionally modeled SOA formation from VOC oxidation (e.g., Odum et al., 1996; Carlton et 88 
al., 2010). An active area of research is the oxidation of SVOCs and IVOCs, which likely yield 89 
higher SOA than VOCs due to their lower volatility (e.g., Donahue et al., 2011; Murphy et al., 90 
2017; Gentner et al., 2017). It is well-documented that SOA tends to be underpredicted in the 91 
Community Multiscale Air Quality (CMAQ) model (Appel et al., 2021) unless an empirical 92 
representation of anthropogenic SOA is introduced (Murphy et al., 2017), so a goal of model 93 
improvement is to increase SOA mass with improved understanding of sources and 94 
physiochemical processes. Representing the correct sources of SOA in a process-based approach 95 
is critical for model applications designed to inform control strategies. Recent works have 96 
developed new models to represent SOA formation from VCPs (Pennington et al., 2021) and 97 
mobile sector IVOCs (Lu et al., 2020), which reduced model SOA bias. The predicted chemistry 98 
leading to pollutant formation is highly nonlinear (Seinfeld & Pandis, 2016), and is additionally 99 
influenced by emission inventories that typically have high uncertainties (Qin et al., 2021); 100 
(Khare & Gentner, 2018). Recent work has improved the estimation of emission rates of VCP 101 
VOCs (Seltzer et al., 2021), on-road VOCs, NOx, PM, and CO (California Air Resources Board, 102 
2018), and on-road IVOCs (Zhao et al., 2016). 103 

Detailed observational data that can be used to constrain model parameters governing 104 
chemical transformations is often lacking. While pollutants like O3, PM2.5, and NO2 are regularly 105 
monitored throughout the United States (US EPA, 2013), these sites tend to be sparsely 106 
distributed. Components of PM2.5 are generally only available on a daily-integrated basis, 107 
preventing diagnostic separation of daytime vs nighttime chemistry. Measurements of radical 108 
species and specific VOCs are only obtained during field campaigns, which are limited to a small 109 
region during a short time duration because they are very expensive to carry out. Even though 110 
the lack of in situ data makes it difficult to parameterize or evaluate models, it also underscores 111 
the importance of models. Models fill in the spatiotemporal gaps in our measurements and allow 112 
us to predict important air quality impacts. 113 

The modeling period in this study covers April 2020, during the strict COVID-19 114 
lockdown regulations in LA. On-road vehicle miles traveled (VMT) declined significantly during 115 
this month as many people remained at home (Caltrans, 2020), and this altered the composition 116 
of anthropogenic emissions and resulting pollutant levels (Parker et al., 2020). However, this 117 
period also experienced several weather patterns that are unusual to springtime months in LA, 118 
namely a rainy period and a very hot period. Untangling the relative impacts of decreased 119 
emissions versus meteorology is feasible using CTMs. 120 

In the first part of this work, we use the CMAQ model to understand the current air 121 
quality of the Los Angeles Basin. Model inputs to CMAQ are developed to represent 122 
meteorology and emissions in 2020 and are evaluated against available data. CMAQ model 123 
predictions are presented throughout the Basin, while source apportionment studies describe the 124 
important sources of emissions. SOA formation in Pasadena is compared to detailed ground-125 
based measurements. In Part 2 of this work, documented in a second article, the sensitivity of 126 
pollutants to reduced on-road and VCP emissions are further explored. The relative importance 127 



of emissions and meteorology in dictating O3 and PM concentrations during the COVID-19 128 
pandemic are also investigated. The simulations investigated in part 2 can represent future 129 
emission scenarios and provide insight on helpful policies to mitigate air quality. 130 

2. Methods 131 

2.1 Model Development 132 

The model framework is summarized in Figure 1 and detailed descriptions of each 133 
component are described below. CTM inputs include meteorology, emissions, chemical 134 
boundary conditions, and grid information. The CTM uses these inputs to predict concentrations 135 
which will be compared to hourly or daily observed data throughout the domain and specifically 136 
in Pasadena.  137 

2.1.1 Chemical Transport Model 138 

We use CMAQ version 5.3.2 (US EPA, 2020), which is documented and evaluated in 139 
Appel et al. (2021). The gas-phase chemical mechanism used here is SAPRC07TIC (Carter, 140 
2010) (Xie et al., 2013), the organic aerosol-phase chemical mechanism is AERO7 (Pye et al., 141 
2013; Pye et al., 2017; Murphy et al., 2017; Xu et al., 2018; Qin et al., 2021), the inorganic 142 
aerosol-phase chemical mechanism is ISORROPIA II (Fountoukis & Nenes, 2007), and the 143 
aqueous-phase chemical mechanism used is AQCHEM (Fahey et al., 2017). The M3Dry module 144 
is the air-surface exchange module used to represent the dry deposition of gas- and particle-phase 145 
species (Pleim & Ran, 2011; Appel et al., 2021) and uses the Noah land surface model (Alapaty 146 
et al., 2008). The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module within 147 
CMAQ (Murphy et al., 2021) was used to modify emissions and in our source apportionment 148 
sensitivity simulations. The SAPRC07TIC_AE7 chemical mechanism used here was updated to 149 
include the emissions and chemistry of VCP species (Pennington et al. (2021) and IVOCs from 150 
on-road mobile sources (Lu et al. 2020). The organic aerosol (OA) chemical mechanism is 151 
summarized in Fig. S1. 152 

2.1.2 Meteorology 153 

Meteorological simulations are performed using the Weather Research and Forecasting 154 
(WRF) Model (Skamarock et al., 2008) version 4.2. Climatological input data are provided from 155 
the ERA5 Reanalysis Dataset (Hersbach et al., 2018, p. 5), which contains hourly data on a 0.25° 156 
x 0.25° grid at the surface and on 37 pressure levels from 100 to 1 hPa. The WRF configuration 157 
uses three nested domains to resample and simulate the meteorological variables from the input 158 
resolution to 16-km, 4-km, and then 1-km resolution (Figure 2A). The innermost 1 km x 1 km 159 
domain is the region of interest in this study and referred to as the LA domain (Figure 2A, C). 160 

2.1.3 Emissions 161 

On-road vehicles can be separated into two categories, light duty and heavy duty, based 162 
on the weight of the vehicle. Light duty vehicles are smaller, tend to be passenger cars, and tend 163 
to use gasoline fuel. On the other hand, heavy duty vehicles are larger, tend to be used for 164 
transport, and tend to use diesel fuel. These categories are represented separately in the model 165 
because there has been historical interest in understanding the class of vehicles and fuels to target 166 
for emissions regulations (e.g., Bahreini et al., 2012; Ensberg et al., 2014; Gentner et al., 2017; 167 
Lu et al., 2020). Additionally, because of the different uses of these types of vehicles, their 168 
driving and therefore emissions patterns differ spatially and temporally. 169 



On-road mobile emissions are represented by the EMission FACtor (EMFAC2017) 170 
emissions inventory and model projected to year 2020 (California Air Resources Board, 2018). 171 
The projection to year 2020 includes 2020-specific meteorological effects on emission rates. The 172 
Emissions Spatial and Temporal Allocator (ESTA) model uses 1 km x 1 km spatial surrogates 173 
and California Vehicle Activity Database (CalVAD) temporal surrogates (Ritchie & Tok, 2016) 174 
to calculate hourly, gridded emissions on the LA domain. The speciation profiles used in ESTA 175 
include the surrogate NMOG (non-methane organic gases), which provides diagnostic 176 
information but is not used by the chemistry in CMAQ. To estimate emissions of alkane-like 177 
IVOC emissions, the unspeciated fraction of NMOG was used with information from Lu et al. 178 
(2020). 179 

EMFAC and ESTA do not capture the effect of COVID-19 on vehicle use, so we 180 
modified the on-road emissions to include those changes. The California Performance 181 
Measurement System (PeMS) uses in-situ detectors distributed throughout California to measure 182 
vehicle usage metrics (Caltrans, 2020). One such metric is vehicle miles traveled (VMT), which 183 
measures the miles traveled by different vehicle types, e.g., light and heavy duty vehicles. VMT 184 
changed directly in response to COVID-19 policies and human behavior changes, so it can be 185 
used to reduce on-road emissions in response to the pandemic (Yang et al., 2021). VMT data 186 
were summed for all PeMS monitoring sites in the LA domain, separated into heavy duty and 187 
light duty vehicles (Figure 3a-b). VMT January through March (pre-pandemic) was relatively 188 
constant. These values were averaged and used as the baseline VMT, represented by the dashed 189 
black lines. VMT decreased in March as COVID-19 stay-at-home policies were implemented. 190 
VMT reached its lowest value in April and then slowly increased towards the baseline value. All 191 
weekly-averaged VMT values were divided by the baseline VMT value to obtain scaling factors 192 
which are a proxy for declining vehicle emissions resulting from the pandemic (Figure 3C). The 193 
VMT scaling factors are not identical for light duty and heavy duty vehicles, consistent with the 194 
rationale for separating these vehicle types. Light duty VMT decreased the most, since the 195 
pandemic primarily decreased the use of personal vehicles, with a lesser decrease of industrial 196 
transport vehicles’ (i.e. heavy-duty vehicles) use. 197 

VCP emissions are predicted using the VCPy model framework (Seltzer et al., 2021). 198 
VCPy version 1.1 (Seltzer et al., 2022) was used to calculate VOC emission rates for 2018 over 199 
the contiguous United States (CONUS) on a 4 km x 4 km grid, which were re-gridded to 1 km x 200 
1 km to fit the LA domain grid. The year 2018 emissions are assumed to be representative of 201 
year 2020 emissions within the range of uncertainty present in VCPy. 202 

Natural emissions are treated in-line in CMAQ using land surface descriptive files 203 
generated using the Spatial-Allocator tool (US EPA, 2017/2022). Gas-phase biogenic emissions 204 
and particle-phase sea spray emissions are modeled using the Biogenic Emission Inventory 205 
System (BEIS) version 3.6.1 (Bash et al., 2016). Particle-phase sea spray emissions are modeled 206 
according to the method of Gantt et al. (2015). Wildfire emissions were not included as this time 207 
period experienced limited wildfire activity. Lightning NOx and windblown dust emissions are 208 
not turned on in the model. Dust makes up a small fraction of total PM loading. Hayes et al. 209 
(2013) showed that in Pasadena, dust makes up only 1.6% of total PM1 by mass. Natural 210 
emissions are the lowest source of PM emissions (CARB, 2020), so windblown dust is a minor 211 
contributor to total PM. However, it is possible that muting the dust scheme could cause 212 
underestimations of PM2.5 and PM10. Previous work suggests that crustal elements, i.e. dust 213 
elements, do not have a large impact on modeled ammonium and nitrate concentrations, so 214 



omitting these emissions should not have a large impact on other inorganic aerosol or gas-phase 215 
species. Previous work (e.g. Choi et al., 2009) has shown that lightning NOx is nearly negligible 216 
over Southern California.  217 

All other emissions are calculated using the California Air Resources Board (CARB) 218 
emissions inventory (CARB, 2020). The emissions inventory includes data from sources 219 
including off-road vehicles and equipment, agriculture, oil and gas production, industrial, and 220 
other sources. Annual emission rates were calculated for base year 2017 and scaled to year 2020 221 
using the California Emissions Projection Analysis Model (CEPAM) growth and control data 222 
(CARB, 2020). The inventory is processed in the Sparse Matrix Operator Kernel Emissions 223 
(SMOKE) model version 4.8 (CMAS, 2020) using spatial and temporal surrogates from 2019. 224 
SMOKE calculates both gridded area source emissions as well as individual point source 225 
emissions, and their sum will be referred to as area+point emissions. 226 

Emission rates and the importance of each emission source vary by pollutant and region. 227 
Domain-wide emission rates are given in Figure 4 and the spatial distribution of emissions is 228 
given in Fig. S2-7. All anthropogenic emissions peak during midday when people are most 229 
active. Biogenic VOC and NO emissions also peak midday corresponding to temperature. In 230 
contrast, sea spray emissions peak overnight as temperatures decrease and winds increase. Sea 231 
spray emissions are only located in the surf zone along the coastline (Fig. S5). Biogenic sources 232 
emit significant VOCs, comparable to those from VCPs. However, VCP emissions are largest 233 
over urban areas while biogenic VOC emissions are largest over remote regions (Fig. S7), and so 234 
will impact pollutant formation regionally. Area and point sources emit large amounts of all 235 
pollutants and comprise a variety of sources (Fig. S8-9). On-road vehicles emit large amounts of 236 
CO (Figure 4), but total CO emissions are dominated by off-road vehicles (Fig. S8). On-road 237 
vehicles also emit significant NOx (Figure 4), similar in quantity to the individual area+point 238 
sources (i.e., boats, off-road, and trains) given in Fig. S8.  239 

2.1.4 Initial & Boundary Conditions 240 

A nested modeling setup was used to provide the boundary conditions for the Los 241 
Angeles Basin. The Los Angeles Basin is represented by the domain shown in Figure 2C, has a 242 
resolution of 1 km x 1 km, and is the domain of interest for this project. The initial and boundary 243 
conditions for the LA domain were provided by a coarse-resolution CMAQ simulation 244 
performed over a larger domain (Figure 2B). The outer domain covering southern and central 245 
California has a resolution of 4 km x 4 km and its air quality was simulated using the WRF and 246 
CMAQ scenarios described in Sections 2.1.1-2.1.2. The emissions for this domain match the 247 
emissions described in Jiang et al. (2021). Publicly-available seasonal average hemispheric 248 
CMAQ output was used as initial and boundary conditions for the California domain (Hogrefe et 249 
al., 2021). The CMAQ predictions from the coarse-resolution California domain were used as 250 
initial and boundary conditions for the inner, finer-resolution LA domain. 251 

2.2 Observational Data 252 

Observational data throughout the modeling domain are provided by the EPA AQS 253 
monitoring system (US EPA, 2013). These sites include measurements of O3, CO, NO, NO2, 254 
NOy, SO2, PM2.5, PM10, temperature, relative humidity, wind speed, and wind direction (not all 255 
sites contain all species at all times) and their locations are shown in Figure 2B-C. In addition, 256 
gas- and aerosol-phase measurements were collected concurrent to the modeling period in 257 



Pasadena at Caltech. The Caltech air quality system (CITAQS) measures O3, CO, NO, NO2, 258 
NOy, SO2, and PM2.5 (Parker et al., 2020). 259 

Measurements of PM1 (fine PM with diameters less than 1 µm) and its components 260 
(organic, NH4, NO3, SO4, and Cl) were performed using an Aerodyne high resolution time-of-261 
flight aerosol mass spectrometer (HR-ToF-AMS) as described in Schulze et al. (submitted, 262 
2022). Briefly, the AMS measures submicron, non-refractory PM1 (NR-PM1) at high time 263 
resolution. During the 2020 measurement campaign, the AMS isokinetically sampled air from a 264 
stainless-steel line downstream of a 2.5 µm cut diameter Teflon-coated cyclone mounted on the 265 
roof of the Linde Laboratory at Caltech. Approximately 6 m of stainless steel tubing connected 266 
the cyclone to the inlet of the HR-ToF-AMS. Standard methods were used to correct the data for 267 
gas-phase interferences and composition-dependent collection efficiencies (Middlebrook et al., 268 
2012). Daily detection limits for aerosol chemical classes were calculated as three times the 269 
standard deviation of 30-minute blank measurements made with a high-efficiency particle 270 
arrestance (HEPA) filter. Daily detection limits for OA ranged from ~0.1-0.3 µg m-3. The 271 
ionization efficiency of nitrate and relative ionization efficiency of ammonium were calibrated 272 
weekly using 350 nm ammonium nitrate particles size selected with a differential mobility 273 
analyzer. 274 

Positive matrix factorization (PMF) was applied to the OA mass spectral datasets to gain 275 
insight into OA sources. PMF results presented here were taken from a larger analysis of data 276 
collected in 2020 (April 8 – July 19, 2020). A detailed description of PMF solution selection is 277 
provided in Schulze et al. (2022). A total of five factors, corresponding to less-oxidized 278 
oxygenated OA (LO-OOA), more-oxidized oxygenated OA (MO-OOA), hydrocarbon-like OA 279 
(HOA), cooking-influenced OA (CIOA), and an organic-nitrate influenced LO-OOA (LO-OOA-280 
ON), were extracted from the OA dataset. Factors were identified using correlations with known 281 
tracers and comparisons of mass spectral and diurnal profiles to those extracted previously in Los 282 
Angeles (Hayes et al., 2013) and other urban areas (Hu et al., 2016; J. Xu et al., 2016). For 283 
comparisons with model predictions, we combine the HOA and CIOA factors as primary OA 284 
(POA), though we note that SOA formed from low-volatility species may appear spectrally 285 
similar to HOA (Lambe et al., 2012), as discussed in Schulze et al. (2022).  286 

Multiple statistics are used to compare modeled data to observed data. These are mean 287 
bias (MB), normalized mean bias (NMB), root mean square error (RMSE), and r2 (the square of 288 
the Pearson correlation coefficient), defined below. In these equations, 𝑀 is modeled data, 𝑂 is 289 
observed data, 𝑀# is the mean of the modeled data, 𝑂$ is the mean of the observed data, and 𝑁 is 290 
the number of data points. 291 

𝑀𝐵 = !
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!        (1) 292 
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3. Results & Discussion 297 

3.1 Evaluation of CTM Inputs 298 

3.1.1 Meteorology 299 

The WRF predictions are compared to the AQS observations and the model performs 300 
very well in predicting temperature. The NMB values of temperature, relative humidity, wind 301 
speed, and wind direction at all AQS sites are calculated in the LA domain (Figure 5), and 302 
statistics are averaged using all site data in Table S1. Temperature is predicted well, with very 303 
low bias (NMB = 3.8%) and low scatter (r2 = 0.97). Relative humidity is moderately well-304 
predicted, with low scatter (r2 = 0.81) but nonnegligible bias (NMB = -21.3%). Errors in relative 305 
humidity will affect the water content of aerosols and the resulting partitioning of aqueous 306 
aerosol, and the concentrations of other inorganic aerosol components like ammonium, nitrate, 307 
and chloride. 308 

Wind speed and direction tend not to be predicted well, with high bias and high scatter, 309 
but the error is highly variable between sites (Figure 5). Wind speed and direction error will 310 
potentially affect the transport between grid cells, and their impact on modeled pollutant 311 
concentrations is investigated in Section 3.2. To understand the source of wind speed error, the 312 
NMB was quantified in all 3 modeling domains (Fig. S10). Wind speed did not improve 313 
appreciably as the model resolution increased, and the spatial distribution of error remained 314 
consistent. This suggests that the model error lies with the input reanalysis data, and less with the 315 
model configuration. This further suggests that to improve model simulations, new reanalysis 316 
data should be used or observational nudging should be engaged when running WRF. However, 317 
using new reanalysis data may introduce error to other meteorological fields, whereas 318 
temperature is well-predicted by this model setup. 319 

The domain-wide statistics (Table S1) capture data over a long time period and over sites 320 
with different meteorology, so the error at individual sites must be investigated when making 321 
site-specific comparisons. Despite the range of sites contained in these statistics, temperature is 322 
well-predicted. This is critical, as temperature has a substantial impact on atmospheric chemistry 323 
and reaction rates.324 

3.1.2 Coarse-Resolution Simulation Results 325 

California coarse-resolution CMAQ simulation results provide the lateral chemical 326 
boundary conditions for the inner LA domain. Predicted pollutant concentrations from the 327 
coarse-resolution California simulation are compared to EPA AQS monitoring site data in Table 328 
1. O3 is well-predicted based on its low MB, NMB, and RMSE. CO, NOx, and PM10 are all 329 
underpredicted (MB and NMB) with moderately high scatter (RMSE and r2), while PM2.5 is 330 
overpredicted. SO2 is greatly overpredicted (MB and NMB). The accuracy of the region covering 331 
the Los Angeles Basin is of particular importance since that region will provide the initial and 332 
boundary conditions for the fine-resolution domain. Those results are compared to AQS 333 
measurements (Table 1) and demonstrate some different behaviors than the results of the full 334 
domain. NOx is slightly better predicted, while still underestimated, but O3 is now underpredicted 335 
and less accurate. Average PM2.5 mass increases substantially, as expected due to the higher air 336 
pollution in LA compared to other regions in California. PM2.5 also becomes greatly 337 
overpredicted in the model (MB and NMB) and will be considered when evaluating the results of 338 



the fine-resolution simulation. The model bias remains approximately consistent for CO, SO2, 339 
and PM10. 340 

3.2 Evaluation of Fine-Resolution Model Predictions 341 

 Model predictions are compared to EPA AQS measurements at 44 sites in the domain 342 
(Figure 5-6, Table S2). O3 has low NMB at all sites (NMB = 10.2%) despite high scatter (r2 = 343 
0.30), and has the correct spatial distribution despite poorly predicted NOx. NO, NO2, and CO 344 
prediction error can be positive or negative depending on location. PM measurements are limited 345 
in the domain and will be investigated further in Sections 3.3-3.4. Domain-wide statistics are 346 
provided in Table S2. NOx and VOC concentrations are highest in polluted and high-emitting 347 
regions, and O3 titration by freshly emitted NO results in O3 concentrations that are lower in the 348 
urban core than in surrounding areas. Fine PM (PM1 and PM2.5) are highest in the urban center, 349 
while PM10 concentrations increase over the ocean due to sea spray aerosol. Because of the 350 
potential overprediction of sea spray emissions, it is possible that PM10 is overpredicted. POA is 351 
highest over high-emission regions, while SOA is highest over downwind regions, displaying the 352 
importance of chemical aging during transport.  353 

The impact of transport on modeled pollutant concentration was investigated by 354 
performing a sensitivity simulation with perturbed wind speed. The WRF wind speed was 355 
reduced by 25% (i.e., scaled by a factor of 0.75) in an effort to correct for some of the wind 356 
speed bias (Figure 5). A reduction of 25% was chosen to represent the correction required to 357 
bring modeled wind speed into the range of observed wind speed, as represented by the values in 358 
Table S1. The results are presented below in Figure 7 and Figure 8 and can be compared to the 359 
base case wind speed bias in Figure 5. Wind speed improved appreciably in response to the 25% 360 
reduction in their values throughout the domain. In spite of improved wind speed, modeled O3 361 
and PM2.5 did not improve. This suggests that wind speed does not have a large effect on 362 
modeled pollutant concentrations, and bias in those concentrations is more likely caused by 363 
errors in modeled chemistry and/or emissions.  364 

3.3 Evaluation of Aerosol Chemistry by Ground-Based Observations in Pasadena 365 

 Modeled PM1 is underestimated due primarily to a large underestimation of OA. PM1 366 
mass and composition in Pasadena measured by AMS and predicted by CMAQ are compared in 367 
Figure 9. All predicted inorganic component (SO4, NO3, NH4, Cl) concentrations are smaller by 368 
mass than observed values. Of note, PM1 NO3 is nearly well-predicted (Table S3) despite 369 
gaseous NOx underpredictions (Table S4). The model additionally predicts “other” inorganic 370 
PM1, which includes EC, soil, and crustal elements which is not measured at the Pasadena 371 
ground site. The overall PM1 bias (NMB = -49.1%) is caused by the large underprediction of OA 372 
(NMB = -63.0%). POA is well-predicted (Figure 10A) and the diurnal trend matches predictions 373 
except during late night and early morning hours (Figure 10B). SOA is significantly 374 
underpredicted (Figure 10A) and has an accurate diurnal trend except during early morning 375 
(Figure 10B). During the day when emissions and photochemistry are at maximum, measured 376 
and observed SOA peaks. SOA decreases in the evening as emissions decrease. Despite lower 377 
photochemistry and emissions, SOA (and other pollutant levels) remain high at night due to low 378 
planetary boundary layer (PBL) height. The accurate representation of POA and poorer 379 
representation of SOA suggests that OA is better represented near source regions and diminishes 380 
in its effectiveness with distance from sources. 381 



 Detailed model speciation and source apportionment can be used to understand the major 382 
sources of OA precursors in Pasadena and the error in SOA predictions. Measured POA 383 
comprises cooking-influenced OA (CIOA) and hydrocarbon-like OA (HOA). CIOA peaks 384 
overnight due to the PBL height dilution effect during the day, while HOA remains high 385 
throughout the day due to high local primary emissions sources (Figure 10). Measured SOA 386 
comprises more-oxidized oxygenated OA (MO_OOA), less-oxidized oxygenated OA 387 
(LO_OOA), and LO_OOA associated with organic nitrates (LO_OOA_ON). MO_OOA is 388 
consistently one of the largest OA components, with little diurnal variation. LO_OOA is the 389 
largest SOA component and has a sharp peak midday, consistent with higher oxidation rates 390 
during midday. Modeled alkane-like IVOCs have a similar high peak around midday, although 391 
of a smaller magnitude (Figure 10D). LO_OOA_ON have a small midday peak suggesting some 392 
photochemical production, but the largest contribution from LO_OOA_ON is overnight. This 393 
could be due in part to the PBL effect, and may also be due to overnight NO3 chemistry 394 
producing organic nitrates. This is consistent with the overnight peak of modeled organic nitrates 395 
(Figure 10D) and terpene- and glyoxal-derived SOA (Fig. S11), which are biogenic in nature. All 396 
other modeled SOA species except oligomers have low overnight mass and peak at midday, but 397 
their magnitudes are small which are likely a source of error in the CMAQ chemical mechanism. 398 
CMAQ lacks species which are behaving like LO-OOA, and the inclusion of additional SOA 399 
precursor species could improve SOA predictions (Pye et al., 2022). One potential source of 400 
error could be too-low yields of species that already exist in the model, such as aromatics, which 401 
have not been corrected for gas-phase wall losses (Zhang et al., 2014). Additional sources of 402 
error could include missing emissions, such as from asphalt which would peak during midday 403 
when temperatures are highest, consistent with LO-OOA.  404 

3.4 LA Basin Source Apportionment 405 

The impact of removing each emission source on O3 is presented in Figure 11 and these 406 
changes can be understood by investigating the changes in NOx, VOC, and OH (Fig. S13-15). 407 
The impact of sea spray is small because sea spray emits only particles, so those results are 408 
presented in Fig. S12. O3 decreased everywhere in response to the removal of VCP and biogenic 409 
emissions. VCPs only emit VOCs, and so the elimination of VCP emissions leads to VOC 410 
decreases everywhere. In response, OH and NOx concentrations increase, and the importance of 411 
transport and secondary aging processes is evident by the downwind location of most of the OH 412 
increase. The O3 decrease resulting from VOC decreases is consistent with NOx-saturated 413 
behavior, which has typically described highly-polluted urban areas. The removal of biogenic 414 
emissions has a similar response, as biogenic sources mainly emit VOCs. One exception lies in 415 
that biogenic sources also emit NO, so the VOC:NOx ratio changes less and thus biogenics have 416 
a smaller impact on O3 change than VCPs do. In both cases of VCP and biogenic emissions 417 
removal, the outer regions display less sensitivity as a reduction in VOCs results in a near-zero 418 
change in O3.  419 

On-road vehicles and area+point sources emit NOx, VOC, particles, and other inorganic 420 
gas-phase species. When these emission sources are removed, VOC and NOx concentrations 421 
decrease everywhere. In the urban core where VOC and NOx concentrations are high, OH and O3 422 
increase in response to the combined on-road VOC and NOx reductions. This is characteristic of 423 
the effect of large NOx relative to VOC (Figure 4) reductions under NOx-saturated conditions. In 424 
contrast, the outer regions display behavior closer to NOx-limited behavior, where VOC and NOx 425 
reductions result in OH and O3 reductions. The reductions are small, suggesting that O3 is not 426 



sensitive to emission reductions in these regions. The elimination of area+point source emissions 427 
has a similar impact on O3. OH and O3 increase in the urban core, with a decrease of OH and O3 428 
in the outer regions. The importance of ships and the Long Beach Port is evident, but it is likely 429 
that shipping emissions of NOx are overestimated relative to other area source emissions (Fig. 430 
S8) and so this impact may be overstated in these results. 431 

PM2.5 concentrations decrease everywhere in response to emission reductions (Figure 432 
12). VCPs and biogenic sources emit only gas-phase species, so PM is formed exclusively via 433 
secondary processes. Biogenic PM is formed mostly over high emission areas like mountains, 434 
while VCP-derived PM is found in downwind regions, highlighting the importance of secondary 435 
formation during transport, similar to O3 formation (Figure 11). PM from on-road and area+point 436 
sources is predominantly emitted directly because most of the impact to PM2.5 is located in high 437 
emission regions. This is in spite of increased oxidation capacity in the high-emission regions 438 
(Fig. S13). So if the emissions are removed entirely, as in this study, PM2.5 will decrease. 439 
However, if the emissions were not entirely removed, the increased OH and the nonlinearity of 440 
atmospheric chemistry could lead to increased PM. Sea spray particles are reduced along the 441 
coastline where waves break (Fig. S16).  442 

 Different species impact the PM2.5 change from each emission source (Fig. S17). On-road 443 
sources primarily decrease the NO3 and NH4 components of PM2.5, both by direct emission and 444 
emissions of gas-phase NOx. The reduction of on-road VOCs has relatively little impact on the 445 
organic fraction of PM2.5. Area+point emissions also reduce PM2.5 NO3 and NH4, plus other 446 
direct emissions like POA and elemental carbon (EC). VCPs and biogenic sources emit only 447 
VOCs, so they impact mostly the SOA fraction of PM2.5. The reduction of VOCs leads to 448 
increases in OH and NOx and thus increases of PM2.5 NO3 and NH4.  449 

SOA decreases almost everywhere in response to the removal of emission sources but 450 
can increase in some high-emission regions (Figure 13). The SOA change from VCPs is 451 
downwind of the main emission regions. Biogenic SOA decrease is located mostly in remote, 452 
mountainous regions. Downwind SOA decreases when all on-road emissions are removed, but 453 
SOA in the downtown LA region increases. This occurs because it is NOx-saturated and has 454 
increased OH concentrations (Fig. S13), which increases rates of VOC oxidation and therefore 455 
SOA formation. The SOA decrease from the removal of area+point emission sources is more 456 
widely distributed than the emissions themselves (Fig. S2-7), displaying the importance of SOA 457 
formation during transport. 458 

 SOA speciation varies throughout the domain and is dependent on location-specific 459 
emissions and meteorology (Fig. S18). The largest components of SOA are derived from alkane-460 
like IVOCs, organic nitrates, and monoterpenes. Alkane-like IVOC concentrations are highest 461 
downwind of high-emissions regions, demonstrating the importance of secondary formation 462 
during transport. Organic nitrate concentrations are highest over high-emission areas where VOC 463 
and NOx concentrations are largest. Monoterpene concentrations are more uniform and have both 464 
anthropogenic (i.e., VCP) and biogenic sources. Little SOA throughout the domain is formed 465 
from siloxanes, sesquiterpenes, or cloud processing. Biogenic SOA is primarily derived from 466 
sesquiterpenes, monoterpenes, and isoprene, and these aerosol species dominate over 467 
mountainous and remote areas in the outer regions of the domain. 468 

SOA formation chemistry can be further understood by investigating the source 469 
apportionment of SOA components in Pasadena. The impact of removing each emission source 470 



on each modeled SOA component is given in Table 2. The main component of SOA—alkane-471 
like IVOCs—originates particularly from VCPs and area+point emission sources. Alkane-like 472 
IVOCs are emitted from VCPs as low-volatility gases, while they are evaporated and oxidized 473 
POA from area+point emission sources. Organic nitrates have important contributions from 474 
VCPs and area+point emission sources, but are mostly formed from biogenic precursors. Despite 475 
VCP, biogenic, and area+point emission sources being highest during daytime, organic nitrates 476 
peak overnight due to nighttime NO3 chemistry. In general, our modeling suggests SOA in LA is 477 
mostly driven by VCP, area, and point emission sources. 478 

4. Conclusions 479 

This study presents a new model framework to simulate air quality in Los Angeles. Past 480 
modeling studies of LA focus on 2010 to overlap with the CalNex campaign, and few exist 481 
which focus on SOA sources and speciation. We developed state-of-the-science inputs of 482 
meteorology, emissions, and boundary conditions, and show that these inputs are comparable to 483 
observations. Emissions are separated into 3 anthropogenic categories—VCP, on-road, and 484 
area+point—and 2 natural categories—gases and sea spray—allowing for source apportionment 485 
studies. 486 

The model is set up for April 2020 and the results are compared to observations, aiming 487 
to better understand the chemistry leading to pollutant formation. Temperature and O3 are very 488 
well-predicted, but NOx and PM are underpredicted. In particular, OA is underpredicted in 489 
Pasadena when compared to AMS measurements. While POA is well-predicted, SOA is greatly 490 
under-predicted. The main components of modeled SOA are alkane-like IVOCs and organic 491 
nitrates, while other categories of SOA are likely underpredicted; for example, oxygenated 492 
IVOCs which have not been well-classified in laboratory settings.  493 

This study stresses that improved model predictions will require updated chemistry and 494 
emissions. The chemistry of SVOCs is not well-understood, and better representations should be 495 
included in CMAQ as they are developed. SVOCs are also typically not represented in emission 496 
inventories, and while the VCP inventory used here utilizes new SVOC speciation profiles, the 497 
other categories of emissions did not specifically study SVOCs. The chemistry of oxygenated 498 
species has not been extensively studied, and should be focused on in future work due to the 499 
prevalence of oxygenated emissions and atmospheric constituents (Pennington et al., 2021). 500 
Some emissions from anthropogenic sources are likely underpredicted. For example, boats are 501 
estimated to emit more NOx than off-road sources, but off-road sources should likely be the main 502 
area source of NOx (Khare & Gentner, 2018). Also, many forms of asphalt emissions are not 503 
included in VCP or area sources, but likely will contribute significant SOA and therefore reduce 504 
modeled SOA bias (Khare & Gentner, 2018). 505 

The source apportionment results convey important qualities about the VOC-NOx regime 506 
of the LA atmosphere. The urban core of LA demonstrates NOx-saturated behavior: NOx 507 
reductions lead to O3 increase, while VOC reductions lead to O3 decrease. Outside of the urban 508 
core, O3 decreases in response to any level of either NOx or VOC removal, suggesting a regime 509 
that is less NOx-saturated than the urban region, such as a regime lying close to the O3-NOx-510 
VOC ridgeline in the VOC-sensitive regime (Seinfeld & Pandis, 2016). Reducing O3 is a 511 
consistent goal for policymakers, and this work shows that O3 in Los Angeles is reduced by the 512 
removal of VOCs. NOx emission decreases remain important, as these decreases will move the 513 
Basin from a NOx-saturated regime closer to a NOx-sensitive regime. However, NOx reductions 514 



without concurrent or larger reductions in VOC concentrations will make O3 pollution worse 515 
until the NOx-sensitive regime is reached. VCPs emit the highest amount of VOCs from 516 
anthropogenic activities and thus may be particularly effective to target for reducing O3. It is also 517 
important to consider the spatial distribution of emissions and reduction policies. Reducing NOx 518 
and/or VOC emissions in the outer regions of the domain will have a lesser impact than 519 
reductions in the urban core, or may have an opposite effect, as demonstrated in this study. The 520 
increased oxidative capacity of the NOx-saturated regions also has an impact on SOA formation 521 
and the formation of secondary inorganic components of PM. Focusing on emissions in the 522 
urban core is critical and will affect downwind regions. It should be noted that this study was 523 
performed in the spring season, which is not peak ozone season. Thus, results may differ in the 524 
summer months and further studies should investigate this period. 525 

 In Part 2 (Pennington et al., in prep), the new model framework is used to investigate 526 
future emission scenarios involving VCP and on-road vehicle emissions during the 2020 527 
lockdown of the pandemic. VCP emissions have been quantified in multiple studies (i.e., Seltzer, 528 
Pennington, et al., 2021; McDonald et al., 2018), but none of these studies have investigated the 529 
implications of future VCP emissions. We reduce VCP emissions to investigate the impact on 530 
O3, NOx, PM, and SOA speciation. Additionally, we run the model in a “non-COVID” scenario, 531 
where on-road emissions are represented without COVID-induced VMT reductions. In this way, 532 
the impact of emissions versus meteorology on 2020 air quality can be distinguished. 533 
Understanding these possible outcomes can shape informed policy decisions. 534 
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 827 
Figure 1: Model framework describing the inputs to CMAQ, CMAQ configuration, 828 

observational data, and modeling domain. 829 

 830 

 831 

 832 
Figure 2: A) Three nested domains used in the WRF simulations. d01 has a horizontal resolution 833 
of 16 km, d02 has a resolution of 4 km, and d03 has a resolution of 1 km. B) California 4 x 4 km 834 

coarse-resolution domain. C) LA 1 x 1 km fine-resolution domain. Thick black lines are state 835 
borders and thin black lines are county borders. Black dots represent EPA AQS sites and red 836 

lines are freeways. 837 

 838 

 839 



 840 
Figure 3: Hourly (gray), daily-averaged (blue), and weekly-averaged (red) VMT data (Caltrans, 841 

2020) for A) heavy duty vehicles and B) light duty vehicles. VMT averaged January 1– March 1, 842 
2020 is represented by the dashed black line. C) Weekly-averaged VMT divided by the January–843 
March mean for heavy duty (dark green) and light duty (light green) vehicles. The gray shaded 844 

area covers the modeling period: April 1–30, 2020. 845 
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 847 

 848 



Figure 4: Diurnal variations of emission rates averaged April 1–30, 2020 and summed over the 849 
LA domain (with all ocean-covered cells removed) from all emission sources for A) CO, B) 850 

NH3, C) NOx, D) PM, E) SO2, F) VOC. 851 



 852 
Figure 5: Fractional NMB of pollutants (rows) at all EPA AQS sites (columns) in the LA domain using daily-average values April 1–853 

30, 2020. Empty boxes represent sites without measurements of the given pollutant.854 



 855 

 856 
Figure 6: Time-averaged (April 1–30, 2020) CMAQ predicted concentration of A) O3 (ppb), B) 857 
NOx (ppb), C) total VOC (ppm), D) PM1 (µg m-3), E) PM2.5 (µg m-3), F) PM10 (µg m-3), G) POA 858 

(µg m-3), and H) SOA (µg m-3). Circles depict the average concentration measured at the EPA 859 
AQS site at that location. There are no AQS measurements of VOCs, PM1, POA, or SOA. 860 



 861 
Figure 7: Fractional NMB of pollutants (rows) at all EPA AQS sites (columns) in the LA domain using daily-average values April 1–862 

30, 2020. Empty boxes represent sites without measurements of the given pollutant. Results presented here use default wind speed 863 
scaled by a factor of 0.75.864 



 865 
Figure 8: Daily-averaged modeled versus observed values of (a) wind speed, (b) PM2.5, and (c) 866 
O3. Black markers and lines represent data from the “base case” wind speed simulations. Red 867 
markers and lines represent data from the scaled (i.e. scaled by 0.75) wind speed simulations. 868 

Gray line represents the 1:1 modeled:observed line. 869 

 870 

 871 
Figure 9: PM1 composition averaged April 8–30, 2020 in Pasadena A) predicted by CMAQ and 872 
B) measured by AMS. Values inside the pie represent average mass values (µg m-3) and values 873 

outside the pie represent the percentage of the total mass of each component. 874 

 875 



 876 
Figure 10: A) Modeled (solid) and measured (dashed) POA (gray) and SOA (green) diurnal 877 

variation in Pasadena. B) Modeled (solid) and measured (dashed) POA (gray) and SOA (green) 878 
diurnal variation in Pasadena. Surface concentration was normalized to the daily-maximum 879 
surface concentration. C) PMF-calculated POA and SOA speciation in Pasadena. D) Model-880 

predicted POA and SOA speciation in Pasadena. All diurnal trends calculated April 8–30, 2020. 881 
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 883 



Figure 11: Percent change in average (April 1–30, 2020) predicted O3 concentration averaged 884 
April 1–30, 2020 caused by removing each emission source: A) VCP, B) biogenic, C) on-road 885 

vehicles, and D) area+point. 886 

 887 

 888 
Figure 12: Percent change in average (April 1–30, 2020) predicted PM2.5 concentration caused 889 

by removing each emission source: A) VCP, B) biogenic, C) on-road vehicles, and D) 890 
area+point. 891 
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 894 
Figure 13: Percent change in average (April 1–30, 2020) predicted SOA concentration caused by 895 
removing each emission source: A) VCP, B) biogenic, C) on-road vehicles, and D) area+point. 896 

 897 

Table 1: Statistical analysis of daily-averaged CMAQ predictions for the (top) CA coarse-898 
resolution domain and (bottom) LA Basin subset of the California domain, compared to EPA 899 

AQS monitoring site data. 900 

 O3 CO NOx SO2 PM2.5 PM10 

California Coarse-Resolution Simulation 

Number 
of Data 
Points 

341 248 310 62 186 93 

Observed 
Mean 32.6 ppb 221 ppb 9.09 ppb 0.095 ppb 5.29 µg m-3 17.0 µg m-3 

Modeled 
Mean 33.1 ppb 140 ppb 7.88 ppb 0.217 ppb 7.21 µg m-3 12.1 µg m-3 

MB 0.44 ppb -81 ppb -1.20 ppb 0.123 ppb 1.92 µg m-3 -4.87 µg m-3 

NMB 1.36% -36.5% -13.2% 129% 36.3% -28.7% 

RMSE 6.37 ppb 99.2 ppb 8.07 ppb 0.160 ppb 5.41 µg m-3 10.5 µg m-3 

r2 0.23 0.40 0.37 0.15 0.51 0.28 

Los Angeles Subset of California Coarse-Resolution Simulation 



Number 
of Data 
Points 

126 134 155 31 36 33 

Observed 
Mean 33.3 ppb 242 ppb 13.2 ppb 0.090 ppb 8.60 µg m-3 21.2 µg m-3 

Modeled 
Mean 29.5 ppb 170. ppb 12.6 ppb 0.223 ppb 18.2 µg m-3 15.5 µg m-3 

MB -3.77 ppb -72.2 ppb -0.62 ppb 0.133 ppb 9.65 µg m-3 -5.70 µg m-3 

NMB -11.3% -29.8% -4.72% 147% 112% -26.8% 

RMSE 7.06 ppb 85.0 ppb 10.8 ppb 0.17 ppb 11.9 µg m-3 8.36 µg m-3 

r2 0.36 0.52 0.25 0.26 0.49 0.66 

 901 

 902 

Table 2: Mass concentration change (ng m-3) of SOA components averaged over the LA domain 903 
when each emission source is removed. 904 

ng m-3 VCP Onroad Biogenic Sea Spray Area+Point 

Alkane-like IVOCs -36.03 -4.89 1.29 -0.01 -23.76 

Oxygenated IVOCs -4.61 -0.17 0.03 0.002 -0.38 

Siloxanes -1.10 -0.09 0.006 -7.3 x 10-4 -0.27 

Glyoxal -1.01 -1.05 -2.11 -0.10 -2.88 

Other anthropogenic -3.69 -0.71 -1.10 0.07 -2.63 

Isoprene -0.41 -0.29 -5.24 6.7 x 10-4 -1.03 

Monoterpenes -2.41 0.56 -18.36 -0.01 -1.40 

Sesquiterpenes -0.13 -0.05 -0.15 -3.4 x 10-4 -0.24 

Organic nitrates -10.52 -5.64 -42.53 0.14 -16.08 

Oligomers -0.83 -0.30 -1.35 7.9 x 10-4 -0.90 

Cloud-processed -0.10 -0.10 -0.15 -1.8 x 10-4 -0.26 

 905 


