Preprints
https://doi.org/10.5194/egusphere-2023-573
https://doi.org/10.5194/egusphere-2023-573
20 Apr 2023
 | 20 Apr 2023

Evaluation of hygroscopic cloud seeding in warm rain process by a hybrid microphysics scheme on WRF model: a real case study

Kai-I Lin, Kao-Shen Chung, Sheng-Hsiang Wang, Li-Hsin Chen, Yu-Chieng Liou, Pay-Liam Lin, Wei-Yu Chang, Hsien-Jung Chiu, and Yi-Hui Chang

Abstract. To evaluate the hygroscopic cloud seeding in reality, this study develops a hybrid microphysics scheme on WRF model, WDM6–NCU, which involves 43 bins of seeded cloud condensation nuclei (CCN) in the WDM6 bulk method scheme. This scheme can describe the size distribution of seeded CCNs and explain the process of the CCN imbedding, cloud and raindrop formation in detail. Furthermore, based on the observational CCN size distribution applied in the modelling, a series of tests on cloud seeding was conducted during the seeding periods of 21–22 October, 2020 with stratocumulus clouds. The model simulation results reveal that seeding at in-cloud regions with an appropriate CCN size distribution can yield greater rainfall and that spreading the seeding agents over an area of 40–60 km2 is the most efficient strategy to create a sufficient precipitation rate. With regard to the microphysical processes, the main process that causes the enhancement of precipitation is the strengthening of the accretion process of raindrops. In addition, hygroscopic particles larger than 0.4 μm primarily contribute to cloud-seeding effects. The study results could be used as references for model development and warm cloud seeding operations.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

20 Sep 2023
Evaluation of hygroscopic cloud seeding in warm-rain processes by a hybrid microphysics scheme using a Weather Research and Forecasting (WRF) model: a real case study
Kai-I Lin, Kao-Shen Chung, Sheng-Hsiang Wang, Li-Hsin Chen, Yu-Chieng Liou, Pay-Liam Lin, Wei-Yu Chang, Hsien-Jung Chiu, and Yi-Hui Chang
Atmos. Chem. Phys., 23, 10423–10438, https://doi.org/10.5194/acp-23-10423-2023,https://doi.org/10.5194/acp-23-10423-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This study develops a hybrid microphysics scheme to enable the complex model simulation of cloud...
Share