Preprints
https://doi.org/10.5194/egusphere-2023-563
https://doi.org/10.5194/egusphere-2023-563
09 May 2023
 | 09 May 2023

CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery

Anna Vaughan, Gonzalo Mateo-García, Luis Gómez-Chova, Vít Růžička, Luis Guanter, and Itziar Irakulis-Loitxate

Abstract. We present a deep learning model, CH4Net, for automated monitoring of methane super-emitters from Sentinel-2 data. When trained on images of 21 methane super-emitters from 2017–2020 and evaluated on images from 2021 this model achieves a scene-level accuracy of 0.83 and pixel-level balanced accuracy of 0.77. For individual emitters, accuracy is greater than 0.8 for 17 out of the 21 sites. We further demonstrate that CH4Net can successfully be applied to monitor two superemitter locations with similar background characteristics not included in the training set, with accuracies of 0.92 and 0.96. In addition to the CH4Net model we compile and open source a hand annotated training dataset consisting of 925 methane plume masks.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

03 May 2024
CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery
Anna Vaughan, Gonzalo Mateo-García, Luis Gómez-Chova, Vít Růžička, Luis Guanter, and Itziar Irakulis-Loitxate
Atmos. Meas. Tech., 17, 2583–2593, https://doi.org/10.5194/amt-17-2583-2024,https://doi.org/10.5194/amt-17-2583-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Methane is a potent greenhouse gas responsible for around 25 % of global warming since the...
Share