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Itziar Irakulis-Loitxate5,7

1 Computer Laboratory, University of Cambridge, UK
2 Trillium Technologies Ltd., London, UK
3 Image Processing Laboratory, University of Valencia, Valencia, Spain
4 University of Oxford, Oxford, UK
5 Universitat Politècnica de València, Valencia, Spain
6 Environmental Defense Fund, Reguliersgracht 79, 1017 LN Amsterdam, the Netherlands
7 International Methane Emission Observatory, United Nations Environment Program, Paris, France.

Correspondence: Anna Vaughan (av555@cam.ac.uk)

Abstract. We present a deep learning model, CH4Net, for automated monitoring of methane super-emitters from Sentinel-2

data. When trained on images of 23 methane super-emitter locations from 2017-2020 and evaluated on images from 2021 this

model detects 84% of methane plumes compared with 24% of plumes for a state-of-the-art baseline while maintaining a similar

false positive rate. We present an in depth analysis of CH4Net over the complete dataset and at each individual super-emitter

site. In addition to the CH4Net model we compile and open source a hand annotated training dataset consisting of 925 methane5

plume masks as a machine learning baseline to drive further research in this field.

1 Introduction

As a potent greenhouse gas responsible for approximately 25% of warming since the industrial revolution (Stocker, 2014;

Varon et al., 2021) with rapidly increasing atmospheric concentrations (Tollefson, 2022), curbing methane emissions is an

important step in combating the climate crisis. Anthropogenic emissions emanate from diverse sources, principally associated10

with livestock, agriculture, landfills, and the fossil fuel industry (oil and gas extraction and coal mining) (Saunois et al., 2020;

Maasakkers et al., 2022). Of particular interest for rapid suppression of emissions are super-emitters, defined to be sources in

the top 1% of global anthropogenic methane emitters, corresponding to an approximate flow rate of 25 kg/h (Zavala-Araiza

et al., 2017). These sources contribute a substantial fraction of all methane emissions in the oil and gas sector (Alvarez et al.,

2018), providing an opportunity to rapidly limit emissions with mitigation at a reasonable cost (Lauvaux et al., 2022).15

Over the past five years, remote sensing instruments have been extensively utilised for detecting and monitoring super-

emitters (Irakulis-Loitxate et al., 2022; Lauvaux et al., 2022; Varon et al., 2021; Maasakkers et al., 2022; Irakulis-Loitxate

et al., 2021). To monitor these point sources, it is necessary to use point source imagers, instruments with a spatial resolution

of less than 60 m (Jacob et al., 2022). In addition to this, the ideal instrument would also have global coverage, rapid revisit
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time, and high spectral resolution in the 1700 and 2300 nm short wave infrared spectral windows where methane absorption is20

the strongest. Unfortunately, no currently available instrument has all of these desired characteristics.

Hyperspectral instruments, for example PRISMA and EnMAP, produce more accurate methane retrievals because they are

more sensitive to small concentrations (Jacob et al., 2022; Guanter et al., 2021). However, they have limited swaths (30km)

and image acquisitions need to be tasked –request to the ground segment to acquire a particular area of interest– therefore they

have limited data availability.25

An alternative approach is to utilise multispectral imagery such as Sentinel-2 (Drusch et al., 2012) and Landsat-8 and 9

(Roy et al., 2014). These instruments have relatively rapid revisit time (approximately five days for Sentinel-2 and 16 days for

Landsat at the equator) and high (20-30m) spatial resolution. They, however, have significantly degraded spectral resolution

compared to hyperspectral instruments, resulting in a lower sensitivity to methane (Sherwin et al., 2023). Recent works have

demonstrated successful detection and quantification of large plumes from Sentinel-2 imagery (Varon et al., 2021; Ehret et al.,30

2022; Irakulis-Loitxate et al., 2022). These approaches are based on temporal differences and ratios between Sentinel-2 bands

11 (1560–1660 nm) and 12 (2090–2290 nm). Band 12 strongly overlaps with the methane absorption feature, while band 11

provides an estimate of the background at a relatively similar wavelength. Varon et al. (2021) present a series of approaches

differencing between S2 bands 11 and 12 to quantify methane emissions. Their most successful approach quantifies emissions

down to a rate of 3 t/h (tons of CH4 emitted per hour) by taking the difference of bands 11 and 12 comparing two consecutive35

passes, however, remains sensitive to surface artefacts. Ehret et al. (2022) take a similar approach projecting onto a time series

of 30 previous images with two-stage linear regression and a manual verification step to identify the presence of false positives

caused by surface artefacts. There are two significant limitations with these methods. The first and most important is that they

remain sensitive to surface artifacts, often requiring manual verification. The second is that a time series of images is required.

In this study, we ask the question: “for a known set of methane super-emitters, is it possible to accurately identify plumes40

in Sentinel-2 imagery to monitor future emissions?”. This has the important application of assessing whether mitigation work

on existing emissions has been successful. We train a machine learning model, CH4Net, to segment methane plumes from a

single image. In contrast to previous methods, CH4Net learns background characteristics of the sites by processing multiple

passes over each location during training without the need for a time series of previous images, reference image, or manual

verification step. Machine learning has been successfully applied to segmenting plumes in hyperspectral data (Groshenry et al.,45

2022; Jongaramrungruang et al., 2022; Schuit et al., 2023), however, this methodology has not yet been applied to Sentinel-2

imagery as a sufficiently large dataset of verified plumes was unavailable. We first collect and annotate a dataset of methane

plumes from known super-emitters in Turkmenistan (Irakulis-Loitxate et al., 2022), a semi-arid region with strong emissions

providing the best-case scenario for multispectral methane imaging. This is used to train a deep learning model to segment

methane plumes from the background. We evaluate this model for a future time period for the training locations. In addition,50

we show that the model can successfully be applied to monitor a super-emitter at a new location in the same region unseen at

training time. The aims of this paper are as follows:

1. Collect and label a machine learning dataset of methane plumes in Sentinel-2 imagery.
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2. Develop an automated plume segmentation system. In contrast to existing works, this is a fully automated system that

does not require a time series of Sentinel-2 images or identification of a reference image at test time.55

3. Apply this system to track emissions from a selection of known methane super-emitters during a future time period.

Section 2 presents an overview of dataset collection, the CH4Net architecture and training procedure. Results are presented

in Section 3 and 4, with conclusions and a discussion in Section 5.

2 Methods

2.1 Dataset collection and processing60

We first collect and manually annotate a dataset of methane plumes from Sentinel-2 images from 2017-2021 consisting of

10,046 0.01×0.01 degree images ( 200×200 pixels) from Sentinel-2 L1C scenes centred on 23 known super-emitter locations

in Turkmenistan (Irakulis-Loitxate et al., 2022). Several locations identified are in close proximity to each other, and are

combined into a single scene. For a map and complete list of included sites, see Figure 1 and Table 1. For each site all available

images were downloaded using the Sentinel Hub API, each consisting of the 13 scaled and harmonized Sentinel-2 channels65

(Sinergise Ltd., 2023). Images containing clouds are deliberately not discarded to allow the model to learn a mapping robust to

these features without the need for costly pre-processing steps. We note that the model output is therefore predicting whether

a plume is visible in the scene or not; it is possible that an emission may be present but is covered by clouds. Cloudy scenes

could easily be discarded if necessary for a particular application by applying a cloud detection model (Jeppesen et al., 2019;

López-Puigdollers et al., 2021; Aybar et al., 2022).70

We frame methane detection as a binary segmentation problem, where a pixel is classified as either 0, if not part of a plume,

or 1, if part of a plume. To manually label the plumes, enhanced images were created for each time-step using the multi-band

multi-pass (MBMP) method developed by Varon et al. (2021). A clear-sky reference image was chosen for each location, with

the multi-band multi-pass image given by

MBMP =
cR12 −R11

R11
− c′R′

12 −R′
11

R′
11

75

where R11 and R12 are the raw Sentinel-2 band 11 and 12 observations for the current image, R′
11 and R′

12 are the raw Sentinel-

2 band 11 and 12 observations for the reference image, and c (c′) is calculated by least-squares regression of R11 against R12

(R′
11 against R′

12) for all pixels. These images were used to manually identify and label the extent of the methane plumes for

each time-step. For examples of the MBMP images and corresponding hand-labelled plumes, see Figure 2. It is emphasized

that these MBMP images are used as an auxiliary tool to guide annotation only and are not included as input predictors to the80

final model.

Each data point consists of the 13 Sentinel-2 bands interpolated to a common resolution of 10m together with the hand-

labelled plume mask for a total of 925 scenes containing a plume and 9121 without. The resolution of 10m is chosen as adding

the highest resolution RGB channels improves the model performance, so all data is interpolated to this resolution to avoid loss
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Figure 1. Locations of the 23 super emitters included in the dataset showing the study region shaded in red and precise locations (inset).

Figure 2. Examples of the MBMP images and corresponding hand annotated masks.

of information. We emphasize that only a single timestep is required at test time, unlike in previously proposed methods where85

multiple timesteps are required. This removes the requirement to identify a clear sky reference image or series of images, which

typically requires manual selection, and is simpler to deploy and maintain.

This dataset is split into train, test and validation sets:

– train: all images from 2017-2020 excluding the validation set
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Figure 3. Schematic of the CH4Net model architecture showing the Sentinel-2 bands input to the UNet and probabilistic output compared

to the hand-annotated mask.

– validation: a held out randomly subsampled selection of 256 train images stratified by plume presence.90

– test: all images from 2021

The validation split is used for model selection and we use the test set to report results. As a baseline, we consider a MBMP

approach based on that outlined by (Irakulis-Loitxate et al., 2022). To calculate the baseline prediction the multiband-multipass

image is constructed for each image. This is denoised using a Gaussian filter, then thresholded to identify clusters of pixels

with values more than two standard deviations below than the mean. Resulting clusters are kept as a predicted plume if they95

contain more than 115 pixels.

2.2 Model architecture and training

The detection model uses a simple and flexible UNet architecture Ronneberger et al. (2015) consisting of 4 encoder blocks

(2D convolution layer, batch norm, ReLU activation, 2D convolution layer, batch norm ReLU activation, maxpool) followed

by four decoder blocks (transposed 2D convolution layer, 2D convolution layer, batch norm, ReLU activation, 2D convolution100

layer, batch norm ReLU activation) with skip connections between blocks of corresponding scale. Channel output dimensions

for each of these blocks are {128,256,512,512,256,128,64,128,1} with kernel sizes of 3 for all convolution layers and 2 for

the max pooling layers. For a complete schematic of the model see Figure 3. This model takes the Sentinel-2 bands as input

and outputs a pixelwise prediction of the probability (between 0 and 1) of the pixel being part of a methane plume.
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The UNet is trained on the training dataset described above with Binary Cross-Entropy loss, Adam optimisation (Kingma105

and Ba, 2014) and a learning rate of 1e− 4 for 250 epochs. As the dataset is unbalanced with significantly more negative than

positive images, at each epoch n negative images are randomly sampled, where n is the total size of the positive image set. To

prevent over-fitting, augmentation is applied by cropping a random 100x100 pixel scene from the larger image tiles. In order

to investigate the optimal predictor set, the UNet is trained with both bands 11 and 12 only as predictors (11+12), and all bands

(ALL).110

3 Results: All images

We first evaluate the skill of CH4Net at correctly identifying whether a given image contains a methane plume. This is referred

to as scene-level prediction, as opposed to pixel-level prediction. For scene-level prediction the probabilistic predictions are

transformed to a binary prediction by defining a methane plume as a contiguous region of greater than 115 pixels with proba-

bility greater than or equal to 0.25. The 115 pixel threshold is chosen as this is the size of the smallest plume contained in the115

training set, while the 0.25 threshold is selected to maximize the balanced accuracy score. A scene is classified as 1 (containing

a plume) if such a feature is present and 0 otherwise.

Accuracy, balanced accuracy, precision, recall, false positive rate, and false negative rate for both the ALL and 11+12

experiments over the 2021 images are shown in the upper portion of Table 1. The model with all bands included as predictors

outperforms that with only bands 11 and 12, indicating that other bands add value for methane detection, or for the reduction120

of false positives. Results over the test set for the model with all bands included (bands 11+12 only, the MBMP baseline)

are accuracy 0.80 (0.69, 0.50), balanced accuracy 0.76 (0.75, 0.71), precision 0.30 (0.24,0.11), recall 0.84 (0.61,0.24), false

positive rate 0.24 (0.23,0.23) and false negative rate 0.16 (0.39,0.76). The model with all bands included outperforms that with

only bands 11 and 12 on all metrics except for false positive rate which is slightly higher. CH4Net outperforms the baseline

substantially on all metrics except for the false positive rate which is very slightly higher for ALL and the same for 11+12. The125

new model detects 83% of all plumes in the validation set compared to 24% for the baseline whilst producing a similar number

of false positives, a large improvement in performance.

A more challenging task is to assess prediction skill at a pixel level, quantified by balanced accuracy and IoU over all pixels.

Results on these metrics are shown in the lower section of Table 1. The model trained with all bands achieves a balanced

accuracy (IoU) of 0.66 (0.57) compared to 0.66 (0.55) for the model with just bands 11 and 12, indicating that inclusion of130

other channels also improves performance at the pixel level. Both CH4Net models outperform the baseline, which achieves a

balanced accuracy of 0.51 and IoU of 0.50.
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Table 1. Scene and pixel level metrics over the test dataset (year 2021) for CH4Net trained with the complete 13 band predictor set (ALL),

the bands 11 and 12 only predictor set (11+12) and MBMP baseline.

Scene level metrics

ALL 11+12 MBMP Baseline

Accuracy 0.80 0.69 0.50

Balanced accuracy 0.76 0.75 0.71

False positive rate 0.24 0.23 0.23

False negative rate 0.16 0.39 0.76

Precision 0.30 0.24 0.11

Recall 0.84 0.61 0.24

Pixel level metrics

Balanced accuracy 0.66 0.66 0.51

IoU 0.57 0.55 0.50

4 Results by site

For a more nuanced assessment of skill at each individual location in the training set we produce predictions for all available

images during the 2021 test period at each of the 23 sites. Results for each site are presented in Table 2. In all cases, these are135

generated using the optimal predictor set with all bands (ALL).

At a scene level, high accuracy is observed for a majority of sites, with accuracy greater than 75% for 19 out of 23 sites, and

ranging from 0.57 to 0.71 for remaining sites. False positive rates range from 0.01 to 0.4, and false negative rates from 0.0 to

0.75, though are below 0.2 for a majority of sites.

At a pixel level, balanced accuracy ranges from 0.62 to 1.0, with 17 out of the 23 sites above 0.75. IoU (only defined for140

cases where at least one mask is available) ranges from 0.54 to 0.68.

To better understand the successes and limitations of this approach, we present several case studies, two of locations with

excellent prediction quality (sites T7 and T17) and two with poor prediction quality (sites T1 and T11).

4.1 Case studies: sites T7 and T17 (high quality predictions)

For example, consider site T7 where the prediction system has a balanced accuracy score of 0.83, with false positive rate of145

0.20 and false negative rate of 0.12 for a site where 39% of scenes in the test set contain an emission. Figure 4 compares

predictions to the observed values for scene-level classification. Overall predictions are in good agreement with observations,

correctly identifying two emissions early in 2021 followed by a period of high emission activity which subsides towards the

end of the year.

Predictions at site T17 provide an example of correct prediction of multiple sporadic emission events over the course of the150

2021 year. For this site the scene level accuracy is 0.90, false positive rate 0.11, false negative rate 0.0 and pixel level balanced
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Table 2. CH4Net performance evaluated on all available images at the 23 super-emitter sites for 2021,showing (L-R) site ID, site longitude,

site latitude, percentage of images containing a plume, scene level accuracy, scene level precision, scene level recall, false positive rate, false

negative rate, pixel level balanced accuracy and pixel level balanced intersection over union (IoU)

Site longitude latitude % positive Accuracy Precision Recall FPR FNR Balanced accuracy (pixel) IoU (pixel)

T1 53.6367 39.49687 17.0% 0.57 0.27 0.92 0.5 0.08 0.85 0.55

T2 53.77274 39.52148 0.0% 0.94 - - 0.06 - 1.0 -

T3 53.77903 39.52137 0.0% 0.9 - - 0.1 - 1.0 -

T4 53.74292 39.4739 1.0% 0.9 0.06 1.0 0.1 0.0 0.93 0.55

T5 53.78836 39.46428 1.0% 0.75 0.05 1.0 0.26 0.0 0.62 0.51

T6 53.77502 39.4616 38.0% 0.9 0.8 0.96 0.14 0.04 0.81 0.68

T7 53.77921 39.45965 39.0% 0.83 0.74 0.88 0.2 0.12 0.75 0.6

T8 53.68117 39.44955 0.0% 0.93 - - 0.07 - 1.0 -

T9 53.76506 39.36045 23.0% 0.71 0.4 0.47 0.21 0.53 0.58 0.53

T10 53.83516 39.38584 0.0% 0.93 - - 0.07 - 1.0 -

T11 53.87509 39.35498 8.0% 0.84 0.17 0.25 0.11 0.75 0.6 0.55

T12 54.23498 38.85515 15.0% 0.85 0.5 0.27 0.05 0.73 0.59 0.56

T13 54.20931 38.57959 0.0% 0.82 - - 0.18 - 0.99 -

T14 54.20049 38.55747 37.0% 0.75 0.62 0.85 0.3 0.15 0.77 0.63

T15 54.20393 38.51871 0.0% 0.95 - - 0.05 - 1.0 -

T16 54.19769 38.50798 0.0% 0.95 - - 0.05 - 1.0 -

T17 54.19764 38.49393 10.0% 0.9 0.5 1.0 0.11 0.0 0.97 0.65

T18 54.02832 38.33078 16.0% 0.75 0.39 0.92 0.28 0.08 0.76 0.55

T19 54.03149 38.36017 0.0% 0.6 - - 0.4 - 0.98 -

T20 53.89857 37.90825 16.0% 0.77 0.41 0.92 0.26 0.08 0.75 0.59

T21 53.91623 37.9286 1.0% 0.99 0.5 1.0 0.01 0.0 0.71 0.63

T22 53.92431 37.92913 23.0% 0.75 0.48 0.71 0.23 0.29 0.63 0.54

T23 53.92702 37.71665 0.0% 0.6 - - 0.4 - 0.98 -

accuracy and IoU is 0.97 and 0.65, respectively. A more detailed view of predictions at a pixel scale is shown in Figure 5.

This shows the observation mask compared to prediction overlaid on the RGB imagery for every available Sentinel-2 image in

2021. Both the occurrence and morphology of each plume is largely well captured, though two false positives are observed.

4.2 Case studies: sites T1 and T11 (low quality predictions)155

We next examine two cases with comparatively poor prediction quality. Results for site T1 are the worst out of all locations

with at least one emission during 2021, with an accuracy of 0.57, false positive rate of 0.5 and false negative rate of 0.08. A

time series of predictions compared to observations is shown in the upper panel of Figure 6. This demonstrates that the model
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Figure 4. Time series of predictions for sites T7 (top) and T17 (bottom) over the test year (2021). Green (red) lines indicate that a plume

was (not) observed or predicted. Observed ground truth values are shown in the upper time series and CH4Net predictions on the lower time

series.

produces a high number of false positives, particularly through the second half of the year. Closer examination of individual

predictions images indicates that there are three primary sources of false positives. Artifacts in the image (e.g., Fig. 7(a)) and160

thin clouds (e.g., Fig. 7(b)) produce occasional false positives throughout the time series. During the second half of 2021

multiple false positives are produced coinciding with a bright surface artifact visible in both the RGB and MBMP images (e.g.,

Fig. 7(c)). It is possible that this is a methane emission source, however, it is not labelled as such during the manual labelling as

either the wind speed is too low to produce a clear plume or alternatively the emissions are weak with only the area immediately

at the source detectable with the limited detection capability of Sentinel-2.165

Site T11 is an example of a site with multiple false negatives. For this location, the scene accuracy is 0.84, with a false

positive rate of 0.11 however the false negative rate is the highest for all sites at 0.75. The prediction time series for this site is

shown in the lower panel of Figure 6. Here the false negatives appear to arise in cases with heterogeneous background (which

also often results in an increase in false positives). This is consistent with recent work indicating that the detection capability

of Sentinel-2 is significantly lower in cases with a strongly heterogeneous background (Gorroño et al., 2023).170

5 Conclusions

We have implemented CH4Net, the first fully automated system for monitoring known methane super-emitter sites, and pro-

duced the first large scale dataset of methane plumes in Sentinel-2 imagery. Model skill was assessed on multiple scene-level
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Figure 5. CH4Net pixel-level predictions for every image over site T17 during 2021. For each time-step the observed mask (left) and

probabilistic prediction (right) are shown overlaid on the RGB image.
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Figure 6. Time series of predictions for sites T1 (top) and T11 (bottom) over the test year (2021). Green (red) lines indicate that a plume

was (not) observed or predicted. Observed ground truth values are shown in the upper time series and CH4Net predictions on the lower time

series.

and pixel-level metrics, demonstrating that overall predictions are of high quality, though several sources of false positives

and false negatives remain to be addressed. CH4Net comprehensively outperforms the multiband multipass baseline on all175

metrics except false positive rate where both methods perform similarly. These results offer promise for implementing ongoing

tracking of known sources to mitigate emissions and provide early warnings when an event is observed.

In contrast to existing methods for methane plume detection in Sentinel-2 images (Varon et al., 2021; Ehret et al., 2022;

Irakulis-Loitxate et al., 2022), this model requires only a single pass to generate predictions at test time and is fully automated.

This creates a significant advantage in allowing large volumes of data to be processed without requiring costly manual verifi-180

cation. We believe that this is a significant breakthrough since, as it has been shown in other works (e.g. Irakulis-Loitxate et al.

(2022)), emissions from a single site often recur over a long period of time. With this model we can envision a system that,

when a new location is added, we can label past data, retrain the model and use it to produce notifications of new plumes on

incoming Sentinel-2 acquisitions over that location. This is very useful to verify that leaks have been permanently fixed and to

notify the emitters if this is not the case.185

Further work is required in several areas to extend these results. One avenue for future work is improving the current mon-

itoring methodology. For the dataset, priority for future work in this area is to collect further data over new areas and test

whether CH4Net is suitable for application to other semi-arid locations. Furthermore, the accuracy of each mask could further

be improved by having multiple annotators providing a mask for each image and taking the intersection over the proposed

masks. A current shortcoming of this work is that the output of CH4Net provides only a binary mask as opposed to quantifying190
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Figure 7. Examples of false positives and negatives for sites T1 and T11, showing: (a) false positive at site T1 resulting from image artefact,

(b) false positive at site T1 resulting from thin cloud (not easily visible in the RGB window), (c) false positive at site T1 resulting from

potential low intensity methane source and (d) false negative at site T11 resulting from strongly heterogeneous background.

the methane concentration at each pixel. Direct prediction of this quantity would allow for both emission occurrence and vol-

ume to be monitored. There are also a number of improvements that could be explored to improve the modelling methodology,
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including implementing scene level classification with a classification head, and implementing more sophisticated segmenta-

tion models such as vision transformers (Dosovitskiy et al., 2020). We hope that providing this dataset and baselines will lead

to further work on machine learning models for this task.195

A second avenue for future work is to explore training a similar model for scanning sentinel-2 images to discover new super-

emitter sites. This would require collecting a much larger dataset of heterogeneous images (images from different locations

and biomes), and training a model capable of limiting false positives in areas with highly heterogeneous backgrounds.
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available from Sentinel Hub https://www.sentinel-hub.com/.200
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