
General response
We would like to thank all the reviewers for their detailed comments. We have made a number
of changes which we believe have significantly improved the manuscript. Below we summarize
major changes, then respond individually to each reviewer's comments. We thank the reviewers
again for taking the time to provide such insightful feedback.

Major changes:
● Overall paper narrative: We feel that the objective of the paper was not made clear

enough in the first manuscript. Our objective with this model is to develop a monitoring
system for known super-emitter locations. We originally included a brief experiment
exploring how the model generalizes to two new sites (Section 5 of the previous draft),
however agree with the reviewers comments that a much more detailed analysis is
needed for this application. Given that our overall aim is the monitoring of known sites,
we have decided to delete this section from our previous draft and focus solely on the
primary monitoring application, mentioning extension to new areas as a topic for future
work. This is something we are very interested to explore however we feel is best
approached as a separate study as opposed to a small experiment tacked on to the end
of this work.

● Baseline: given the suggestions of the reviewers we have included comparison to a
multiband-multipass baseline which is currently considered the state of the art method
for methane plume detection in Sentinel-2 images.

● Metrics and validation: the reviewers provided great advice on improving the strength of
the validation. We have made a number of changes here. We now split the dataset into
train, test and validation partitions. We have also rethought how metrics in Table 1 are
calculated. Initially we reported all metrics on a balanced subset of all positive images
together with a randomly sampled set of negative images which we believed provided
more easily interpretable results. After careful thought we also now include all images
(positive and negative) in the validation set, as opposed to a subset stratified by
plume presence as before. We believe that this provides more useful results to
assess for suitability for application in the real world where methane plumes are
comparatively rare events. In Table 2 we originally included accuracy, false positive
rate and false negative rate as the scene level metrics, we agree with the reviewers that
precision and recall are also informative. These were not included in the original
manuscript as F-score and recall are undefined for cases where no plumes are observed
in the validation period. We therefore retain the original metrics and add precision and
recall for cases where at least one plume is observed in the validation period. For
pixel-wise metrics we have added intersection over union as suggested.



Reviewer 1
General comments:

The paper “CH4Net: a deep learning model for monitoring methane super-emitters with
Sentinel-2 imagery” proposes a new method for monitoring and detection of Methane
emissions from Sentinel-2 data with a convolutional neural network segmentation model
(UNet). The authors collect a large dataset of Sentinel-2 images for locations of known
Methane super-emitters (10k+ images) and manually annotate Methane plumes in 925 of
those images.

In contrast to existing methods, this paper proposes a fully automatic system for Methane
classification/segmentation that operates on single Sentinel-2 images (no manual
intervention, time-series, or reference images).

The proposed method is evaluated with good results on two different tasks: Monitoring of
methane emissions at known locations and detection of Methane emissions at unseen
locations (of known Methane emitters).

The chosen use-case is well motivated as remote detection and monitoring of Methane
emissions are powerful tools to mitigate the release of greenhouse gas emissions. The
paper is well written and describes the proposed methodology in sufficient detail. However,
there are some central issues around the machine learning methodology and the
presentation of results.

Specific comments:

R1Q1 The Methane plume masks are manually annotated using the multi-band multi-pass
approach of Varon (2021). Judging from the examples in Figure 2, annotating the plumes
depends to a significant degree on knowledge about the exact location of the emitter in the
image as well as the annotator. It would be valuable to collect an additional set of
annotations for the same locations from at least one other annotator. This would help to
quantify the uncertainty on the labels (e.g., by computing the intersection over union of
different annotators) and provide an upper bound for possible model performance.

Thank you for this comment. While we agree that collecting masks from multiple annotators
would indeed be ideal it would require significant resources to complete which are
unfortunately unavailable to us (labeling the full dataset took several hundred hours). We
acknowledge that this is a shortcoming of the work and have added a discussion in the
future work section at line 188 discussing this.

As a reader I would also appreciate a negative example (no plume) in Figure 2.



Two examples of negative images have been added to Figure 2.

R1Q2 The presented detection and monitoring use-cases both assume known Methane
emitter locations. Therefore, the benefits of a model that operates on single images only is
not clear to me. Approaches like MBMP or time-series analyses are very helpful to detect
Methane in Sentinel-2 imagery (illustrated by the use of MBMP for labeling in this work).
Why not let the model take advantage of this additional information? Given the spectral
bandwidths of the Sentinel-2 MSI, it is very difficult to detect Methane in single images. To
the best of my understanding, using multiple images would be compatible with the proposed
use-cases, as they are restricted to known emitter locations.

We agree with the reviewer that to date multitemporal approaches have been necessary to
achieve any detection ability in Sentinel 2 imagery. We choose a single image approach
because (a) it is significantly easier to implement, deploy and maintain and (b) it significantly
improves over the existing multi-temporal approaches.

Multi-temporal approaches require obtaining a previous image over the same location that
is cloud and methane free. In our experience this is quite tedious and cumbersome to
implement. Even with cloud masks available, it is frequently necessary to manually select
the reference image due to errors in cloud and cloud shadow detection, changes in the
surface or presence of snow. We also note that the advantages conferred by adding an
extra pass are largely available to the model during training. As the model is trained on
multiple scenes not containing a plume the information about background for each scene is
learned at training time. For this reason, while an interesting avenue for future work, adding
a longer time series of images will not necessarily improve model performance.

As suggested by Reviewer 3 we compare our single pass approach with thresholding of
MBMP image finding that it substantially outperforms this baseline. As we publish our
dataset and the trained model, we hope that future work can explore the development of a
machine learning based multi-temporal method and assess whether this improves model
performance. We have added a note outlining this reasoning to the methods section at line
84.

R1Q3 My central issue with this work is the split of the dataset for training, validation, and
testing. Currently, the authors use three splits: The train set, which contains data from
2017-2020 and all but two locations. A “validation” set of the same locations as the train set
with data from 2021, and the “held out dataset” with data from the two remaining locations
in 2021. The validation dataset is then used to evaluate the Methane monitoring use-case,
while the “held out dataset” is used for the Methane detection use-case. It is unclear if the
validation dataset is also used to perform for model selection and hyperparameter tuning
(as is common in the machine learning literature) or if a sub-set of the training data is used
for this purpose. In any case, I strongly discourage the use of the same locations for
training, validation and testing as it allows the model to overfit on seen locations.



Instead, I suggest a random train/evaluation/test split by locations for the detection use
case, and by locations and time for the monitoring use-case. The models should be tuned
based on the train and validation data while only reporting final metrics based on the test
set.

Thank you for this suggestion, we agree that this implementation was poorly thought
through. As noted in the major changes section we have significantly revamped the analysis
and now perform the train/test/validation split as

● Train: all images from 2017-2020 excluding the test set
● Test: a held out randomly subsampled selection of 256 train images stratified by

plume presence
● Validation: all images from 2021

After careful thought we also now include all images (positive and negative) in the validation
set, as opposed to a subset stratified by plume presence as before. We believe that this
provides more useful results to assess for suitability for application in the real world where
methane plumes are comparatively rare events. This description is updated in the text at
line 88.

R1Q4 I appreciate the many different metrics and figures describing the evaluation results.
However, most of them do not properly take the highly imbalanced nature of the data (most
pixels do not contain Methane plumes) into account. To provide a more nuanced analysis I
would welcome the addition of a balanced accuracy metric for the classification task, and
Intersection over Union scores for the plume segmentation task.

Thank you for these suggestions, we have added these metrics to Tables 1 and 2.
Additionally, several metrics are already included also take into account the (extremely)
unbalanced nature of the task, specifically precision and recall which have now been added
to Table 2 and balanced accuracy for the pixel level metrics.

R1Q5 The detection use-case focuses on locations of known emitters, in my view a more
appropriate test of detection capabilities would be to “scan” a larger area (perhaps multiple
adjacent Sentinel-2 images, containing some known emitter locations) to look for plumes.
This test would also highlight the proposed model’s large-scale data processing capabilities
without need for human intervention or time-series data.

We agree with the reviewer that having a model able to process a full S2 tile and correctly
detect the existing plumes would be very useful, however we are tackling a different
problem in this paper. By design our model lacks this capacity as it is trained on a limited
set of locations and will hence not generalize to cover large heterogeneous areas. We
reiterate that this paper focuses on monitoring known locations; i.e. we have shown that a



model trained with past data can generalize to future data over the same locations or to
data from a similar location.

In our view, in order to have such a model, it must be trained on a much larger corpus of
heterogeneous images (images from different locations and biomes). We would be very
interested in tackling this problem in the future but we believe it is currently beyond the
scope of this work (mainly because of the massive work of data labeling that it would
require). This is a very interesting avenue for future work and we have added a section to
future work discussing this at line 196.

R1Q6 Furthermore, I am curious about the role of temporal patterns in the data that might
be correlated with plume presence. For example, are plumes more frequently observed in
summer vs. winter?

We agree with the reviewer that this would be an interesting point, the publication of
(Irakullis-Loritxate et al 2022) covers the temporal evolution of emissions in the same study
area and period (section results, subsection "temporal evolution of emissions"). In particular
they highlight that, in the 2017-2020 period "2018 was the year with the fewest detected
emissions, while 2020 has been the year with the most detected emission plumes, double
the number detected in 2018 (see Figure 4 and Table 1). This relationship also holds when
we normalize the number of emissions by the number of clear-sky observations in each
period." Checking if these or other patterns hold when detections are produced by our
automatic model would be interesting nevertheless in our opinion these results would be
very anecdotal since we have a limited number of sites and our validation set only
comprises one year.

Technical corrections:

​ The link to the code points to missing webpage.
​ This has now been fixed.
​ Table 2: the “% positive” column is inconsistent with the performance metrics

(there is percent sign there)
​ This column denotes the percent of images containing plumes. We have updated

the table caption to clarify this.
​ It is my understanding that the plume masks are binary, but in some figures more

than 2 values seem to be present (perhaps an interpolation issue at the
plume/background border (e.g., Figs. 3 and 6))

​ The masks are probabilistic, each pixel therefore takes a value from 0-1. We have
added a not explaining this at line 104.

​
​ It would be interesting to compare the “constructed classification” model with a

dedicated classifier. Given your dataset it could be straightforward to train a binary



classification model that directly predicts the presence of a sizable plume in each
image. Would this model perform better at detection that the UNet?

We agree that this is an interesting idea. In this scenario we wished to produce masks as
these are necessary for downstream quantification of emission rates. We have added a
note that such a hybrid classification/segmentation system is an interesting avenue for
research in the future work section at line 193.

Reviewer 2
The paper presents CH4Net - a methane plume detection and segmentation neural network
model trained on Sentinel-2 imagery in Turkmenistan. Turkmenistan is known for having
optimal observing conditions for remote sensing technology that relies on solar backscatter
(bright, homogeneous, arid region), so CH4 net results in this paper can be seen as a
bounding result for plume detections via Sentinel-2. The authors went to great lengths to
create a training set and should be applauded for that effort. I have a few comments on the
manuscript in regards to how they summarize their results, which I outline below:

R2Q1 Line 22. You say that PRISMA and EnMAP provide the most accurate concentration
retrievals. What does this mean? In terms of single-sounding precision? That's precision,
not accuracy. Also - please be clear what tasking means - they each are limited to X
number of X by X km2 tasks per day that are split across a variety of hyper spectral
applications.

Hyperspectral retrievals with PRISMA and EnMAP produce more sensitive retrievals (they
are able to capture plumes with weaker concentrations of methane). Intuitively, this is
because we have more measurements of radiance in the 2100-2350 region, hence, we can
better reconstruct the atmospheric spectrum and check if it correlates with the methane
absorption signature.

Following the reviewer's suggestion, we have changed this paragraph to be more precise.
We also added a reference in the following paragraph to (Sherwin et al 2023) which
compares retrievals of different sensors (hyperspectral and multispectral) over controlled
methane releases.

R2Q2. Line 45 and Point (2) in your introduction. You previously state that the benefit of
your approach is that you only need a single overpass as opposed to a time-series, like
Ehret. However, if you are splitting your data into train/test that train on one period of time
and test on another period of time in the same location, then intrinsically you have added



temporal information into your model. Your model is learning surface features along with
plume info, correct?

The difference is that a MBMP model requires a timeseries of images to make a prediction,
while CH4Net only requires a single overpass. We have added a note explaining this at line
84.

R2Q3. Line 45 and Point (2) in your introduction. What is the motivating use-case for not
wanting multiple overpasses to reduce noise? Latency for plume detection? Leak detection?
It is not made clear in the manuscript how this is a significant benefit. For example, one
could envision a spin-up period where you well characterize surface reflectance features in
a region. Once that's initialized, every subsequent overpass of Sentinel-2 would result in a
low latency plume detection. So not clear to me the benefit of emphasizing this use-case.
Please explain further.

We agree with the reviewer that to date multitemporal approaches have been necessary to
achieve any detection ability in Sentinel 2 imagery. We choose a single image approach
because (a) it is significantly easier to implement, deploy and maintain and (b) it significantly
improves over the existing multi-temporal approaches.

Multi-temporal approaches require obtaining a previous image over the same location that
is cloud and methane free. In our experience this is quite tedious and cumbersome to
implement. Even with cloud masks available, it is frequently necessary to manually select
the reference image due to errors in cloud and cloud shadow detection, changes in the
surface or presence of snow. We also note that the advantages conferred by adding an
extra pass are largely available to the model during training. As the model is trained on
multiple scenes not containing a plume the information about background for each scene is
learned at training time. For this reason, while an interesting avenue for future work, adding
a longer time series of images will not necessarily improve model performance.

As suggested by Reviewer 3 we compare our single pass approach with thresholding of
MBMP image finding that it substantially outperforms this baseline. As we publish our
dataset and the trained model, we hope that future work can explore the development of a
machine learning based multi-temporal method and assess whether this improves model
performance. We have added a note outlining this reasoning to the methods section at line
84.

R2Q4. Table 1 and scene-level statistics. Can one back out easily the number of detected
plumes vs. the number of total plumes using this summary info? If not, can you please
include?

Thank you for this suggestion, we have now included recall in Table 2.



In a similar vein as Reviewer #1 - I am curious as to your model performance if you trained
a classification model, e.g., CNN, on this dataset and got similar performance.

We agree that this is an interesting idea. In this scenario we wished to produce masks as
these are necessary for downstream quantification of emission rates. We have added a
note that such a hybrid classification/segmentation system is an interesting avenue for
research in the future work section at line 193.

R2Q5. Line 115 and Table 1. Can you please define balanced accuracy in this context? If
balanced accuracy = (true positive rate + true negative rate) / 2 for example, then you are
still going to get overly optimistic results. For example, assume that 1% of pixels in a scene
are plume pixels, then working backwards, a 77% balanced accuracy score would mean
that your true positive rate was only 55%: (55+99)/2 = 77%. So why not show these in Table
1 as well? Similar to Reviewer #1's comment - did you try metrics like Intersection over
Union? Did they provide similar results?

Thank you for these suggestions, here balanced accuracy is defined as (TPR+TNR)/2. The
true positive rate is already included in Table 1 (recall is another name for true positive rate).
We have added IoU to Tables 1 and 2 as suggested.

R2Q6. Can we see predictions for your high quality examples, like Figure 6? In particular,
for T21 - would be interested in seeing the plume mask for the correct prediction vs. the
false positive.

We have added a figure (Figure 5) showing pixel-level predictions for a high-quality example.
For T21 we no longer observe any false positives (retraining the model using the new
train/test/validation set naturally changes the predictions slightly), so we instead chose T17 for
this figure as more plumes are observed with two false positives as opposed to T21 with only a
single plume in the timeseries.



Reviewer 3
The authors describe a CNN-driven plume detection system trained + validated on
multispectral Sentinel-1 (repeat) observations of 26 superplume sites in Turkmenistan. The
data collection, labeling, data preprocessing and model preparation + training processes
are sound, but there are significant issues with the sampling + validation methodology that
require additional work and further clarification. Additionally, the authors provide no
comparisons to baseline or state-of-the-art approaches. These issues must be addressed in
order to provide the reviewer sufficent context to assess the capabilites of their model and
the significance of this application.

R3Q1 My primary concern with this paper is with respect to the impact of spatial bias on the
provided results. Specifically, by applying the current training/validation methodology to
nearly 1k scenes representing only 26 sites with superplumes, it is highly probable that
CH4net system is learning to distinguish labeled regions where plumes have previously
occurred within the selected sites from (regions in) non superemitter sites, rather than
consistently distinguishing pixels representing CH4 plumes from pixels with no observed
CH4 present. The somewhat mixed results on the two hold out sites are inadequate to
demonstrate robust plume detection. To demonstrate robust plume detection performance,
the authors need to provide additional results where the validation set is spatially disjoint
from the training set. A 60/40 train/val split (i.e., all data from 16 sites in the training set vs.
all observations from the remaining 10 sites in the val set) should provide roughly similar
sampling proportions as their current methodology, and would more effectively capture how
well the approach generalizes.

The main results of this paper focus on monitoring known locations with super-emissions;
i.e. we show that a model trained with past data can generalize to future data over the same
locations. The overall aim was somewhat unclear in the original manuscript, which has been
significantly reworked to better communicate the intended use case. Although this model is
trained for specific locations, we believe that this is already a significant breakthrough since
as it has been shown in other works (e.g. Irakulis-Loritxate 2022) emissions are persistent
over certain locations; with this model we envision a system that, when a new location is
added, we can label past data, retrain the model and use it to produce notifications of new
plumes on incoming Sentinel-2 acquisitions over that location. This would be very useful to
verify that leaks have been permanently fixed and to notify the emitters if this is not the
case.

We agree that the results in Section 5 of the original manuscript, while interesting, were not
sufficient to demonstrate robust generalization. As our primary interest in this work is
developing a model to monitor known sites we opt to remove Section 5 from the results and
instead add this experiment to the future work section at line 195.



R3Q2 Another concern is that separating superplumes from background enhancements is
often achievable with simple image processing methods (e.g., applying a threshold to a
band ratio product). The pixelwise concentrations of typical superplume enhancements
often (dramatically) exceed the (numerical magnitudes of pixels representing) nominal
background enhancements observed in many remote sensing GHG products. The authors
provide no baseline comparisons with alternative baseline approaches (e.g., thresholding
the MBMP images or the ratio between bands 11/12, with a threshold determined by plume
vs. background pixel magnitudes), so the reviewer cannot assess whether a CNN is truly
necessary for this detection problem. At minimum, results on the scenewise plume
detection task using a basic "straw man" approach should be provided to demonstrate that
the detection problem is nontrival.

Thank you very much for this suggestion, we have added a comparison to the MBMP
thresholding technique to the results, finding that our model substantially improves plume
detection performance.

R3Q3 I would suggest one additional minor change wrt Table 1: the authors should replace
the aggregate pixel level accuracy / balanced accuracy scores with the pixelwise FPR/FNR
(or TPR/TNR) averaged across the validation scenes. Because plumes are relatively rare,
the vast majority of pixels are background (negative class) pixels, so if a classifier predicts
all pixels in all scenes are not plumes, the average accuracy will approach 100%. While the
balanced accuracy is slightly more informative, it does not specify whether prediction errors
are false positives or false negatives.

Thank you very much for this suggestion, after considering the advice of all three reviewers
we have added pixelwise IoU as the most suitable pixelwise metric to address the class
imbalance issue.


