Preprints
https://doi.org/10.5194/egusphere-2023-362
https://doi.org/10.5194/egusphere-2023-362
12 Apr 2023
 | 12 Apr 2023

A non-linear data driven approach to bias correction of XCO2 for OCO-2 NASA ACOS version 10

William R. Keely, Steffen Mauceri, Sean Crowell, and Christopher W. O'Dell

Abstract. Measurements of column averaged, dry air mole fraction of CO2 (termed XCO2) from the Orbiting Carbon Obersvatory-2 (OCO-2) contain systematic errors and regional scale biases; often induced by forward model error or nonlinearity in the retrieval. Operationally, these biases are corrected for by a multiple linear regression model fit to co-retrieved variables that are highly correlate with XCO2 error. The operational bias correction is fit in tandem with a hand-tuned quality filter which limits error variance and reduces the regime of interaction between state variables and error to one that is largely linear. While the operational correction and filter are successful in reducing biases in retrievals, they do not allow for throughput or correction of data in which biases become nonlinear in predictors or features. In this paper, we demonstrate a clear improvement in the reduction of error variance over the operational method using a robust data driven, non-linear method. We further illustrate how the operational quality filter can be relaxed when used in conjunction with a non-linear bias correction, which allows for an increase of sounding throughput by 16 % while maintaining the residual error of the operational correction. The method can readily be applied to future ACOS algorithm updates, OCO-2’s companion instrument OCO-3, and to other retrieved atmospheric state variables of interest.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

29 Nov 2023
A nonlinear data-driven approach to bias correction of XCO2 for NASA's OCO-2 ACOS version 10
William R. Keely, Steffen Mauceri, Sean Crowell, and Christopher W. O'Dell
Atmos. Meas. Tech., 16, 5725–5748, https://doi.org/10.5194/amt-16-5725-2023,https://doi.org/10.5194/amt-16-5725-2023, 2023
Short summary
William R. Keely, Steffen Mauceri, Sean Crowell, and Christopher W. O'Dell

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-362', Anonymous Referee #2, 26 Apr 2023
    • AC1: 'Reply on RC1', William Keely, 30 Jul 2023
    • AC3: 'Reply on RC1', William Keely, 30 Jul 2023
  • RC2: 'Comment on egusphere-2023-362', Anonymous Referee #1, 04 May 2023
    • AC2: 'Reply on RC2', William Keely, 30 Jul 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-362', Anonymous Referee #2, 26 Apr 2023
    • AC1: 'Reply on RC1', William Keely, 30 Jul 2023
    • AC3: 'Reply on RC1', William Keely, 30 Jul 2023
  • RC2: 'Comment on egusphere-2023-362', Anonymous Referee #1, 04 May 2023
    • AC2: 'Reply on RC2', William Keely, 30 Jul 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by William Keely on behalf of the Authors (30 Jul 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (02 Aug 2023) by Ilse Aben
RR by Anonymous Referee #2 (08 Aug 2023)
RR by Anonymous Referee #1 (23 Aug 2023)
ED: Reconsider after major revisions (25 Aug 2023) by Ilse Aben
AR by William Keely on behalf of the Authors (02 Oct 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (11 Oct 2023) by Ilse Aben
AR by William Keely on behalf of the Authors (13 Oct 2023)  Manuscript 

Journal article(s) based on this preprint

29 Nov 2023
A nonlinear data-driven approach to bias correction of XCO2 for NASA's OCO-2 ACOS version 10
William R. Keely, Steffen Mauceri, Sean Crowell, and Christopher W. O'Dell
Atmos. Meas. Tech., 16, 5725–5748, https://doi.org/10.5194/amt-16-5725-2023,https://doi.org/10.5194/amt-16-5725-2023, 2023
Short summary
William R. Keely, Steffen Mauceri, Sean Crowell, and Christopher W. O'Dell
William R. Keely, Steffen Mauceri, Sean Crowell, and Christopher W. O'Dell

Viewed

Total article views: 585 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
403 156 26 585 14 15
  • HTML: 403
  • PDF: 156
  • XML: 26
  • Total: 585
  • BibTeX: 14
  • EndNote: 15
Views and downloads (calculated since 12 Apr 2023)
Cumulative views and downloads (calculated since 12 Apr 2023)

Viewed (geographical distribution)

Total article views: 612 (including HTML, PDF, and XML) Thereof 612 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 30 Aug 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Measurement errors in satellite observations of CO2 attributed to co-estimated atmospheric variables are corrected using a linear regression on quality filtered data. We propose a non-linear method that improves correction against a set of ground truth proxies, and allows for high throughput of well corrected data.