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Abstract.  

Measurements of column averaged dry air mole fraction of CO2 (termed XCO2) from the Orbiting Carbon Observatory-2 

(OCO-2) contain systematic errors and regional scale biases; often induced by forward model error or nonlinearity in the 

retrieval. Operationally, these biases are corrected for by a multiple linear regression model fit to co-retrieved variables that 

are highly correlated with XCO2 error. The operational bias correction is fit in tandem with a hand-tuned quality filter which 15 

limits error variance and reduces the regime of interaction between state variables and error to one that is largely linear. While 

the operational correction and filter are successful in reducing biases in retrievals, they do not allow for throughput or 

correction of data in which biases become nonlinear in predictors or features. In this paper, we demonstrate a clear 

improvement in the reduction of error variance over the operational correction by using a set of non-linear machine learning 

models, one for land and one for ocean soundings. We further illustrate how the operational quality filter can be relaxed when 20 

used in conjunction with a non-linear bias correction, which allows for an increase of sounding throughput by 16% while 

maintaining the residual error of the operational correction. The method can readily be applied to future ACOS algorithm 

updates, OCO-2’s companion instrument OCO-3, and to other retrieved atmospheric state variables of interest. 

1 Introduction 

Carbon dioxide (CO2) is a key contributor to radiative forcing and hence, rising levels in the atmosphere are of concern due to 25 

their influence on future climate. Following a long history of critical in situ measurements of CO2 at key sites around the world 

that allowed us to better understand the carbon cycle on continental scales, the era of space-based remote sensing began with 

the Scanning Imaging Absorption spectrometer for Atmospheric Chartography (SCIAMACHY) in March 2002 (Boevnsmann 

et al, 1999) and the Atmospheric Infrared Sounder (AIRS) launched in May 2002 (Aumann et al, 2003). These missions were 

followed by dedicated CO2 observers such as the Greenhouse gases Observing SATellite (GOSAT) mission in 2009 (Kuze et 30 

Style Definition: Default Paragraph Font

Deleted: ,

Deleted: Obersvatory

Deleted: correlate

Deleted: method

Deleted: robust data driven,35 
Deleted: method



 

2 
 

al., 2009) and the Orbital Carbon Observatory 2 (OCO-2) in 2014.  These data have yielded substantial scientific insights, such 

as a much more dynamic tropical carbon cycle compared with previous understanding (e.g., Liu et al, 2017; Palmer et al, 2019; 

Crowell et al, 2019; Peiro et al, 2021) as well as studies into power plant emissions and plumes (Nassar et al., 2017).   

OCO-2 measures reflected solar radiances, from which column averaged CO2 dry air mole fractions (XCO2) are retrieved with 40 

the NASA Atmospheric CO2 Observations from Space (ACOS) algorithm (Crisp et al., 2012; O'Dell et al., 2012; Connor et 

al., 2008).  Radiances are measured in the near-infrared Oxygen A band near 0.76 µm; the shortwave infrared weak CO2 band 

near 1.6 µm; and the shortwave infrared strong CO2 band near 2.05 µm). ACOS is based on Bayesian optimal estimation 

(Rodgers, 2000) that adjusts input parameters (e.g., XCO2, aerosols, surface characteristics, surface pressure) to maximize 

agreement between a modelled spectrum (derived by a radiative transfer model) and OCO-2 measurements. The parameters 45 

that best explain the measured radiances are labelled as the “retrieved” parameters. ACOS has undergone continuous 

improvement since the initial version.  

Since the radiances contain uncorrected calibration artifacts and the modelled representation of the atmospheric radiative 

transfer is not perfect, retrieved parameters contain systematic biases. The inverse problem is under constrained and leads to 

posterior errors in retrieved parameters that are correlated.  To correct for errors in XCO2 arising from these types of 50 

dependencies, a multiple linear regression (MLR) bias correction with co-retrieved state variables or features used as predictors 

is fit to the difference (DXCO2) between the ACOS retrieved XCO2 and a truth proxy estimate of XCO2. This method was first 

introduced for ACOS retrievals applied to the GOSAT instrument (Wunch et al., 2011), and later extended to OCO-2 and 

OCO-3 (O’Dell et al., 2018; Taylor et al., 2020, 2023).  The multiple linear regression (MLR) bias correction is fit in tandem 

with a quality filter of empirically defined thresholds on a set of features. The bias correction and quality filter are derived 55 

iteratively, with filter thresholds chosen restricting features to a range in which the relationship between DXCO2 and the 

parameters are mostly linear, improving the goodness of fit for the multilinear regression, which is then used in turn to retune 

the quality filter thresholds. The combined bias correction and quality filtering process is derived manually, so that the final 

product must be hand-tuned for each algorithm update.  After the feature-based correction, a footprint correction and global 

TCCON offset are applied. The combined bias correction and quality filter is robust across a set of ground truth proxy metrics 60 

and greatly reduce both mean bias and error scatter of XCO2 retrieved from OCO-2. Full details of the operational bias 

correction and filtering can be found in O’Dell et al. (2018).   

A drawback of applying the quality filter is the exclusion of data due to the linear assumption of the bias correction to which 

the quality filter limits the regime of interaction between state vector variables and DXCO2. Due to loss of data, the bias 

correction and quality filter are often disregarded for local studies (Nassar et al., 2017; Mendonca et al., 2021) or is too limiting 65 

for certain regions (Jacobs et. al., 2020). Applying non-linear machine learning techniques have shown great promise for the 

task of bias correction for GOSAT/GOSAT-2 (Noël et al., 2022) and TROPOMI (Schneising et al., 2019). Specific correction 
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of 3D cloud biases for OCO-2 retrieved XCO2 (Massie et al. 2016) using a non-linear method fit on a small set of features 85 

correlated with 3D cloud effects in addition to the linear operational correction, is demonstrated in Mauceri et al. (2022).   

This research demonstrates a general non-linear bias correction approach for OCO-2 build 10 (B10, Taylor et al., 2023) via a 

machine learning method and provide a post-hoc explanation of the overall contribution of the selected state vector features. 

Our non-linear bias correction is shown to reduce systematic errors and increases the percentage of good quality soundings by 

allowing for the relaxation of the hand-tuned thresholds employed with the standard quality threshold method. The framework 90 

presented in this manuscript for identifying informative features for bias correction can be adapted for future OCO-2,3 ACOS 

algorithm updates. 

2 Data 

To develop a bias correction, we define three truth proxy data sets for the true atmospheric column mole fraction. DXCO2 is 

then set as the difference between the raw ACOS retrieval of XCO2 and the truth proxy estimate of XCO2 as shown in Eq. 1. 95 

For the TCCON and model mean truth proxies, the OCO-2 kernel is also applied as described in Taylor et al., 2023.  

DXCO! =	𝑋𝐶𝑂!,#$%& − 𝑋𝐶𝑂!,'()*+                                                                              (1) 

We use the same proxy data sets used in the development of the operational bias correction (Osterman et al. 2020): co-located 

OCO-2 soundings with Total Carbon Column Observing Network (TCCON), a collection of small-area clusters of soundings 

for which XCO2 is not expected to vary above the instrument noise, and a set of modelled mole fractions whose underlying 100 

surface flux is constrained by the NOAA global in situ network (Masarie, K., et al. 2014). Data sets include soundings from 

November 2014 through to February 2019. Each truth proxy captures a different scale of retrieval error and as such give 

complementary information as described in O'Dell et al. (2018). All data sets were sampled in conjunction with corresponding 

locations and times in the OCO-2 B10 L2 lite files which can be found here: (https://disc.gsfc.nasa.gov/datasets/). Spatial 

coverage and sounding count is shown in Figure 1. The newest version available Level 2 product is build 11 (B11), however 105 

at the time of this writing is still undergoing re-processing. 
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Figure 1: Spatial coverage for each truth proxy. The mean of a set of flux models is shown in (a), small area approximation is shown 
in (b), and TCCON is shown in (c). 

 

2.1 TCCON truth proxy 

TCCON is a system of ground-based sun-looking Fourier Transform Spectrometers with growing global coverage that retrieve 125 

dry air mole column averaged measurements of the trace greenhouse gases from radiances in similar spectral bands to OCO-

2. Since each site has been extensively validated against WMO-traceable in situ observations aboard aircraft, TCCON offers 

the most accurate comparison for XCO2 (Wunch et al., 2010). While TCCON is well calibrated, site coverage is limited outside 

of North America, Europe, and Oceania. The TCCON data set therefore is spatially the sparsest of the three truth proxies and 

offers non-uniform point comparisons. We use the same dataset as the operational correction consisting of OCO-2 soundings 130 

co-located TCCON GGG2014 measurements (Wunch et al., 2017; Wunch et al., 2011) in space (2.5º lat, 5º lon) and time (2h).  

 
Table 1. TCCON sites used in bias correction and filtering for B10 ACOS. 
 

TCCON 

(station name* 

= island) 

Continent Latitude Altitude 

(m) 

Operational date range 

(YYYYMM-

YYYYMM) 

Data citation 

Saga* Asia 33.2o N 7 201106-present Shiomi et al. (2014) 

Orléans Europe 48.0o N 130 200908-present Warneke et al. (2019) 

Garmisch Europe 47.5o N 740 200707-present Sussman and Rettinger (2018) 

Tsukuba* Asia 36.1o N 30 200812-present Morino et al. (2018a) 

Sodankylä Europe 67.4o N 188 200901-present Kivi et al. (2014) 

Rikubetsu Asia 43.5o N 380 201311-present Morino et al. (2018) 

Izaña* Africa 28.3o N 2367 200705-present Blumenstock et al. (2017) 

JPL N. America 34.2o N 390 201103-201307 

201706-201805 

Wennberg et al. (2017a) 

Bialystok Europe 53.2o N 180 200903-201810 Deutscher et al. (2019) 

Bremen Europe 53.1o N 27 200407-present Notholt et al. (2019) 

Wollongong Australia 34.4o S 30 200805-present Griffith et al. (2014b) 

Park Falls N. America 45.9o N 440 200405-present Wennberg et al. (2017b) 

Réunion* Africa 20.9o S 87 201109-present De Maziére et al. (2017) 

Anmyeondo Asia 36.5o N 30 201408-present Goo et al. (2014) 

Darwin Australia 12.4o S 30 200508-present Griffith et al. (2014a) 

Lauder* Australia 45.0o S 370 200406-present Pollard et al. (2019) 

Lamont N. America 36.6o N 320 200807-present Wennberg et al. (2016) 
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2.2 Small area approximation truth proxy 160 

The small area approximation described in O’Dell et al. (2018) offers insight into small scale drivers of bias and retrieval 

variability. The small area approximation truth proxy assumes that XCO2 within a 100km neighbourhood is largely uniform 

for a given overpass by OCO-2. This assumption is evaluated in Worden et al. (2017), where it was found by using a high-

resolution atmospheric model (GEOS-5), variance of XCO2 is around 0.1 ppm per 100km. The proxy offers improved spatial 

coverage compared to TCCON but struggles to capture biases with low variability over the small area. 165 

2.3 Flux models truth proxy 

A set of flux inversion models form the largest of the truth proxy data sets, both in number of soundings and in spatial coverage. 

The models included in this truth proxy set are found in Table 2. The posterior XCO2 fields produced by the models are 

sampled along OCO-2 tracks, the proxy is then computed as the average of the models at every sounding where there is good 

agreement (within 1.5 ppm) among models (O’Dell et al., 2018; Osterman et al., 2020).  170 

 
Table 2. Flux models used for the model mean truth proxy. TM5 – Transport model 5, TM3 – Transport model 3, LMDZ – 
Laboratoire de Meteorology, EnKF – Ensemble Kalman Filter, 4D-Var – 4 Dimensional Variation.  
 

Model name Institute Transport  

model 

Resolution 

[latxlonxtime] 

Inverse 

method 

Citation 

CarbonTracker NOAA Global 

Monitoring 

Laboratory 

TM5 2ºx3ºx3h EnKF Peters et al. (2007) 

CarbonTracker (2021) 

CarboScope Max Planck Institute 

for Biogeocehmistry 

TM3 4ºx5ºx6h 4D-Var Rödenbeck (2005);  

Rödenbeck et al. (2018) 

CarboScope (2021) 

CAMS Copernicus 

Amosphere  

Monitoring Service 

LMDZ 1.9ºx3.75ºx3h 4D-Var Chevallier et al. (2010) 

CAMS (2021) 

Karlsruhe Europe 49.1o N 116 200909-present Hase et al. (2015) 

Manaus S. America 3.2o S 49.2 201408-201506 Dubey et al. (2014) 

Paris Europe 48.8o N 60 201409-present Te et al. (2014) 

Burgos* Asia 18.5o N 35 201703-present Morino et al. (2018b) 
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3 Methods 

3.1 Gradient boosting 185 

To model systematic error from co-retrieved state vector elements, we employ a machine learning method known as extreme 

gradient boosting or XGBoost (Chen et al. 2016) which can fit both linear and non-linear relationships. XGBoost is an 

ensemble model where a set of simple models known as regression trees (Breiman 1984) are sequentially trained, with each 

new member fit on residuals of the previous trees. During inference, the weighted sum is taken across the ensemble members. 

Members are grown or fit by selecting features that provide high information gain (Eq. 2). Information gain is calculated by 190 

evaluating the sum of the gradients 𝐺 and hessians 𝐻 of the loss function at left and right leaf nodes when selecting features 

during tree fitting for our experiments we minimize the Mean Squared Error between the truth proxy bias 𝑦,	and the estimate 

𝑦--	as the loss function as shown in Eq. 3. Features that are informative for reducing residual error during tree development 

yield high gain values. These values can be summed across trees in the ensemble to produce a ranking of feature contribution. 

This provides a post-hoc method of interpretability yielding a high level or global view of feature importance to correcting 195 

DXCO2. While this method of interpretability is less informative than the regression coefficients provided by a linear model, 

it is useful for tasks such as feature selection. 

 

XGBoost employs L1 and L2 norm regularization to reduce overfitting to outliers present in the training dataset. The effect of 

the regularization is governed by the hyper-parameters l and g, and must be carefully selected or tuned. To find these hyper-200 

parameters we use a k-fold cross validation strategy in which the training dataset is divided into k subsets (we use k=10) and 

each subset is sequentially held out for evaluation for a model trained on the rest of the data. Performance across the k-folds 

is averaged and the process is repeated for each potential selection of hyper-parameters. We found a lLAND=2.5 and gLAND=3.75 

for the land correction, and lOCEAN=2.0  and gOCEAN=10.0.  

 205 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛	𝐺𝑎𝑖𝑛 = 	 .
!
	
7
/!"#$
%

0!"#$12
+

/&'()$
%

0&'()$12
− 3/!"#$1/&'()$4

%

0!"#$10&'()$129
− 𝛾 ,      (2) 

𝑀𝑒𝑎𝑛	𝑆𝑞𝑢𝑎𝑟𝑒𝑑	𝐸𝑟𝑟𝑜𝑟	𝑙𝑜𝑠𝑠 = 	 .
5∑ (𝑦, − 𝑦--)

!5
,6. ,                                                                    (3) 

 

 

 210 

Deleted: employee

Deleted: ). XGBoost

Deleted: This method is highly interpretable compared to other 
machine learning algorithms such as neural networks, which often 
require post-hoc methods to understand sensitivity to variables of 215 
importance. While methods like polynomial or spline fits are 
arguably more interpretable non-linear models, they do not capture 
multiplicative interactions among the input features that gradient 
boosters can (Friedman et al. 2001). ¶
¶220 
Deleted: fit and the average is then taken across the ensemble. 
XGBoost and gradient boosting in general are similar to other 
regression tree ensembling methods such as random forest, however, 
they provide improved predictive performance by fitting trees 
iteratively where each new tree is fit on the residuals of the prior 225 
trees in the ensemble. By limiting individual tree complexity and 
including L1 and L2 norm regularization strategies (the strength of 
each norm is regulated by l, g in Eq. 2) into the ensembling process, 
XGBoost is also highly robust to overfitting outliers present in the 
data. The regularization parameters must be tuned during model 230 
training. To do this we hold out small subset from the training data 
to evaluate different parameter selections. Final XGBoost models 
use l = 1.05, and g = 7.65.¶
¶
Model interpretability is provided by the splitting criteria for 235 
developing the individual trees in the XGBoost ensemble. Trees

Deleted: (

Deleted: experiements

Deleted: use

Deleted: ).240 
Deleted: importance.



 

8 
 

 

 

3.2 Quality filtering 

Soundings of the lowest quality are typically caught by the O2 A-band pre-processor (Taylor et al. 2012) and IMAP-DOAS 245 

(Frankenberg et al. 2005) algorithms due to clouds and low SNR in the continuum and are then screened out before being run 

through the L2 retrieval algorithm (Taylor et al., 2016). After retrieval, an additional number of soundings are flagged and 

removed for which the ACOS algorithm failed to converge or for which the chi-squared difference between modelled and 

measured spectra is too large. Additionally, large unphysical outliers present in the tails of the conditional distributions of 

several atmospheric state variables are also removed by hand using domain expert selected thresholds. Finally, users can select 250 

for high-quality retrievals using the binary XCO2 quality flag (QF) with “good” data having a QF = 0, and “poor” data having 

QF = 1. The operational XCO2 quality flag is derived using a set of filters applied to the state vector variables found in 

conjunction with linear parametric bias correction. An initial linear correction is fit on soundings that have passed the pre-

processing filtering steps. Each filter is then hand selected, QF = 1 data is removed, and the bias correction is re-fit until a final 

set of filters and linear model weights are derived that sufficiently reduce mean bias and scatter (O’Dell et al 2018).  255 

 

To assess the ability of the non-linear method to correct QF = 1 data and the potential for increased throughput of well corrected 

data, we derive a new quality flag (QFNew). Our flag is developed in a similar fashion to the B10 quality flag for use with the 

non-linear correction. The first step is to start with the same set of state vector variables and associated thresholds. Next, 

thresholds are relaxed for a selection of state vector variables that allow for higher sounding throughput, while maintaining or 260 

reducing corrected DXCO2 across truth proxies. Thresholds are never set to be more constraining than the B10 values in order 

to not remove soundings that are already considered to be of passing quality. 

 

3.3 Training and test split 

For training and evaluating the non-linear correction, we subset each of our truth proxy datasets into training and testing 265 

datasets. First, datasets are split by the two surface types: ocean and land. In the B10, both operation modes (nadir and glint) 

are combined for the land bias correction due to low variance in feature importance between nadir and glint (O’Dell et al. 

2018). To compare to the operational correction, we also combine both modes for the land correction model. The land and 

ocean data sets are subset once more by truth proxy to identify informative features for the final land and ocean models. To 

ensure that model performance is indicative of how well the models generalize to unseen data, we hold out a year of data for 270 

evaluation of the final land model and ocean model. Models are trained on data from 2014, 2015, 2016, and 2017, then 

evaluated on data from 2018.  

 

3.4 Experiment Design 
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First, the footprint correction as described in O’Dell et al., 2018 is applied to the training and evaluation datasets. We then 

evaluate two methods for bias correcting retrieved XCO2: a non-linear machine learning model called XGBoost; and as a 

baseline, we also train a MLR model similar to the hand-tuned model used in the operational correction. For correcting land 295 

nadir, and land glint data, a single XGBoost model and MLR are trained using all three truth proxies.  The predictor variables, 

or features are the same for both model types. This allows for comparison between the non-linear model and baseline linear 

method to properly assess that improved fit is coming from the captured non-linearity and not just the inclusion of the additional 

predictors. A single XGBoost and MLR are derived for correcting ocean glint data, again using all three proxies and same set 

of ocean features. We also compare our approach to the operational land correction and ocean correction for B10.  300 

 

To identify a set of informative features to be used as inputs for the XGBoost land and ocean models, we first train as set of 

models independently on each truth proxy. These six models (three for land and three for ocean) are initially fit on a large set 

of potentially informative features, using QF = 0 + 1 data. The resulting feature importance derived from these initial models 

is used to filter down the feature set to identify a subset of features that is highly informative across truth proxies. The resulting 305 

feature sets are combined to train the final proposed model pair (one for land and one for ocean), which are trained using all 

truth proxies.  

 

Next, we compare the final models trained on QF = 0 + 1 data against models trained only on “good” quality data assigned QF 

= 0 then, evaluate each model pair on QF = 0 soundings that have been temporally held out. This is to ensure the ability of the 310 

nonlinear method to reproduce the linear model, which is the currently accepted community standard. Secondly, we evaluate 

the model trained on QF = 0 + 1 data on the excluded regime of data labelled QF = 1 where non-linear relationships between 

DXCO2 and predictors become more pronounced. Finally, we derive a new quality flag (QFNew) used in conjunction with the 

non-linear correction to that increases the throughput of well corrected data while maintaining similar error metrics as the 

operational filter and correction.  315 

4 Results 

4.1 Feature Selection 

We select informative features for our bias correction following an iterative procedure. In the first step, we train XGBoost 

models for each proxy by surface type and operation mode (6 models in total). These initial models are trained using a large 

subset of co-retrieved state vector variables (shown in Table C1) which are potentially informative for correcting DXCO2 from 320 

the B10 L2Lite files. The resulting models are used to rank features according to their information gain which is defined in 

Eq. 2. Features that are less informative are removed from the set and new models are trained with the reduced feature set. 

Afterwards, feature importance is once again evaluated. To ensure robustness to correlation among features (which information 

gain does not account for) we calculate Pearson’s correlation values between features. Features with an absolute Pearson value 

greater than 0.5 are included one a time and the feature with the highest importance is kept. This process is iteratively repeated 325 
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until reaching a relatively small subset of maximally informative features. These features are combined to train the final bias 

correction models, which are trained on all proxies. Seven features are selected for land correction and five features selected 

for ocean as shown in Figure 2. The resulting features used in the final models and a brief description is shown in Table 3. 350 

 

Features used for operational correction are also highly informative for the proposed non-linear corrections and include the 

difference between the retrieved CO2 profile and prior profile used for land and ocean (co2_grad_del), and two surface pressure 

difference terms dpfrac for land and dp_sco2 for ocean (Kiel et al., 2019). The co2_grad_del is the change in profile shape 

and prior and is calculated as the difference dry air mole fraction  at the surface, denoted as CO2(1), to the fraction at ~0.6316 355 

times the retrieved surface pressure, and is in units of parts per million (ppm). The calculation for co2_grad_del is shown in 

Eq. 4. For land, the dpfrac term is a difference ratio that considers the smaller dry air column over higher elevations and is 

defined in Eq. 5 where XCO2,raw is the uncorrected retrieval of the column average and Pap,SCO2 and Pret are the prior surface 

pressure at the strong band pointing offset and retrieved pressure respectively. For ocean, dp_sco2 is used and is the retrieved 

surface pressure minus the strong band prior. The extensive use of co2_grad_del and surface pressure deltas for bias correction 360 

is discussed in Kulawik et al., 2019. 

 

co2_grad_del = [CO2,ret(1) – CO2,ret(0.6316)] – [CO2,prior(1) - CO2,prior(0.6316)]                                                       (4) 

 

dpfrac = 𝑋$%!,(78(1 −
𝑃79,&$%!

𝑃(:;I )                                                                                                                        (5) 365 

 

For land, the h2o_ratio is used and is the ratio of XH2O estimated by single band retrievals from the strong and weak CO2 

bands separately using the IMAP-DOAS algorithm, which can differ from unity in the presence of atmospheric scattering 

(Taylor et al. 2016). We use three aerosol features for our bias correction over land scenes. The first being the sum of dust, 

water, and sea salt optical thickness termed DWS. We include retrieved ice particle optical depth (aod_ice) and the finer 370 

stratospheric aerosol optical depth (aod_strataer). The last feature used for land, as well as for ocean, is the albedo slope for 

the strong CO2 band termed albedo_slope_sco2. This variable represents the slope of the reflectance across the strong CO2 

spectral band for land soundings and the slope of the Lambertian component of the combined Cox-Munk and Lambertian 

Bidirectional Reflectance Distribution Function (BRDF) for ocean soundings (Cox and Munk, 1954). In addition to the 

co2_grad_del, albedo_slope_sco2 and dp_sco2, two additional variables are used for the correction of Ocean G scenes. These 375 

are snr_wco2, which is the estimated signal to noise ratio derived during optimal estimation; and finally, rms_rel_wco2 which 

is the percent residual error from the forward modelled radiance for the weak CO2 to the measured radiance.  
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 545 
 
Figure 2. Feature importance for final land model trained with all proxies (a), feature importance for final ocean model trained with 
all proxies (b). Error bars denote variance in feature importance across 10 runs with different random seeds. 
 
Table 3. Selected features for use in our bias correction models. The first column shows state vector variable names as defined in the 550 
B10 L2 files, second provides a brief description, and the last column shows which region and viewing mode correction the variable 
is used for. 
 

State Variable Description Surface Type & Operation Mode 

dpfrac Surface pressure difference that considers smaller dry air 
columns over higher elevations (Kiel et al. 2019). 

Land NG 

h2o_ratio Ratio of retrieved H2O column in weak and strong CO2 

bands by IMAP-DOAS. 

 

Land NG 

DWS Additive combination of retrieved dust, water, and sea salt 

aerosol optical depth. 

 

Land NG 

aod_strataer Retrieved upper tropo+stratospheric aerosol optical depth 

at 0.755 microns. 

 

Land NG 

aod_ice Retrieved ice cloud optical depth at 0.755 microns. Land NG 
co2_grad_del Difference between the retrieved vertical CO2 profile and 

prior. 
Land NG/Ocean G 

albedo_slope_sco2 Retrieved strong band reflectance slope(land) or slope of 

Lambertian albedo component of BRDF (ocean). 

 

Land NG/Ocean G 
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dp_sco2 Surface pressure difference between the retrieved and 

prior, evaluated for the strong CO2 band location on the 

ground. 

 

Ocean G 

rms_rel_wco2 RMSE of the L2 fit residuals in the weak CO2 band relative 
to the signal. 

Ocean G 

snr_wco2 The estimated signal-to-noise ratio in the continuum of the 
weak CO2 band. 

Ocean G 

 
 

 

 

4.1 Model evaluation for QF = 0  560 

To ensure that the non-linear method generalizes the linear relationships largely observed for QF = 0, we evaluate two XGBoost 

models: one which is fit on QF = 0 + 1, and one fit on QF = 0, to a MLR fit on the same feature set as the non-linear models. 

As the operational quality flag is hand-tuned by re-fitting a MLR, the regime between the variables selected for correction and 

systematic error are reduced to mostly linear relationships. The non-linear method has only a marginal improvement over the 

MLR and B10 correction on soundings that are passed by the operational quality filter over land (0.04-0.06 ppm), and a slightly 565 

more substantial improvement over ocean (0.06-0.10 ppm), on the evaluation data. We found that retraining the XGBoost 

models on QF = 0 data does not offer a substantial reduction in error despite initial XGBoost models being trained on un-

filtered data. We forgo the iterative refitting approach that is required for the MLR and operational correction by training once 

on QF = 0 + 1 data. Table 4 shows the QF = 0 RMSE results for XGBoost models trained on both QF = 0 + 1 data and QF = 

0 data, alongside the MLR model fit to the filtered regime for 2018 and B10 operational correction.  570 

 
Table 4: RMSE scores for 2018 on QF=0 data. Results are shown for Land and Ocean data by truth proxy and model. Two XGBoost 
models are shown: one trained on QF = 0 + 1 (XGBoostQF0+1) data and the evaluated on QF = 0, and another (XGBoostQF=0) trained 
and evaluated on only QF = 0 data. A multiple linear regression (MLRQF=0) is also fit for QF = 0 using the same feature set. In the 
last column, RMSE for operationally corrected XCO2 (B10) is shown.  575 

 
Land QF=0 

Truth Proxy XGBoostQF=0+1 RMSE XGBoostQF=0  RMSE MLRQF=0  RMSE B10 RMSE 

Small area 0.83 ppm 0.82 ppm 0.84 ppm 0.85 ppm 

TCCON 1.15 ppm 1.14 ppm 1.19 ppm 1.20 ppm 

Model mean 1.05 ppm 1.05 ppm 1.09 ppm 1.11 ppm 

All 1.03 ppm 1.02 ppm 1.05 ppm 1.07 ppm 
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Ocean QF=0 

Truth Proxy XGBoostQF=0+1 RMSE XGBoostQF=0 RMSE MLRQF=0 RMSE B10 RMSE 

Small area 0.45 ppm 0.44 ppm 0.56 ppm 0.52 ppm 

TCCON 0.83 ppm 0.81 ppm 0.89 ppm 0.95 ppm 

Model mean 0.67 ppm 0.66 ppm 0.78 ppm 0.76 ppm 

All 0.65 ppm 0.65 ppm 0.75 ppm 0.74 ppm 

 590 

 

4.2 Correcting Outside of the Filtered Regime 

Correction of systematic error outside of the quality filtered regime (QF = 1) is difficult to fit with a linear model. Strong non-

linearities are observed for many of the co-retrieved state vector variables and DXCO2. For many variables this behaviour is 

observed over un-physical values in a few spurious soundings and are easily filtered out. Variables such as h2o_ratio which 595 

are responsible for the bulk of the quality filtering (h2o_ratio thresholds remove ~10% of soundings) exhibit such non-linear 

characteristics over their marginal distributions. The dependent linear correction and quality filter is prohibitive for correcting 

and passing data in these regions of the domain. Figures 3 and 4 illustrate the interaction between state variables chosen for 

correction and DXCO2. The non-linear model (green) improves both mean and variance of DXCO2 over both the raw DXCO2 

(red) before correction, and B10 correction (blue). Table 5 displays the RMSE scores of the XGBoost corrected XCO2 and 600 

operational corrected XCO2 for QF = 1 data. The non-linear correction provides a large improvement in reducing the residual 

error for QF = 1 data over the operational correction with a 1.33-2.26 ppm improvement for land data and 1.11-1.37 ppm for 

ocean. These errors are still significantly larger than the corresponding QF = 0 errors. 

 
Table 5: RMSE scores for 2018 on QF = 1 data. XGBoost corrected XCO2 and operationally corrected XCO2 (B10) for Land and 605 
Ocean data. 

 Land QF = 1  

Truth Proxy XGBoost RMSE B10 RMSE 

Small area 1.92 ppm 3.25 ppm 

TCCON 2.81 ppm 5.07 ppm 

Model mean 2.46 ppm 3.95 ppm 

 Ocean QF = 1  

Truth Proxy XGBoost RMSE B10 RMSE 

Small area 1.25 ppm 2.36 ppm 

TCCON 1.68 ppm 2.90 ppm 
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Figure 3. DXCO2 vs land features for 2018. Mean interaction and 2s Stddev for uncorrected DXCO2 plotted in red, XGBoost 
corrected in green and B10 corrected in blue. The vertical black dotted lines indicate B10 QF filters and arrows point towards the 
region assigned QF=0. Individual soundings are shown with grey scatter. 
 

 645 

Figure 4. DXCO2 vs ocean features for 2018. Mean interaction and 2s Stddev for uncorrected DXCO2 plotted in red, XGBoost 
corrected in green and B10 corrected in blue. The vertical black dotted lines indicate B10 QF filters and arrows point towards the 
region assigned QF=0. Individual soundings are shown with grey scatter. 

 

 650 

4.4 Comparison to B10 

For the operational correction, regression weights for the linear model are hand-selected that have good agreement in their 

correction across truth proxies. The full operational correction also includes a fixed correction for each of OCO-2’s eight 

footprints as described in Osterman et al. 2020. To provide a fair comparison between the full correction models, we also apply 

the footprint correction after applying the non-linear feature correction. Table 6 shows the mean and 1s standard deviation for 655 

each bias correction and QF regime. The largest improvement in the non-linear method over B10 comes when correcting QF=1 

data. Achieving a 59% improvement in reduction of error variance for land, and a 67% improvement for ocean data 

Moved (insertion) [3]

Deleted: ¶
Figure 3. DXCO2 vs land features.

Deleted: individual soundings are shown with grey scatter. ¶... [5]
Moved up [3]: . Mean interaction and 2s Stddev for 
uncorrected DXCO2 plotted in red, XGBoost corrected in green 
and B10 corrected in blue. The vertical black dotted lines 665 
indicate B10 QF filters and 

Deleted: individual

Deleted: 4

Deleted: 66

Deleted: 72670 



 

16 
 

respectively. The improvement in correction over B10 is less significant for QF=0 with improvement of 8% for land and 19% 

for ocean.  

 

Regionally, the non-linear correction shows up to a 0.5 ppm improvement over northern Africa, where the B10 correction 675 

appears to underestimate DXCO2 in comparison. A reduction in biases is also observed in large parts of South America’s 

tropical and sub-tropical regions as well as parts of tropical Asia shown in Figure 5a. These regions also contain the largest 

difference in Land NG correction between the methods with an average difference (B10-XGBoost) of -0.5 ppm. There is a 

slight positive difference between methods over the Amazon Basin and Congo Rainforest (Figure 5e). Figures 5c, and 5d 

illustrate the improvement of the non-linear method to correct QF=1 data over the operational approach. For QF = 1, where 680 

the interaction between features and error is non-linear, large biases in XCO2 remain after operational correction. The XGBoost 

model reduces these remaining biases in many regions, indicating that there may still be usable data that is filtered out by the 

operational QF when paired with the non-linear correction.   

 

 685 

 

 
Table 6. Comparison of combined proxy mean and standard deviation XGBoost corrected XCO2, XCO2 after the operational 

correction (B10) and un-corrected XCO2 (Raw) for 2018 and all QF filter regimes for both Land and Ocean data. 
 690 

QF = 0  

Surface/Mode XGBoost  B10  Raw 

Land NG -0.04±1.02 ppm  -0.13±1.06 ppm  -1.90±1.68 ppm 

Ocean G 0.02±0.64 ppm   0.18±0.71 ppm  -1.61±1.10 ppm 

QF = 1  

Surface/Mode XGBoost  B10  Raw 

Land NG  0.01±2.45 ppm  -1.24±3.83 ppm  -2.83±3.69 ppm 

Ocean G -0.06±1.50 ppm  -1.17±2.59 ppm  -2.79±2.75 ppm 

QF = 0 + 1  

Surface/Mode XGBoost B10  Raw 

Land NG -0.03±1.75 ppm  -0.59±2.64 ppm  -2.78±2.73 ppm 

Ocean G -0.01±1.07 ppm  -0.36±1.85 ppm  -2.09±2.03 ppm 
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Figure 5. Remaining XCO2 biases (DXCO2) after correction for 2016-2018 and model mean proxy, binned to a 2ºx2º resolution. 
DXCO2 after the XGBoost correction for QF=0 is shown in (a), DXCO2 after the B10 correction for QF=0 is shown in (b), DXCO2 
after the XGBoost correction for QF=1 is shown in (c), DXCO2 after the B10 correction for QF=1 is shown in (d),  and difference 
(B10 – XGB) for QF=0 is shown in (e). Three models are trained each with one year in [2016,2017,2018] used as holdout. The results 720 
on the holdout sets are then used for plotting. 
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4.5 Increased sounding throughput 

One of the benefits of the non-linear bias correction is the potential for increased throughput of well-corrected QF = 1 data. 730 

Improved throughput of well corrected data would be of benefit to point analysis studies where data is limited by the 

operational QF, and potentially of benefit to flux models as well. To provide an empirical example of this, we create a modified 

version of the operational XCO2 quality flag utilizing our proposed ocean correction model and land correction model. We 

take a conservative approach where initial filter values are set equal to those of the operational quality filtering. Then, we select 

a few variables for which the filters are relaxed to increase sounding throughput while maintaining the RMSE of the combined 735 

operational correction and quality filter. With our new quality flag (QFNew), we are able to increase sounding throughput by 

approximately 16% over the B10 QF while matching the RMSE of the B10 correction as shown in Table 7. 

 

For many features, the quality filters were not changed from the operational filters, as relaxing filters on variables that are 

already passing most of their conditional distributions would allow for only marginal improvements in throughput at the cost 740 

of large systematic errors. Therefore, we select only features for which large portions of the marginal distributions are removed 

by the operational flag and where the non-linear correction improves both mean and variance of DXCO2. The relaxed filters 

for these variables are shown in Figure B1 and Figure B2 by the vertical red dashed lines, and the range of data assigned 

QFNew = 0 shown in the red parentheses. The operational filter also minimizes the unit-less metric of the binned standard 

deviation of DXCO2 divided by the posterior XCO2 uncertainty below a value of 3 ppm/ppm (Osterman et al. 2020). When 745 

tuning QFNew, we also aim to minimize this metric. Higher throughput of well-corrected data is observed in northern and 

central Africa, the Amazon basin, and in latitudes above 60º north as seen in Figure 6. While selection of these variables and 

the relaxation of their filter values is subjective, this empirical result illustrates the benefit of a quality flag derived in 

conjunction with the non-linear bias correction. Future work will focus on the automation of defining the quality flag thresholds 

using a data driven approach. 750 

 
Table 7. RMSE for combined XGBoost correction, B10 QF percent data throughput, and QFNew percent data throughput, by 
surface/mode, for 2016-2018. 

Surface (Mode) XGBoost RMSE B10 % Passing QFNew % Passing 

Land (Nadir+Glint)  1.07 ppm 60% 70% 

Ocean (Glint) 0.71 ppm 63%  76% 

 

 755 
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Figure 6. Relative increase in percent passing QFNew over B10 QF for 2016-2018 aggregated by 4º×4º bins. 

 780 
 

5 Discussion and Future Work 

5.1 Generalization across proxies 

 

We acknowledge that even with a temporal training and testing split, there is still some circularity due to the lack of a truly 785 

independent truth proxy. This issue has been discussed at length for the operational bias correction in Taylor et al. 2023 and 

comparison and selection independent validation data sets is still an open area of study. The risk of overfitting due to circularity 

become greater when fitting a more complex machine learning model. To evaluate generalizability to a fully independent 

validation proxy, we fit a set of XGBoost models on two truth proxies and evaluate on the third proxy which is held out during 

training. The same temporal split is used where 2018 data for the held-out proxy is used for evaluation. Results are shown in 790 

Figure 7, for land, and Figure 8, for ocean. Each column shows the residual fit for the hold out proxy, for QF = 0 (top row) 

and QF = 1 (bottom row). For QF = 0, increase in RMSE was minimal for both surface types and across proxies. There was 

some impact to performance on QF=1 data, when compared to training with all three proxies, particularly for TCCON with an 

increase in RMSE of ~0.1 ppm for land and ocean data. Indicating that the information contained in TCCON is not adequately 

represented by the model mean and small area approximation proxies which capture variability at larger scales. A potential 795 

approach to reducing circularity in the evaluation of the truth proxies would be to train the bias correction on TCCON and 

either the model mean or small area approximation, using the third proxy not chosen for validation.  
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 825 
Figure 7. Comparison of XCO2 derived from truth proxy (XCO2 True) vs. XCO2 corrected by XGBoost (XCO2 ML) for land by 

hold out proxy set and hold out year (2018). Left-most column displays results of a XGBoost model trained on [TCCON, Model 

Mean] and evaluated on Small Area. Middle column displays results of a XGBoost model trained on [Small Area,TCCON] and 

evaluated on Model Mean. Right-most column displays results of a XGBoost model trained on [Model Mean, Small Area] and 

evaluated on TCCON. Generalization for the hold proxy and QF=0 is shown in the top row and QF=1 in the bottom. 830 
 



 

21 
 

 

Figure 8. Comparison of XCO2 derived from truth proxy (XCO2 True) vs. XCO2 corrected by XGBoost (XCO2 ML) for ocean by 

hold out proxy set and hold out year (2018). Left-most column displays results of a XGBoost model trained on [TCCON,Model 

Mean] and evaluated on Small Area. Middle column displays results of a XGBoost model trained on [Small Area,TCCON] and 835 
evaluated on Model Mean. Right-most column displays results of a XGBoost model trained on [Model Mean, Small Area] and 

evaluated on TCCON. Generalization for the hold proxy and QF=0 is shown in the top row and QF=1 in the bottom. 

 

 

5.2 Evaluating feature importance between filter regimes 840 

 

To understand the contribution of the features to correcting bias in QF=0 and QF=1 data, we compare the information gain 

between the two regimes. To perform the ablation study we again employ the models trained on individual truth proxies and 

re-train and evaluate them on QF=0 and again for QF=1 data. Figure 9 shows the information gain for each filter regime for 

land and for ocean. For land, dpfrac and co2_grad_del are highly informative for correction of QF=0 data by the machine 845 

learning model. Similarly for ocean QF=0 data, the surface pressure delta term dp_sco2 and co2_grad_del are also highly 

informative. In operation, these terms are also used for bias correction in all ACOS versions (dpfrac replaced dP in B10) to 

date. These variables are responsible for the largest reduction in unexplained variance in the filtered regime (Payne et al. 2022; 

Osterman et al. 2020; O’Dell et al. 2018) 

 850 
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For land QF=1 data, there is a drop in importance for co2_grad_del and dpfrac and large increase for h2o_ratio and relative 

increases for the albedo and aerosol terms. To explain the high importance for the h2o_ratio, we look to the non-linear 

interaction outside of the bound imposed by the operational filter which removes soundings with a h2o_ratio greater than 

1.023, reducing the regime of interaction to one that is not highly correlated with DXCO2. In the QF=1 regime, h2o_ratio 

corresponds to a significant negative bias. Larger values of h2o_ratio are explained in Taylor et al. 2016, where it was shown 870 

that retrieved surface albedo from the strong CO2 band is generally lower than the weak CO2 band. In cases of larger aerosol 

presence, this sensitivity leads to weaking of the absorption features and a positive departure from unity. The additional albedo 

term for the strong CO2 band as well as the additional aerosol terms also increase in importance for QF=1.  

 

For ocean QF=1 data, there is a significant change in information gain for several features. The surface pressure delta term 875 

dp_sco2, becomes significantly less informative for correcting QF=1 where negative values of dp_sco2 are relatively 

uncorrelated with DXCO2. Similarly, to land, the albedo term for the strong CO2 band more informative for correcting outside 

the filtered regime along with the residual error between forward modelled radiances and measurements in the weak CO2 band. 

 

 880 
Figure 9: Feature importance for land is shown in (a), feature importance for ocean is shown in (b). Y-axis displays the normalized 
information gain from XGBoost models with QF=0 shown in darker colours and QF=1 shown in lighter colours. 
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5.3 Preservation of CO2 enhancements 940 

We assess the risk of the proposed bias correction to correct out and remove plume features in the data. Several features heavily 

utilized by the XGBoost models and in operational correction such as the CO2 gradient delta, and surface pressure terms (e.g., 

dpfrac, dp_o2a), are differences between the ACOS retrieved state, and the prior. Therefore, there is potentially a risk for the 

bias correction to use the delta terms to over correct the retrieved XCO2 to the truth. We compare XGBoost corrected XCO2 

for two known plumes first identified in Nassar et al. 2021. The two example plumes are shown in Figure 10, an ocean glint 945 

plume in Taean, South Korea, and a land nadir plume observed over two co-located power plants in Ohio, US. We compare 

the uncorrected XCO2 retrieval (B10 Raw), the operationally corrected XCO2 (B10 Corrected) and the machine learning 

corrected XCO2 (XGBoost Corrected) and note that the machine learning corrected product captures enhancements not present 

in the training data. These results are also consistent with the findings in Mauceri et al. 2023, that also showed that fitting a 

machine learning model for 3D cloud correction, which include similar delta terms, did not correct out CO2 enhancements. 950 

 
Figure 10. Two CO2 plumes captured downwind from power plants (Nassar 2021). An ocean glint plume at Taean, South Korea, 

[lat 36.91o, lon 126.23o] on 2015-04-17 is shown in (a). A land nadir plume near the J. M. Gavin and Kyger Creek power plants in 

Ohio, USA, [lat 38.93o, lon -82.12o] on 2015-07-30. Regions with the example plumes are not present in the training dataset and 

consist of QF = 0 + 1 data. 955 
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5.4 Potential for further improving data throughput 

Figure 11 further illustrates how the shape of the filtering or decision surface can affect data throughput. Soundings are binned 

by two state vector features: h2o_ratio and dpfrac. Figure 11b, and Figure 11d show the improvement in reduction of mean 960 

DXCO2 and in the error divided by the posterior uncertainty, from the non-linear correction. The QF filters for each feature 

are indicated by the black dashed lines and the interior of the intersection of these filters indicates the region of state space that 

is labelled as QF = 0 (Note: the additional filters of the QF further reduce the data that is passed in this region). Significant 

portions of the distribution, where the non-linear method can accurately correct, lay outside of this filtered region and are 

labelled QF = 1. A data driven filter can be constructed using similar interpretable machine learning techniques and produce a 965 

unified correction/filtering product. Furthermore, moving away from the binary quality flag to a ternary (“very good”, “good”, 

“bad”) will likely provide an improved data product for end users. Data driven methods for quality filtering have already 

proven to be useful in the northern high latitudes (Mendonca et al. 2021) and a genetic algorithm was previously used to derive 

the Warn Levels which complement the operational quality flag found in early OCO-2 data versions (Mandrake et al. 2015).  

An important task for such future work will be to ensure that the machine learning method learns a physically consistent filter 970 

that can increase data throughput while still limiting variance of error and DXCO2. 

 

 
Figure 11. Hex bin plots show conditional distributions of 2018 DXCO2 vs. dpfrac and h2o_ratio. Remaining DXCO2 after the 
operational correction for B10 is shown in (a). Remaining DXCO2 after the non-linear correction is shown in (b). Binned sttdev of 975 
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DXCO2 divided by the posteriori uncertainty from the retrieved XCO2 is shown in (c) for the operational correction for B10 and (d) 
for the non-linear correction. B10 QF filter thresholds for both features are shown with black dashed lines for reference. 
 985 

 

6 Conclusion 

 

We demonstrate an approach for selecting co-retrieved state vector variables and other features to be used as input into a land 

model and an ocean model to correct biases in ACOS retrieved XCO2. The use of the non-linear method allows for decoupling 990 

of the dependent bias correction and filter used in operation, as the filter no longer needs to limit the correction function to a 

linear fit. By doing so, this method achieves a 59% and 67% improvement in reduction of the error variance over the operational 

correction on QF=1 data, for land and ocean respectively. To utilize this improvement in correction, we derive a new quality 

flag (QFNew), by relaxing select filter thresholds from the operational quality flag. Using the proposed QFNew flag, we 

increase data throughput by 16% while maintaining a comparable residual error to the operational B10 correction. The 995 

workflow outlined in this research is extendable for future ACOS algorithm updates, and for OCO-2’s companion instrument, 

OCO-3, aboard the International Space Station.  

 

Appendix A: Feature selection and importance 

 1000 

To assess the robustness of our choice of features, we compare the ranking produced by the information gain feature importance 

generated by the gradient booster, with the ranking produced by a method called permutation feature importance (Fisher et al. 

2018). Permutation feature importance captures the contribution to residual error when a feature has its values randomly shifted 

across observations. Permutation feature importance is a model agnostic post-hoc method that does not require the bias 

correction model to be retrained. In Figure A1 we compare the normalized rankings for the individual proxy/surface/mode 1005 

models that were used to select variables for the final bias correction models trained on all truth proxies. Good agreement is 

observed in both the overall ranking and magnitude of normalized feature importance between both methods. 
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Figure A1. Comparison of feature importance derived from information gain and permutation importance. Normalized importance 1020 
(permutation importance in stars, and information gain in circles) are shown for land and ocean features, and by truth proxy. 

Feature importance methods are largely in agreement in ranking and contribution. 

 

Feature importance for models trained on individual proxies and QF = 0 + 1 data. These models were used to identify state 

variables to be used as input into the proposed bias correction models. While there is generally good agreement between the 1025 

proxies the overall magnitude and ranking differs slightly as shown in Figure A2. For TCCON the aerosols and albedo terms 

contribute more to the correction while the same terms are less informative for the small area approximation. Likely due to the 

small area proxy capturing biases that vary slowly over larger scales. For ocean, the albedo_slope_sco2 is informative for the 

small area proxy, and all proxies exhibit better agreement in their feature importance. 
 1030 
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Figure A2. Feature importance for individual truth proxy models. Error bars indicate variance over 10 runs with different random 

seeds. 

 

Appendix B: Threshold values for QFNew 1035 
 

 
 



 

28 
 

 

 1040 
Figure B1: Variables selected for land QFNew: the difference between the uncorrected retrieval and the model mean truth proxy is 
shown with the black curve. The difference between the operational correction and the model mean truth proxy is shown in the light 
green curve. The difference after the non-linear correction is show by the dark green curve. The binned Std error divided by the 
posterior uncertainty of XCO2 is show by the green pluses and right y-axis. B10 QF filters are indicated by the black vertical dashed 
lines and QFNew is shown by the red dashed lines. Region of data denoted as QF=0 is contained within the red values in the 1045 
paratheses. 

 

 

 
Figure B2: Variables selected for ocean QFNew: the difference between the raw retrieval uncorrected retrieval and the model mean 1050 
truth proxy is shown with the black curve. The difference between the operational correction and the model mean truth proxy is 
shown in the light blue curve. The difference after the non-linear correction is show by the dark blue curve. The binned Std error 

Moved (insertion) [4]

Moved (insertion) [5]
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divided by the posterior uncertainty of XCO2 is show by the blue diamonds and right y-axis. B10 filters are indicated by the black 
vertical dashed lines and a potential filter is shown by the red dashed lines. Region of data denoted as QF=0 is contained within the 
red values in the paratheses. 1055 

 Appendix C: Lite file variables 

Table C1. Features used or considered for the operational and proposed bias correction and filtering. 
 

State Variable Description Used for: [B10 BC, ML BC, QF, 
QFNew] 

dpfrac Surface pressure difference that considers smaller dry air 
columns over higher elevations (Kiel et al. 2019). 

B10 BC, ML BC, QF, QFNew 

h2o_ratio Ratio of retrieved H2O column in weak and strong CO2 

bands by IMAP-DOAS. 

 

ML BC, QF, QFNew* 

DWS Additive combination of retrieved dust, water, and sea salt 

aerosol optical depth. 

 

B10 BC, ML BC, QF, QFNew 

aod_strataer Retrieved upper tropo+stratospheric aerosol optical depth 

at 0.755 microns. 

 

ML BC, QF, QFNew 

aod_ice Retrieved ice cloud optical depth at 0.755 microns. ML BC, QF, QFNew* 
co2_grad_del Large unphysical variation between the retrieved vertical 

CO2 profile and prior. 
B10 BC, ML BC, QF, QFNew 

dp_sco2 Surface pressure difference between the retrieved and 

prior, evaluated for the strong CO2 band location on the 

ground. 

 

B10 BC, ML BC, QF, QFNew* 

snr_wco2 The estimated signal-to-noise ratio in the continuum of the 
weak CO2 band. 

ML BC, QF, QFNew 

co2_ratio Ratio of retrieved CO2 column in the weak and strong CO2 
bands by IMAP-DOAS 

QF, QFNew* 

altitude_stddev The standard deviation of the surface elevation in the target 
field of view. Unit is in meters. 

QF, QFNew* 

max_declocking_wco2 An estimate of the absolute value of the clocking error in 
the weak CO2  band expressed as a percent. 

QF, QFNew* 

max_declocking_sco2 An estimate of the absolute value of the clocking error in 
the strong CO2 band expressed as a percent.  

QF, QFNew* 

dp_o2a The difference in retrieved surface pressure to O2A surface 
pressure prior. 

QF, QFNew 

dp_abp The difference in the retrieved surface pressure to the fast 
O2A band pre-processor retrieval. 

QF, QFNew* 

Deleted: The data driven approach to bias correction helps to 
reduce the amount of hand tuning of regression weights and 1060 
iterative filter selection by a domain expert. The workflow 
outlined in this research is easily reproducable for future ACOS 
algorithm updates, and for OCO-2’s companion instrument, 
OCO-3, aboard the ISS. The method of correction may also be 
adapted to other variables of interest such as surface pressure, 1065 
and other trace gases.
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albedo_slope_sco2 Retrieved strong band reflectance slope(land) or slope of 

Lambertian albedo component of BRDF (ocean). 

 

ML BC, QF, QFNew 

albedo_slope_wco2 Slope of the weak CO2 band albedo with respect to 
wavenumber. 

QF, QFNew* 

albedo_sco2 Surface reflectance at a reference wavelength in the strong 
CO2 band in the primary scattering geometry from the 
retrieved BRDF (land). Retrieved Lambertian albedo 
(ocean). 

QF, QFNew* 

albedo_quad_sco2 Quadratic coefficient of the albedo_sco2 term with respect 
to wavenumber (land only). 

QF, QFNew 

albedo_quad_wco2 Quadratic coefficient of the albedo_wco2 term with 
respect to wavenumber (land only). 

QF, QFNew 

aod_total Retrieved aerosol optical depth of cloud and aerosol at 
0.755 microns. 

QF, QFNew* 

rms_rel_sco2 RMSE of the L2 fit residuals in the strong CO2 band 
relative to the signal. 

QF, QFNew 

rms_rel_wco2 RMSE of the L2 fit residuals in the weak CO2 band relative 
to the signal. 

ML BC, QF, QFNew 

detlaT Retrieved offset to prior temperature profile in Kelvin. QF, QFNew 

aod_sulfate Retrieved aerosol optical depth of sulfate aerosol at 0.755 
microns. 

B10 BC, QF, QFNew 

aod_oc Retrieved aerosol optical depth of organic carbon aerosol 
at 0.755 microns. 

B10 BC, QF, QFNew 

aod_water Retrieved aerosol optical depth of water aerosol at 0.755 
microns. 

QF, QFNew 

dust_height Retrieved central pressure of the dust aerosol layer, relative 
to the retrieved surface pressure. 

QF, QFNew 

aod_seasalt Retrieved aerosol optical depth of sea salt aerosol at 0.755 
microns. 

QF, QFNew 

Fs_rel Retrieved fluorescence relative to the O2A band continuum 
signal. 

QF, QFNew 

chi2_wco2 Reduced chi-squared value of the L2 fit residuals for the 
weak CO2 band. 

QF, QFNew 

windspeed Retrieved surface wind speed over water surfaces. QF, QFNew 

water_height Retrieved central pressure of the cloud water layer, relative 
to the retrieved surface pressure. 

QF, QFNew 

 

Data Availability  
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OCO-2 B10 Lite Files can be found at: https://doi.org/10.5067/E4E140XDMPO2 (OCO-2 Science Team et al., 2020). 

Proposed quality filter dataset: https://doi.org/10.17605/OSF.IO/CX53S .  1070 
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