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Response to Reviewer #1 

 

In my opinion, the underlying machine learning method XGBoost is praised beyond measure (highly 
interpretable compared to other machine learning algorithms, improved predictive performance 
compared to Random Forest, highly robust to overfitting, ...). It is not trivial to prove such universal 
statements, and in the context of this paper it is not even necessary. On the other hand, some of these 
aspects are not sufficiently dealt with regarding the specific example of bias correction presented 
here. In this sense, please avoid questionable general statements and elaborate on the available results 
(the proposed bias correction) instead: How can the actually obtained model be interpreted? What is 
the most appropriate way to calculate feature importances aiming at maximising interpretability of 
the specific model in question? What is the ranking of the most important features (for land and 
ocean data)? Does the model overfit for the chosen parameters? 
 
We fully agree with this statement and have removed the broader claims related to the method. We 
have added our full responses and manuscript changes to the in-depth points and comments below. 
 

In order to assess (and exclude) potential overfitting tendencies, it might also be useful to define 
more challenging training and validation data sets or to use completely independent data for 
validation. The models are trained on data from 2014-2017 and are then evaluated on data from 
2018. However, the validation data set is not entirely independent as the biases are likely similar in 
the statistical sense from year to year. It would be more instructive to leave out whole regions and/or 
proxy data sets in the training and only use them for validation. It would be interesting whether the 
figures and tables demonstrating the performance of the correction would change significantly as a 
result (e.g. Figures 3/4 or Table 6). For example, Figure 5 suggests that the correction does not 
generalise so well to regions that were rarely considered during training (e.g tropics, parts of South 
Asia and Canada, compare to Figure 1).  
 
We agree with the need to assess how a machine learning bias correction will generalize to a truly 
independent data set. An additional section and new Figure 7 have been added to the discussion 
exploring the ability of the bias correction to generalize to a held-out truth proxy. We would like note 
that the temporal training/validation split employed in the manuscript is an improvement over the 
split used by the operational correction which fits on all proxies for a subset of the record and 
evaluates on data from the same years. Addressing the circularity in the current use of the truth 



proxies and identifying new proxies for validation is an ongoing area of study by the OCO science 
team. 

 

5.1 Generalization across proxies 

We acknowledge that even with a temporal training and testing split, there is still some circularity 
due to the lack of a truly independent truth proxy. This issue has been discussed at length for the 
operational bias correction in Taylor et al. 2023 and comparison and selection independent validation 
data sets is still an open area of study. The risk of overfitting due to circularity become greater when 
fitting a more complex machine learning model. To evaluate generalizability to a fully independent 
validation proxy, we fit a set of XGBoost models on two truth proxies and evaluate on the third 
proxy which is held out during training. The same temporal split is used where 2018 data for the 
held-out proxy is used for evaluation. Results are shown in Figure 7, for land, and Figure 8, for 
ocean. Each column shows the residual fit for the hold out proxy, for QF = 0 (top row) and QF = 1 
(bottom row). For QF = 0, increase in RMSE was minimal for both surface types and across proxies. 
There was some impact to performance on QF=1 data, when compared to training with all three 
proxies, particularly for TCCON with an increase in RMSE of ~0.1 ppm for land and ocean data. 
Indicating that the information contained in TCCON is not adequately represented by the model 
mean and small area approximation proxies which capture variability at larger scales. A potential 
approach to reducing circularity in the evaluation of the truth proxies would be to train the bias 
correction on TCCON and either the model mean or small area approximation, using the third proxy 
not chosen for validation.  

 



Figure 7. Comparison of XCO2 derived from truth proxy (XCO2 True) vs. XCO2 corrected by 
XGBoost (XCO2 ML) for land by hold out proxy set and hold out year (2018). Left-most 
column displays results of a XGBoost model trained on [TCCON, Model Mean] and evaluated 
on Small Area. Middle column displays results of a XGBoost model trained on [Small 
Area,TCCON] and evaluated on Model Mean. Right-most column displays results of a 
XGBoost model trained on [Model Mean, Small Area] and evaluated on TCCON. 
Generalization for the hold proxy and QF=0 is shown in the top row and QF=1 in the bottom. 

 

Figure 8. Comparison of XCO2 derived from truth proxy (XCO2 True) vs. XCO2 corrected by 
XGBoost (XCO2 ML) for ocean by hold out proxy set and hold out year (2018). Left-most 
column displays results of a XGBoost model trained on [TCCON,Model Mean] and evaluated 
on Small Area. Middle column displays results of a XGBoost model trained on [Small 
Area,TCCON] and evaluated on Model Mean. Right-most column displays results of a 
XGBoost model trained on [Model Mean, Small Area] and evaluated on TCCON. 
Generalization for the hold proxy and QF=0 is shown in the top row and QF=1 in the bottom. 

 

 
 
 

 



There are quite a few different XGBoost models, e.g. for testing purposes, in the paper; I am not 
entirely sure what the proposed bias corrected product is in the end. I suspect it is the data set with 
the correction (split according to land and ocean) learned on all three proxy datasets for QF=0+1 
simultaneously and subsequently restricted to QFNew. Is this correct? Or is it some kind of average 
of the three models for the different truth proxy data sets? Please make this more clear in the text. 

This is correct, we propose a XGBoost model for land data and a XGBoost model for ocean data. We 
then derive QFNew using the new bias correction. This final proposed bias correction was not clear 
in the text. We have clarified the language in Section 3.4 and it now reads: 

Two methods are compared for bias correcting retrieved XCO2: a non-linear machine learning model 
called XGBoost; and as a baseline, we also train a MLR model similar to the hand-tuned model used 
in the operational correction. For correcting land nadir, and land glint data, a single XGBoost model 
and MLR are trained using all three truth proxies.  The predictor variables, or features are the same 
for both model types. This allows for comparison between the non-linear model and baseline linear 
method to properly assess that improved fit is coming from the captured non-linearity and not just the 
inclusion of the additional predictors. A single XGBoost and MLR are derived for correcting ocean 
glint data, again using all three proxies and same set of ocean features. We also compare our 
approach to the operational land correction and ocean correction for B10.  

To identify a set of informative features to be used as inputs for the XGBoost land and ocean models, 
we first train as set of models independently on each truth proxy. These six models (three for land 
and three for ocean) are initially fit on a large set of potentially informative features, using QF = 0 + 
1 data. The resulting feature importance derived from these initial models is used to filter down the 
feature set to identify a subset of features that is highly informative across truth proxies. The 
resulting feature sets are combined to train the final proposed model pair (one for land and one for 
ocean), which are trained using all truth proxies.  

Next, we compare the final models trained on QF = 0 + 1 data against models trained only on “good” 
quality data assigned QF = 0 then, evaluate each model pair on QF = 0 soundings that have been 
temporally held out. This is to ensure the ability of the nonlinear method to reproduce the linear 
model, which is the currently accepted community standard. Secondly, we evaluate the model trained 
on QF = 0 + 1 data on the excluded regime of data labelled QF = 1 where non-linear relationships 
between DXCO2 and predictors become more pronounced. Finally, we derive a new quality flag 
(QFNew) used in conjunction with the non-linear correction to that increases the throughput of well 
corrected data while maintaining similar error metrics as the operational filter and correction.  

Additional wording has been added to the abstract. 

In this paper, we demonstrate a clear improvement in the reduction of error variance over the 
operational correction by using a set of non-linear machine learning models, one for land and one 
for ocean soundings. 

We demonstrate an approach for selecting co-retrieved state vector variables and other features 
to be used as input into a land model and an ocean model to correct biases in ACOS retrieved 
XCO2. 

 



The bias correction (for both land and ocean) includes features measuring the deviation of the 
retrieved quantities from the prior (surface pressure and vertical CO2 profile). I assume that these 
priors are very consistent with the XCO2 truth used in the supervised learning. Doesn't that run the 
risk of essentially pushing the XCO2 results back to the truth/prior in specific cases without noticing 
in the averaging kernels that hardly any information is gained from the actual measurement? Can you 
exclude that point sources that are not present or not sufficiently resolved in the truth are artificially 
attenuated or corrected away in unseen data? Due to these potential pitfalls, the results would be 
more robust if such parameters (co2_grad_del, dpfrac, dp_sco2) were not used in the bias correction. 
How important are these features in your machine learning model? Please discuss these issues in the 
manuscript. 

The CO2 gradient delta, and surface pressure delta terms are used extensively in the operational bias 
correction and an analysis of the correction using these terms is given in Kulawik et al. 2019. Despite 
this we agree that there is potentially a risk in over correcting using the more complex machine 
learning model. We believe that we show that we are robust to this due to the negligible 
improvement in performance for QF=0 data over the operational correction, where co2_grad_del, 
dp_sco2, and dpfrac dominate the feature importance. When correcting QF=1 data the feature 
importance for these terms drops off dramatically as shown in the new Figure 9. Furthermore, we 
offer an empirical example using a set of plumes not present in the training data (a land example and 
an ocean example) to illustrate that the method does not remove CO2 enhancements. 

5.3 Preservation of CO2 enhancements 

We assess the risk of the proposed bias correction to correct out and remove plume features in the 
data. Several features heavily utilized by the XGBoost models and in operational correction such as 
the CO2 gradient delta, and surface pressure terms (e.g., dpfrac, dp_o2a), are differences between the 
ACOS retrieved state, and the prior. Therefore, there is potentially a risk for the bias correction to use 
the delta terms to over correct the retrieved XCO2 to the truth. We compare XGBoost corrected 
XCO2 for two known plumes first identified in Nassar et al. 2021. The two example plumes are 
shown in Figure 10, an ocean glint plume in Taean, South Korea, and a land nadir plume observed 
over two co-located power plants in Ohio, US. We compare the uncorrected XCO2 retrieval (B10 
Raw), the operationally corrected XCO2 (B10 Corrected) and the machine learning corrected XCO2 
(XGBoost Corrected) and note that the machine learning corrected product captures enhancements 
not present in the training data. These results are also consistent with the findings in Mauceri et al. 
2023, that also showed fitting a machine learning model for 3D cloud correction, which include 
similar delta terms, did not correct out CO2 enhancements. 



 

Figure 10. Two CO2 plumes captured downwind from power plants (Nassar 2021). An ocean 
glint plume at Taean, South Korea, [lat 36.91o, lon 126.23o] on 2015-04-17 is shown in (a). A 
land nadir plume near the J. M. Gavin and Kyger Creek power plants in Ohio, USA, [lat 
38.93o, lon -82.12o] on 2015-07-30. Regions with the example plumes are not present in the 
training dataset and consist of QF = 0 + 1 data. 

 

L25-29: There were other satellites measuring CO2 before GOSAT, e.g. AIRS or SCIAMACHY. 
GOSAT is considered the first satellite designed specifically for the purpose of measuring 
atmospheric CO2 from space. Please be more specific here. 

We now correctly acknowledge the contribution of these instruments. The sentence now reads: 

Following a long history of critical in situ measurements of CO2 at key sites around the world 
that allowed us to better understand the carbon cycle on continental scales, the era of space-based 
remote sensing began with the Scanning Imaging Absorption spectrometer for Atmospheric 
Chartography (SCIAMACHY) in March 2002 (Boevnsmann et al, 1999) and the Atmospheric 
Infrared Sounder (AIRS) launched in May 2002 (Aumann et al, 2003). 

L58-60: Do you mean (Noel et al., 2021) or (Noel et al., 2022)? There are two papers, but only (Noel 
et al., 2022) is in the References. (Noel et al., 202?) and (Schneising et al., 2019) both use non-linear 
bias correction techniques but there are no explicit comparisons to linear corrections and the term 
"operational" does not fit here either. Please revise this sentence. 

The citation has been corrected and is no longer used to argue against a linear correction. 

Applying non-linear machine learning techniques have shown great promise for the task of bias 
correction for GOSAT/GOSAT-2 (Noël et al., 2022) and TROPOMI (Schneising et al., 2019). 



L63: Please be more specific what you mean by "interpretable" since XGBoost is a complex black-
box model, which is not intrinsically interpretable. Do you mean post-hoc model interpretation 
methods? Do you refer to global explainability of the model or to local explainability of individual 
predictions? 

We agree that the quality of the post-hoc interpretability provided by the internal splitting criterion 
was overstated. We have refined the section and clarified that the information gain provides only a 
global explanation of feature importance. We have clarified this in the text. 

This research demonstrates a general non-linear bias correction approach for OCO-2 build 10 (B10, 
Taylor et al., 2023) via a machine learning method and provide a post-hoc explanation of the overall 
contribution of the selected state vector features. 

L65: "reproducible" is somewhat misleading because it gives the impression that a universal recipe, 
that can be transferred without any adaptations, is being presented. However, when using other data 
sets the parameters of the model have to be re-tuned and the used features have to be adapted. Is 
there a systematic approach, e.g. to feature selection or setting of model parameters, justifying the 
designation "reproducible"? 

We agree that the claim of reproducibility is misleading and have clarified that the general frame 
work for developing the bias correction can be adapted for future ACOS updates. 

The framework presented in this manuscript for identifying informative features for bias correction 
can be adapted for future OCO-2,3 ACOS algorithm updates. 

L66: The GeoCarb mission was cancelled, please remove. 

Removed. 

L85-92: Please specify which TCCON version you are using (GGG2014 or GGG2020?). It seems to 
be GGG2014, why didn't you use the most recent version? Does it make any difference in 
performance when training or validating with one or the other version? 

Both the operational correction and our machine learning correction use the same set of soundings 
co-located with TCCON GGG2014 measurements. A bias correction is currently being developed for 
GGG2020, however that work is still unpublished. We have clarified our use of GGG2014 data. 

We use the same dataset as the operational correction consisting of OCO-2 soundings co-located 
TCCON GGG2014 measurements (Wunch et al., 2017; Wunch et al., 2011) in space (2.5º lat, 5º lon) 
and time (2h). 

L122-L124: I disagree with the statement that XGBoost is highly interpretable compared to other 
machine learning algorithms; I would even argue that XGBoost is typically the least interpretable 
well-established machine learning algorithm of all after deep neural networks and also requires post-
hoc approaches to understand and explain the model. For example, Support Vector Machines or 
Random Forest are typically more interpretable than XGBoost. Please revise (or remove) the 
sentence accordingly. 



We have removed the general statements regarding model interpretability comparisons.  

L128-129: XGBoost does not average across the ensemble (in contrast to Random Forest). Instead, 
XGBoost trains each subsequent model in the ensemble to improve upon the errors of the previous 
models and uses a weighted sum of the individual model predictions to make its final prediction. This 
is also one of the reasons why XGBoost is usually less interpretable than Random Forest. 

This has now been corrected in the sentence. 

L130: It depends on the specific task, the available resources, and data set whether XGBoost or 
Random Forest performs better, as they have different strengths and weaknesses. Moreover, it is hard 
to do a fair comparison anyway, because you have to tune the corresponding parameters 
independently, e.g. it makes little sense to fix certain tree structures in a comparison. Therefore, 
please avoid a general statement comparing the predictive performance of different machine learning 
algorithms, especially when it comes to XGBoost and Random Forest, which often perform quite 
similarly after respective optimal parameter tuning (see also general comments). Have you tried other 
machine learning algorithms for the specific task presented here? 

L131-133: The arbitrary application of these strategies does not make XGBoost per se highly robust 
against overfitting to the training data. Please make clearer that these strategies can avoid overfitting 
if the parameters and the validation data set are chosen appropriately. Please demonstrate explicitly 
that there is no overfitting for the non-linear bias correction presented here. 

L134-135: How exactly were these parameters determined? By monitoring the performance of the 
model on a validation dataset during the training process and stopping the training when the 
performance on the validation dataset does not improve for a given number of consecutive iterations? 
Are the parameters actually always the same (for all testing models and the final bias correction)? 

We agree and have re-written Section 3.1, removing the general comparison on model performance 
and clarified that regularization alone does not guarantee good generalization to an unseen data set. 
We have described thoroughly the hyper-parameter tuning process and have further elaborated on the 
parameters selected for the land and ocean models. The section now reads: 
 

3.1 Gradient boosting 

To model systematic error from co-retrieved state vector elements, we employee a machine learning 
method known as extreme gradient boosting or XGBoost (Chen et al. 2016) which can fit both linear 
and non-linear relationships. XGBoost is an ensemble model where a set of simple models known as 
regression trees (Breiman 1984) are sequentially trained, with each new member fit on residuals of 
the previous trees. During inference, the weighted sum is taken across the ensemble members. 
Members are grown or fit by selecting features that provide high information gain (Eq. 2). 
Information gain is calculated by evaluating the sum of the gradients 𝐺 and hessians 𝐻 of the loss 
function at left and right leaf nodes when selecting features during tree fitting (for our experiments 
we use Mean Squared Error as the loss function shown in Eq. 3. Features that are informative for 
reducing residual error during tree development yield high gain values. These values can be summed 
across trees in the ensemble to produce a ranking of feature contribution. This provides a post-hoc 
method of interpretability yielding a high level or global view of feature importance to correcting 



DXCO2. While this method of interpretability is less informative than the regression coefficients 
provided by a linear model, it is useful for tasks such as feature selection. 

 

XGBoost employs L1 and L2 norm regularization to reduce overfitting to outliers present in the 
training dataset. The effect of the regularization is governed by the hyper-parameters l and g, and 
must be carefully selected or tuned. To find these hyper-parameters we use a k-fold cross validation 
strategy in which the training dataset is divided into k subsets (we use k=10) and each subset is 
sequentially held out for evaluation for a model trained on the rest of the data. Performance across 
the k-folds is averaged and the process is repeated for each potential selection of hyper-parameters. 
We found a lLAND=2.5 and gLAND=3.75 for the land correction, and lOCEAN=2.0  and gOCEAN=10.0.  
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We initially evaluated a Random Forest but found better performance with the gradient booster. 
Therefore, we have focused only on the XGBoost models for demonstrating a non-linear correction 
in the manuscript. 

L136-145: Have you tried other ways to get feature importances from XGBoost, e.g. permutation 
based importance or importance computed with SHAP values? Is it possible to improve 
interpretability by a choice tailored to this specific problem? 

We have added comparison to permutation feature importance and note good agreement with 
information gain. We have added a plot and discussion to Appendix A. 

Appendix A: Feature selection and importance 

To assess the robustness of our choice of features, we compare the ranking produced by the 
information gain feature importance generated by the gradient booster, with the ranking produced by 
a method called permutation feature importance (Fisher et al. 2018). Permutation feature importance 
captures the contribution to residual error when a feature has its values randomly shifted across 
observations. Permutation feature importance is a model agnostic post-hoc method that does not 
require the bias correction model to be retrained. In Figure A1 we compare the normalized rankings 
for the individual proxy/surface/mode models that were used to select variables for the final bias 
correction models trained on all truth proxies. Good agreement is observed in both the overall 
ranking and magnitude of normalized feature importance between both methods. 

 



 

Figure A1. Comparison of feature importance derived from information gain and permutation 
importance. Normalized importance (permutation importance in stars, and information gain in 
circles) are shown for land and ocean features, and by truth proxy. Feature importance 
methods are largely in agreement in ranking and contribution. 

 

 

 

L207-210 and Figure 2: Please list the used features and the respective importances (split by land and 
ocean) for the models based on the different proxy data sets and for the final bias correction 
separately in a table.   

Figure 2 now shows the ranking and names of features used in the final bias correction. 

 



 

Figure 2. Feature importance for final land model trained with all proxies (a), feature 
importance for final ocean model trained with all proxies (b). Error bars denote variance in 
feature importance across 10 runs with different random seeds. 

Figure A2 shows the same for the models trained on the individual proxies. 

Feature importance for models trained on individual proxies and QF = 0 + 1 data. These models were 
used to identify state variables to be used as input into the proposed bias correction models. While 
there is generally good agreement between the proxies the overall magnitude and ranking differs 
slightly as shown in Figure A2. For TCCON the aerosols and albedo terms contribute more to the 
correction while the same terms are less informative for the small area approximation. Likely due to 
the small area proxy capturing biases that vary slowly over larger scales. For ocean, the 
albedo_slope_sco2 is informative for the small area proxy, and all proxies exhibit better agreement in 
their feature importance. 

 



 

Figure A2. Feature importance for individual truth proxy models. Error bars indicate variance 
over 10 runs with different random seeds. 

L215: Please better explain co2_grad_del. 

We have re-written Section 4.1 to improve the overall clarity and description of the features used in 
the bias corrections including co2_grad_del. Section 4.1 now reads: 

4.1 Feature Selection 

We select informative features for our bias correction following an iterative procedure. In the first 
step, we train XGBoost models for each proxy by surface type and operation mode (6 models in 
total). These initial models are trained using a large subset of co-retrieved state vector variables 
(shown in Table C1) which are potentially informative for correcting DXCO2 from the B10 L2Lite 
files. The resulting models are used to rank features according to their information gain which is 



defined in Eq. 2. Features that are less informative are removed from the set and new models are 
trained with the reduced feature set. Afterwards, feature importance is once again evaluated. To 
ensure robustness to correlation among features we (which information gain does not account for) we 
calculate Pearson’s correlation values between features. Features with an absolute Pearson value 
greater than 0.5 are included one a time and the feature with the highest importance is kept. This 
process is iteratively repeated until reaching a relatively small subset of maximally informative 
features. These features are combined to train the final bias correction models, which are trained on 
all proxies. Seven features are selected for land correction and five features selected for ocean as 
shown in Figure 2. The resulting features used in the final models and a brief description is shown in 
Table 3. 

Features used for operational correction are also highly informative for the proposed non-linear 
corrections and include the difference between the retrieved CO2 profile and prior profile used for 
land and ocean (co2_grad_del), and two surface pressure difference terms dpfrac for land and 
dp_sco2 for ocean (Kiel et al., 2019). The co2_grad_del is the change in profile shape and prior and 
is calculated as the difference dry air mole fraction  at the surface, denoted as CO2(1), to the fraction 
at ~0.6316 times the retrieved surface pressure, and is in units of parts per million (ppm). The 
calculation for co2_grad_del is shown in Eq. 4. For land, the dpfrac term is a difference ratio that 
considers the smaller dry air column over higher elevations and is defined in Eq. 5 where XCO2,raw is 
the uncorrected retrieval of the column average and Pap,SCO2 and Pret are the prior surface pressure at 
the strong band pointing offset and retrieved pressure respectively. For ocean, dp_sco2 is used and is 
the retrieved surface pressure minus the strong band prior. The extensive use of co2_grad_del and 
surface pressure deltas for bias correction is discussed in Kulawik et al., 2019. 

co2_grad_del = [CO2,ret(1) – CO2,ret(0.6316)] – [CO2,prior(1) - CO2,prior(0.6316)]                                                     
(4) 

dpfrac = 𝑋-.",012(1 −
𝑃13,4-."

𝑃056D )                                                                                                                  
(5) 

For land, the h2o_ratio is used and is the ratio of XH2O estimated by single band retrievals from the 
strong and weak CO2 bands separately using the IMAP-DOAS algorithm, which can differ from 
unity in the presence of atmospheric scattering (Taylor et al. 2016). We use three aerosol features for 
our bias correction over land scenes. The first being the sum of dust, water, and sea salt optical 
thickness termed DWS. We include retrieved ice particle optical depth (aod_ice) and the finer 
stratospheric aerosol optical depth (aod_stratear). The last feature used for land, as well as for ocean, 
is the albedo slope for the strong CO2 band termed albedo_slope_sco2. This variable represents the 
slope of the reflectance across the strong CO2 spectral band for land soundings and the slope of the 
Lambertian component of the combined Cox-Munk and Lambertian Bidirectional Reflectance 
Distribution Function (BRDF) for ocean soundings (Cox and Munk, 1954). In addition to the 
co2_grad_del, albedo_slope_sco2 and dp_sco2, two additional variables are used for the correction 
of Ocean G scenes. These are snr_wco2, which is the estimated signal to noise ratio derived during 
optimal estimation; and finally, rms_rel_wco2 which is the percent residual error from the forward 
modelled radiance for the weak CO2 to the measured radiance.  

 



 

 

L219: Are there different prior surface pressures for the weak and the strong band? If so, why? 

There is an alignment offset in the pointing location between the three bands therefore three priors 
are used.  

Table 3: Please remove "large unphysical" in the description of co2_grad_del. Or do you use an 
additional threshold to rate a deviation from the prior as unphysical? 

Removed. 

L260: Overfitting of XGBoost cannot be generally excluded. Please prove that there is indeed no 
overfitting for this specific task and parameter setup. To this end, a more challenging selection of 
training and validation datasets could also be considered (see also general comments). 

We now address this in Section 5.1, shown in the response above to the general comment. 

Table 4: Please also list the results for the final proposed bias correction combining all truth proxies. 

Added RMSE for combined truth proxies for each model. 

Figure 3/4, Table 4/5/6: Only validation data (2018 with truth proxy sampling) is displayed here, 
right? If this is the case, please be more specific in the description. 

All tables and descriptions now thoroughly depict 2018 data. 

ADD DESCRIPTION UPDATE HERE 

L303-304: Wouldn't it be better to apply the footprint correction before training the bias correction? 
 

This is an excellent point. We now apply the footprint correction first before removing the feature 
correction. While the effects to performance are negligible, feature contribution to bias is now more 
accurately depicted. Hyperparameter selection has also been updated. 

 
Is it possible to include the footprint correction in the bias correction by introducing a suitable 
parameter as feature (e.g. row number)? 

This is currently being evaluated for inclusion in a machine learning correction that expands on the 
approach of this manuscript and scheduled for a L2 litefile update for B11.  

Figure 5: Please highlight more (in the text and in the caption) what exactly is shown here: it is all 
data from 2016-2018 including three types of data (correct me if I'm wrong), namely 1) training data 
(truth proxy data for 2016-2017), 2) validation data (proxy data for 2018), 3) data beyond (data from 



2016-2018 used neither for training nor validation). It would be very enlightening to show (and 
compare) this kind of figure separately for each of the three data types, because this could provide 
indications of how well the correction generalises to actually independent data (type 3). 

We have now added much needed clarification to the data that is displayed in this plot. In order to 
increase that data available for plotting we trained three models using with a year of data from 2016 
to 2018 used as hold out. The data plotted is the aggregated validation years and would be similarly 
described as “type 2”.  Figure 5 text now reads: 

Figure 5. Remaining XCO2 biases (DXCO2) after correction for 2016-2018 and model mean 
proxy, binned to a 2ºx2º resolution. DXCO2 after the XGBoost correction for QF=0 is shown in 
(a), DXCO2 after the B10 correction for QF=0 is shown in (b), DXCO2 after the XGBoost 
correction for QF=1 is shown in (c), DXCO2 after the B10 correction for QF=1 is shown in (d),  
and difference (B10 – XGB) for QF=0 is shown in (e). Three models are trained each with one 
year in [2016,2017,2018] used as holdout. The results on the holdout sets are then used for 
plotting. 

 

Table 6: It would be interesting to add the respective performances for type-3-data (or to introduce 
more challenging training and validation data sets from the start, see also general comments). Due to 
the lack of an entirely independent validation dataset, the performance suggested here may be too 
optimistic.  

We now address “type 3” data in the new section 5.1 as described above in the response to the 
general comment.  

Figure 7/8: Please explain all occurring variables. 

We have added appendix Table C1 that includes all variables used or considered in either bias 
correction or filtering. 

 

Table C1. Features used or considered for the opera7onal and proposed bias correc7on and filtering. 
 

State Variable Description Used for: [B10 BC, ML BC, QF, 
QFNew] 

dpfrac Surface pressure difference that considers smaller 
dry air columns over higher elevations (Kiel et al. 
2019). 

B10 BC, ML BC, QF, QFNew 

h2o_ratio Ratio of retrieved H2O column in weak and strong 
CO2 bands by IMAP-DOAS. 
 

ML BC, QF, QFNew* 

DWS Additive combination of retrieved dust, water, and 
sea salt aerosol optical depth. 
 

B10 BC, ML BC, QF, QFNew 

aod_stratear Retrieved upper tropo+stratospheric aerosol optical 
depth at 0.755 microns. 
 

ML BC, QF, QFNew 



aod_ice Retrieved ice cloud optical depth at 0.755 microns. ML BC, QF, QFNew* 
co2_grad_del Large unphysical variation between the retrieved 

vertical CO2 profile and prior. 
B10 BC, ML BC, QF, QFNew 

dp_sco2 Surface pressure difference between the retrieved 
and prior, evaluated for the strong CO2 band 
location on the ground. 
 

B10 BC, ML BC, QF, QFNew* 

snr_wco2 The estimated signal-to-noise ratio in the continuum 
of the weak CO2 band. 

ML BC, QF, QFNew 

co2_ratio Ratio of retrieved CO2 column in the weak and 
strong CO2 bands by IMAP-DOAS 

QF, QFNew* 

altitude_stddev The standard deviation of the surface elevation in 
the target field of view. Unit is in meters. 

QF, QFNew* 

max_declocking_wco2 An estimate of the absolute value of the clocking 
error in the weak CO2  band expressed as a percent. 

QF, QFNew* 

max_declocking_sco2 An estimate of the absolute value of the clocking 
error in the strong CO2 band expressed as a percent.  

QF, QFNew* 

dp_o2a The difference in retrieved surface pressure to O2A 
surface pressure prior. 

QF, QFNew 

dp_abp The difference in the retrieved surface pressure to 
the fast O2A band pre-processor retrieval. 

QF, QFNew* 

albedo_slope_sco2 Retrieved strong band reflectance slope(land) or 
slope of Lambertian albedo component of BRDF 
(ocean). 
 

ML BC, QF, QFNew 

albedo_slope_wco2 Slope of the weak CO2 band albedo with respect to 
wavenumber. 

QF, QFNew* 

albedo_sco2 Surface reflectance at a reference wavelength in the 
strong CO2 band in the primary scattering geometry 
from the retrieved BRDF (land). Retrieved 
Lambertian albedo (ocean). 

QF, QFNew* 

albedo_quad_sco2 Quadratic coefficient of the albedo_sco2 term with 
respect to wavenumber (land only). 

QF, QFNew 

albedo_quad_wco2 Quadratic coefficient of the albedo_wco2 term with 
respect to wavenumber (land only). 

QF, QFNew 

aod_total Retrieved aerosol optical depth of cloud and aerosol 
at 0.755 microns. 

QF, QFNew* 

rms_rel_sco2 RMSE of the L2 fit residuals in the strong CO2 band 
relative to the signal. 

QF, QFNew 

rms_rel_wco2 RMSE of the L2 fit residuals in the weak CO2 band 
relative to the signal. 

ML BC, QF, QFNew 

detlaT Retrieved offset to prior temperature profile in 
Kelvin. 

QF, QFNew 

aod_sulfate Retrieved aerosol optical depth of sulfate aerosol at 
0.755 microns. 

B10 BC, QF, QFNew 

aod_oc Retrieved aerosol optical depth of organic carbon 
aerosol at 0.755 microns. 

B10 BC, QF, QFNew 

aod_water Retrieved aerosol optical depth of water aerosol at 
0.755 microns. 

QF, QFNew 



dust_height Retrieved central pressure of the dust aerosol layer, 
relative to the retrieved surface pressure. 

QF, QFNew 

aod_seasalt Retrieved aerosol optical depth of sea salt aerosol at 
0.755 microns. 

QF, QFNew 

Fs_rel Retrieved fluorescence relative to the O2A band 
continuum signal. 

QF, QFNew 

chi2_wco2 Reduced chi-squared value of the L2 fit residuals for 
the weak CO2 band. 

QF, QFNew 

windspeed Retrieved surface wind speed over water surfaces. QF, QFNew 

water_height Retrieved central pressure of the cloud water layer, 
relative to the retrieved surface pressure. 

QF, QFNew 

 
 

Section 5.1, Figure 9: Please also report the individual information gains and not only the differences 
in feature importances. 

Figure 9 now shows the individual information gain. Wording the section has also been changed to 
reflect this. 

5.2 Evaluating feature importance between filter regimes 

To understand the contribution of the features to correcting bias in QF=0 and QF=1 data, we 
compare the information gain between the two regimes. To perform the ablation study we again 
employ the models trained on individual truth proxies and re-train and evaluate them on QF=0 and 
again for QF=1 data. Figure 9 shows the information gain for each filter regime for land and for 
ocean. For land, dpfrac and co2_grad_del are highly informative for correction of QF=0 data by the 
machine learning model. Similarly for ocean QF=0 data, the surface pressure delta term dp_sco2 and 
co2_grad_del are also highly informative. In operation, these terms are also used for bias correction 
in all ACOS versions (dpfrac replaced dP in B10) to date. These variables are responsible for the 
largest reduction in unexplained variance in the filtered regime (Payne et al. 2022; Osterman et al. 
2020; O’Dell et al. 2018) 

For land QF=1 data, there is a drop in importance for co2_grad_del and dpfrac and large increase for 
h2o_ratio and relative increases for the albedo and aerosol terms. To explain the high importance for 
the h2o_ratio, we look to the non-linear interaction outside of the bound imposed by the operational 
filter which removes soundings with a h2o_ratio greater than 1.023, reducing the regime of 
interaction to one that is not highly correlated with DXCO2. In the QF=1 regime, h2o_ratio 
corresponds to a significant negative bias. Larger values of h2o_ratio are explained in Taylor et al. 
2016, where it was shown that retrieved surface albedo from the strong CO2 band is generally lower 
than the weak CO2 band. In cases of larger aerosol presence, this sensitivity leads to weaking of the 
absorption features and a positive departure from unity. The additional albedo term for the strong 
CO2 band as well as the additional aerosol terms also increase in importance for QF=1.  

For ocean QF=1 data, there is a significant change in information gain for several features. The 
surface pressure delta term dp_sco2, becomes significantly less informative for correcting QF=1 



where negative values of dp_sco2 are relatively uncorrelated with DXCO2. Similarly, to land, the 
albedo term for the strong CO2 band more informative for correcting outside the filtered regime 
along with the residual error between forward modelled radiances and measurements in the weak 
CO2 band. 

 

 

Figure 9: Feature importance for land is shown in (a), feature importance for ocean is shown in 
(b). Y-axis displays the normalized information gain from XGBoost models with QF=0 shown 
in darker colours and QF=1 shown in lighter colours. 

 

 
 
 

Technical Corrections 

There are incorrect Figure and Table numbers used in the main text. Please check. 

Corrected. 

Citations in the text do not always match the ones in the References section. Please check.  
 
Thank you for catching these, we have corrected several citation errors. 



L12: "Obersvatory" → "Observatory" 

Corrected. 

L15: "correlate" → "correlated" 

Corrected. 

L35: Please remove the closing bracket. 

Corrected. 

L36: It is (Rodgers, 2000). 

Corrected. 

L47: "epmerically". Do you mean "empirically"? 

Corrected. 

L49: "inturn" → "in turn" 

Corrected. 

L53: "reduce" → "reduces" 

Corrected. 

L55: "applying quality filter" → "applying the quality filter" 

Corrected. 

L55: Please remove the full stop between "correction" and "to" or rephrase both sentences. 

Corrected 

Figure 1: The number of soundings N is wrong in panel (a). The colour scale is oversaturated. 
Please extend the value range (0-2000 does not seen to be optimal). 

Corrected 

 



 



Figure 1: Spatial coverage for each truth proxy. The mean of a set of flux models is shown 
in (a), small area approximation is shown in (b), and TCCON is shown in (c). 

 

L106: "overs" → "offers" 

Corrected 

L178: "trainined" → "trained" 

Corrected 

L186: "This, allows" → "This allows" 

Corrected 

L223: "retrivals" → "retrievals" 

Corrected 

L252: The section numbering is inconsistent. This number already exists. 

Corrected 

This list of technical corrections is (likely) not exhaustive. Please check the text for further typing 
errors 

 

 

 

Response to Reviewer #2 

Could the authors clarify if this understanding is correct? There are two XGBoost models (one for ocean 
and one for land) trained on data from all three proxy datasets that are the main contribution of this paper 
and these two models are used for Table 4, Table 5, Figure 3, Figure 4, Table 6, Figure 5, Table 7, Figure 
7, Figure 8, and Figure 10. An additional six XGBoost models (one for each of the two surface types and 
three proxy datasets) are trained for Figures 2 and 9 to understand feature importance, but these models 
are not applied elsewhere. If this is correct (or incorrect), I believe Section 3.4 on Experiment Design 
could make this more clear. 

This is correct, our final proposed bias correction is a land model and an ocean model trained on all three 
truth proxies. To clarify this, we have re-written and streamlined the Experiment Design section and 
throughout the manuscript. 



3.4 Experiment Design 

First, the footprint correction as described in O’Dell et al., 2018 is applied to the training and evaluation 
datasets. We then evaluate two methods for bias correcting retrieved XCO2: a non-linear machine 
learning model called XGBoost; and as a baseline, we also train a MLR model similar to the hand-tuned 
model used in the operational correction. For correcting land nadir, and land glint data, a single XGBoost 
model and MLR are trained using all three truth proxies.  The predictor variables, or features are the same 
for both model types. This allows for comparison between the non-linear model and baseline linear 
method to properly assess that improved fit is coming from the captured non-linearity and not just the 
inclusion of the additional predictors. A single XGBoost and MLR are derived for correcting ocean glint 
data, again using all three proxies and same set of ocean features. We also compare our approach to the 
operational land correction and ocean correction for B10.  

To identify a set of informative features to be used as inputs for the XGBoost land and ocean models, we 
first train as set of models independently on each truth proxy. These six models (three for land and three 
for ocean) are initially fit on a large set of potentially informative features, using QF = 0 + 1 data. The 
resulting feature importance derived from these initial models is used to filter down the feature set to 
identify a subset of features that is highly informative across truth proxies. The resulting feature sets are 
combined to train the final proposed model pair (one for land and one for ocean), which are trained using 
all truth proxies.  

 

Next, we compare the final models trained on QF = 0 + 1 data against models trained only on “good” 
quality data assigned QF = 0 then, evaluate each model pair on QF = 0 soundings that have been 
temporally held out. This is to ensure the ability of the nonlinear method to reproduce the linear model, 
which is the currently accepted community standard. Secondly, we evaluate the model trained on QF = 0 
+ 1 data on the excluded regime of data labelled QF = 1 where non-linear relationships between DXCO2 
and predictors become more pronounced. Finally, we derive a new quality flag (QFNew) used in 
conjunction with the non-linear correction to that increases the throughput of well corrected data while 
maintaining similar error metrics as the operational filter and correction.  

The authors seem to go through a lot of trouble to produce the XGBoost models for different proxy types 
for Figures 2 and 9, but there is little discussion other than Lines 209-213, Lines 399-401, and Lines 405-
406 which take the form of “they are different for different proxy types.” I suggest the authors either 
simplify the feature importance discussion to the XGBoost models used for the rest of the paper (trained 
on all proxy data and just divided by land/water) or improve the discussion related to information from 
different proxy datasets.  

In the Feature Selection section we have simplified the wording to a more succinct explanation of the 
feature selection process, including a Figure 2 that now only shows the final selected variables for the 
proposed land and ocean models. 

4.1 Feature Selection 

We select informative features for our bias correction following an iterative procedure. In the first step, 
we train XGBoost models for each proxy by surface type and operation mode (6 models in total). These 
initial models are trained using a large subset of co-retrieved state vector variables (shown in Table C1) 
which are potentially informative for correcting DXCO2 from the B10 L2Lite files. The resulting models 
are used to rank features according to their information gain which is defined in Eq. 2. Features that are 



less informative are removed from the set and new models are trained with the reduced feature set. 
Afterwards, feature importance is once again evaluated. To ensure robustness to correlation among 
features we (which information gain does not account for) we calculate Pearson’s correlation values 
between features. Features with an absolute Pearson value greater than 0.5 are included one a time and the 
feature with the highest importance is kept. This process is iteratively repeated until reaching a relatively 
small subset of maximally informative features. These features are combined to train the final bias 
correction models, which are trained on all proxies. Seven features are selected for land correction and 
five features selected for ocean as shown in Figure 2. The resulting features used in the final models and a 
brief description is shown in Table 3. 

 

Figure 2. Feature importance for final land model trained with all proxies (a), feature importance 
for final ocean model trained with all proxies (b). Error bars denote variance in feature importance 
across 10 runs with different random seeds. 

Section 5.1 (now 5.2) more thoroughly explores feature importance between filtering regimes and truth 
proxies.  

5.2 Evaluating feature importance between filter regimes 

To understand the contribution of the features to correcting bias in QF=0 and QF=1 data, we compare the 
information gain between the two regimes. To perform the ablation study we again employ the models 
trained on individual truth proxies and re-train and evaluate them on QF=0 and again for QF=1 data. 
Figure 9 shows the information gain for each filter regime for land and for ocean. For land, dpfrac and 
co2_grad_del are highly informative for correction of QF=0 data by the machine learning model. 
Similarly for ocean QF=0 data, the surface pressure delta term dp_sco2 and co2_grad_del are also highly 
informative. In operation, these terms are also used for bias correction in all ACOS versions (dpfrac 
replaced dP in B10) to date. These variables are responsible for the largest reduction in unexplained 
variance in the filtered regime (Payne et al. 2022; Osterman et al. 2020; O’Dell et al. 2018) 

For land QF=1 data, there is a drop in importance for co2_grad_del and dpfrac and large increase for 
h2o_ratio and relative increases for the albedo and aerosol terms. To explain the high importance for the 



h2o_ratio, we look to the non-linear interaction outside of the bound imposed by the operational filter 
which removes soundings with a h2o_ratio greater than 1.023, reducing the regime of interaction to one 
that is not highly correlated with DXCO2. In the QF=1 regime, h2o_ratio corresponds to a significant 
negative bias. Larger values of h2o_ratio are explained in Taylor et al. 2016, where it was shown that 
retrieved surface albedo from the strong CO2 band is generally lower than the weak CO2 band. In cases of 
larger aerosol presence, this sensitivity leads to weaking of the absorption features and a positive 
departure from unity. The additional albedo term for the strong CO2 band as well as the additional aerosol 
terms also increase in importance for QF=1.  

 

For ocean QF=1 data, there is a significant change in information gain for several features. The surface 
pressure delta term dp_sco2, becomes significantly less informative for correcting QF=1 where negative 
values of dp_sco2 are relatively uncorrelated with DXCO2. Similarly, to land, the albedo term for the 
strong CO2 band more informative for correcting outside the filtered regime along with the residual error 
between forward modelled radiances and measurements in the weak CO2 band. 

 

 

Figure 9: Feature importance for land is shown in (a), feature importance for ocean is shown in (b). 
Y-axis displays the normalized information gain from XGBoost models with QF=0 shown in darker 
colours and QF=1 shown in lighter colours. 

It would be very helpful to have a table (could be in the main text or an Appendix) defining all of the 
variables discussed in this paper. Ideally this table would contain all of the variables considered for all of 
your models (I believe the “subset of 27 co-retrieved state vector variables” stated in Line 202). This table 
would be useful for a few reasons. (1) While most variables are already defined in Table 3, some of the 
variables used for QFNew in Figures 7 and 8 are never defined (e.g., max_declocking_3). (2) It would be 



useful to have a little more information about the variables, such as how co2_grad_del is calculated 
(Equation 5 from O’Dell2018). 

We have added Table C1 to the appendix that includes all variables considered or used in the operational 
and proposed bias correction and quality filters. 

Table C1. Features used or considered for the opera7onal and proposed bias correc7on and filtering. 
 

State Variable Description Used for: [B10 BC, ML BC, QF, 
QFNew] 

dpfrac Surface pressure difference that considers smaller 
dry air columns over higher elevations (Kiel et al. 
2019). 

B10 BC, ML BC, QF, QFNew 

h2o_ratio Ratio of retrieved H2O column in weak and strong 
CO2 bands by IMAP-DOAS. 
 

ML BC, QF, QFNew* 

DWS Additive combination of retrieved dust, water, and 
sea salt aerosol optical depth. 
 

B10 BC, ML BC, QF, QFNew 

aod_stratear Retrieved upper tropo+stratospheric aerosol optical 
depth at 0.755 microns. 
 

ML BC, QF, QFNew 

aod_ice Retrieved ice cloud optical depth at 0.755 microns. ML BC, QF, QFNew* 
co2_grad_del Large unphysical variation between the retrieved 

vertical CO2 profile and prior. 
B10 BC, ML BC, QF, QFNew 

dp_sco2 Surface pressure difference between the retrieved 
and prior, evaluated for the strong CO2 band 
location on the ground. 
 

B10 BC, ML BC, QF, QFNew* 

snr_wco2 The estimated signal-to-noise ratio in the continuum 
of the weak CO2 band. 

ML BC, QF, QFNew 

co2_ratio Ratio of retrieved CO2 column in the weak and 
strong CO2 bands by IMAP-DOAS 

QF, QFNew* 

altitude_stddev The standard deviation of the surface elevation in 
the target field of view. Unit is in meters. 

QF, QFNew* 

max_declocking_wco2 An estimate of the absolute value of the clocking 
error in the weak CO2  band expressed as a percent. 

QF, QFNew* 

max_declocking_sco2 An estimate of the absolute value of the clocking 
error in the strong CO2 band expressed as a percent.  

QF, QFNew* 

dp_o2a The difference in retrieved surface pressure to O2A 
surface pressure prior. 

QF, QFNew 

dp_abp The difference in the retrieved surface pressure to 
the fast O2A band pre-processor retrieval. 

QF, QFNew* 

albedo_slope_sco2 Retrieved strong band reflectance slope(land) or 
slope of Lambertian albedo component of BRDF 
(ocean). 
 

ML BC, QF, QFNew 

albedo_slope_wco2 Slope of the weak CO2 band albedo with respect to 
wavenumber. 

QF, QFNew* 

albedo_sco2 Surface reflectance at a reference wavelength in the 
strong CO2 band in the primary scattering geometry 
from the retrieved BRDF (land). Retrieved 
Lambertian albedo (ocean). 

QF, QFNew* 



albedo_quad_sco2 Quadratic coefficient of the albedo_sco2 term with 
respect to wavenumber (land only). 

QF, QFNew 

albedo_quad_wco2 Quadratic coefficient of the albedo_wco2 term with 
respect to wavenumber (land only). 

QF, QFNew 

aod_total Retrieved aerosol optical depth of cloud and aerosol 
at 0.755 microns. 

QF, QFNew* 

rms_rel_sco2 RMSE of the L2 fit residuals in the strong CO2 band 
relative to the signal. 

QF, QFNew 

rms_rel_wco2 RMSE of the L2 fit residuals in the weak CO2 band 
relative to the signal. 

ML BC, QF, QFNew 

detlaT Retrieved offset to prior temperature profile in 
Kelvin. 

QF, QFNew 

aod_sulfate Retrieved aerosol optical depth of sulfate aerosol at 
0.755 microns. 

B10 BC, QF, QFNew 

aod_oc Retrieved aerosol optical depth of organic carbon 
aerosol at 0.755 microns. 

B10 BC, QF, QFNew 

aod_water Retrieved aerosol optical depth of water aerosol at 
0.755 microns. 

QF, QFNew 

dust_height Retrieved central pressure of the dust aerosol layer, 
relative to the retrieved surface pressure. 

QF, QFNew 

aod_seasalt Retrieved aerosol optical depth of sea salt aerosol at 
0.755 microns. 

QF, QFNew 

Fs_rel Retrieved fluorescence relative to the O2A band 
continuum signal. 

QF, QFNew 

chi2_wco2 Reduced chi-squared value of the L2 fit residuals for 
the weak CO2 band. 

QF, QFNew 

windspeed Retrieved surface wind speed over water surfaces. QF, QFNew 

water_height Retrieved central pressure of the cloud water layer, 
relative to the retrieved surface pressure. 

QF, QFNew 

 

We have also provided more information for co2_grad_del. We have also added clarification to section 
4.1 as shown in a response farther below. 

co2_grad_del = [CO2,ret(1) – CO2,ret(0.6316)] – [CO2,prior(1) - CO2,prior(0.6316)]                                                       
(4) 

 

For the machine learning model evaluation, it is my impression only 2018 should be used (the testing 
dataset). It is not clear in Figures 3/4/7/8/10 what date range is being used, but it should in theory be only 
2018 since the model has been trained with the data for other years and the goal is to see how 
generalizable the model is to data it has never seen. This is concerning for Figure 5, which tries to 
evaluate the model using (in part) data from 2016 and 2017 that the model was already trained on. This 
could suggest corrections that are overly optimistic. 



We have clarified the date ranges used in figures throughout the manuscript. For Figure 5 - to increase the 
amount of data for plotting we use three models. Each model is used to infer bias for a validation year that 
is held out during model training. 

Figure 5. Remaining XCO2 biases (DXCO2) after correction for 2016-2018 and model mean proxy, 
binned to a 2ºx2º resolution. DXCO2 after the XGBoost correction for QF=0 is shown in (a), DXCO2 
after the B10 correction for QF=0 is shown in (b), DXCO2 after the XGBoost correction for QF=1 is 
shown in (c), DXCO2 after the B10 correction for QF=1 is shown in (d),  and difference (B10 – 
XGB) for QF=0 is shown in (e). Three models are trained each with one year in [2016,2017,2018] 
used as holdout. The results on the holdout sets are then used for plotting. 

 

 

To go further with validation, have the authors considered leaving one of these proxies (like TCCON) 
completely out of their bias correction (or bringing in an independent dataset)? It seems to me that at the 
end of this, you have no independent datasets to evaluate your bias-corrected retrievals with, as they have 
all been used for training the model. 

We now address the potential circularity induced by the lack of a truly independent proxy in section 5.1. 
The issue of lack of independent truth proxy in the operational correction is discussed in Taylor et al., 
2023 and is still a current research focus by the OCO science team. We evaluate bias correction models 
trained on two of the proxies and evaluate on the third withheld proxy. 

5.1 Generalization across proxies 

We acknowledge that even with a temporal training and testing split, there is still some circularity due to 
the lack of a truly independent truth proxy. This issue has been discussed at length for the operational bias 
correction in Taylor et al. 2023 and comparison and selection independent validation data sets is still an 
open area of study. The risk of overfitting due to circularity become greater when fitting a more complex 
machine learning model. To evaluate generalizability to a fully independent validation proxy, we fit a set 
of XGBoost models on two truth proxies and evaluate on the third proxy which is held out during 
training. The same temporal split is used where 2018 data for the held-out proxy is used for evaluation. 
Results are shown in Figure 7, for land, and Figure 8, for ocean. Each column shows the residual fit for 
the hold out proxy, for QF = 0 (top row) and QF = 1 (bottom row). For QF = 0, increase in RMSE was 
minimal for both surface types and across proxies. There was some impact to performance on QF=1 data, 
when compared to training with all three proxies, particularly for TCCON with an increase in RMSE of 
~0.1 ppm for land and ocean data. Indicating that the information contained in TCCON is not adequately 
represented by the model mean and small area approximation proxies which capture variability at larger 
scales. A potential approach to reducing circularity in the evaluation of the truth proxies would be to train 
the bias correction on TCCON and either the model mean or small area approximation, using the third 
proxy not chosen for validation.  



 

Figure 7. Comparison of XCO2 derived from truth proxy (XCO2 True) vs. XCO2 corrected by 
XGBoost (XCO2 ML) for land by hold out proxy set and hold out year (2018). Left-most column 
displays results of a XGBoost model trained on [TCCON, Model Mean] and evaluated on Small 
Area. Middle column displays results of a XGBoost model trained on [Small Area,TCCON] and 
evaluated on Model Mean. Right-most column displays results of a XGBoost model trained on 
[Model Mean, Small Area] and evaluated on TCCON. Generalization for the hold proxy and QF=0 
is shown in the top row and QF=1 in the bottom. 

 



 

Figure 8. Comparison of XCO2 derived from truth proxy (XCO2 True) vs. XCO2 corrected by 
XGBoost (XCO2 ML) for ocean by hold out proxy set and hold out year (2018). Left-most column 
displays results of a XGBoost model trained on [TCCON,Model Mean] and evaluated on Small 
Area. Middle column displays results of a XGBoost model trained on [Small Area,TCCON] and 
evaluated on Model Mean. Right-most column displays results of a XGBoost model trained on 
[Model Mean, Small Area] and evaluated on TCCON. Generalization for the hold proxy and QF=0 
is shown in the top row and QF=1 in the bottom. 

  

For Table 1 and the rest of the paper, what version of TCCON data is used here? Presumably GGG2014 
given the reference list. Is there a reason to not use GGG2020 at this point? It is my understanding that 
OCO-2 B10 uses the same prior as GGG2020, so this would be more appropriate. If not, it might be 
necessary to account for the difference in priors when comparing GGG2014 and OCO-2 data in 
calculating deltaXCO2 (if this effect is large). 

The operational correction for B10 is fit using GGG2014. In order to provide a faithful comparison to the 
operational correction we also use GGG2014. We now adequately clarify this in the manuscript. 

2.1 TCCON truth proxy 

TCCON is a system of ground-based sun-looking Fourier Transform Spectrometers with growing global 
coverage, that retrieve dry air mole column averaged measurements of the trace greenhouse gases from 
radiances in similar spectral bands to OCO-2. Since each site has been extensively validated against 
WMO-traceable in situ observations aboard aircraft, TCCON offers the most accurate comparison for 
XCO2 (Wunch et al., 2010). While TCCON is well calibrated, site coverage is limited outside of North 
America, Europe, and Oceania. The TCCON data set therefore is spatially the sparsest of the three truth 
proxies and offering non-uniform point comparisons. We use the same dataset as the operational 



correction consisting of OCO-2 soundings co-located TCCON GGG2014 measurements (Wunch et al., 
2017; Wunch et al., 2011) in space (2.5º lat, 5º lon) and time (2h). 

I am suspect of the authors’ claim (Lines 65, 438) that this method is “reproducible.” There is still some 
hand-tuning in these methods, including picking which variables to include for the regression task (How 
do you reconcile the different proxies saying different variables are important in Figure 2? How do you 
pick which redundant variables to drop based on correlation before doing the analysis in Figure 2?) and 
how to adjust the filters for QFNew. This is fine, but with no code published alongside the paper, this 
could be difficult to reproduce. 

We fully agree with this statement. Subjectivity is still largely present in the selection of variables and 
hand tuning of filter thresholds. We therefore only claim that the framework can be adapted to future 
algorithm updates. 

Is there a plan to incorporate this into future versions of the OCO-2 data? Regardless, will the authors be 
making available the bias-corrected data produced in this paper? 

A machine learning bias correction is planned for a future lite file update for B11 that expands on the 
approach discussed in this work. While there are currently no plans for a machine learning correction for 
B10 we plan on providing the data used in this paper. 

Specific Comments 

Line 59: I am not sure if “relative to the operational linear correction” is accurate with respect to the 
TROPOMI methane retrieval in Schneising et al. (2019). 

Line 61: a slightly longer discussion of how this work differentiates from Mauceri2023 could be 
appropriate. 

Line 59-61: We now address both comments in the paragraph. 
 
A drawback of applying the quality filter is the exclusion of data due to the linear assumption of the bias 
correction to which the quality filter limits the regime of interaction between state vector variables and 
DXCO2. Due to loss of data, the bias correction and quality filter are often disregarded for local studies 
(Nassar et al., 2017; Mendonca et al., 2021) or too limiting for certain regions (Jacobs et. al., 2020). 
Applying non-linear machine learning techniques have shown great promise for the task of bias correction 
for GOSAT/GOSAT-2 (Noël et al., 2022) and TROPOMI (Schneising et al., 2019). Specific correction of 
3D cloud biases for OCO-2 retrieved XCO2 (Massie et al. 2016) using a non-linear method fit on a small 
set of features correlated with 3D cloud effects in addition to the linear operational correction, is 
demonstrated in Mauceri et al. (2022). 

Line 70: are the averaging kernels taken into account when comparing OCO-2 to TCCON or the model 
atmospheres? 

The averaging kernels are used for both the TCCON truth proxy and concentration fields from the flux 
models proxy. We have added an additional citation to the paragraph that further explains the application 
of the OCO-2 averaging kernel in the derivation of the truth proxies. 



To develop a bias correction, we define three truth proxy data sets for the true atmospheric column mode 
fraction. DXCO2 is then set as the difference between the raw ACOS retrieval of XCO2 and the truth 
proxy estimate of XCO2 as shown in Eq. 1. For the TCCON and model mean truth proxies, the OCO-2 
kernel is also applied as described in Taylor et al., 2023.  

Figure 1: The “N = 1022636” title for Figure 1a seems to be a typo. I would expect the number of 
soundings here to be close to the total number of OCO-2 soundings since model grids are continuous in 
space and time (depending on how often the 1.5 ppm threshold is passed) and thus N for the model proxy 
should be > N for TCCON, not equal. On a related note, what is the total number of OCO-2 soundings 
considered to give a sense of the percentage used for each proxy dataset? 

We have corrected the OCO-2 sounding count in the figure. The soundings come a quick test set (QTS) 
which is approximately 5% of the full OCO-2 record as described in Taylor et al., 2023. 

 



 

Figure 2: Spatial coverage for each truth proxy. The mean of a set of flux models is shown in (a), 
small area approximation is shown in (b), and TCCON is shown in (c). 

 

The soundings considered come a quick test set (QTS) which is approximately 5% of the full OCO-2 
record as described in Taylor et al., 2023. 

Table 1 contains errors for the Tsukuba altitude, Sodankylä altitude, Izaña altitude, Wollongong latitude, 
Réunion latitude, Lamont latitude, and Karlsruhe latitude (and maybe others). 

Table 1 has now been corrected. 



Table 2: could you specify the resolutions of these models? 

Table 2 now includes an additional column that with spatial and temporal resolution. 

Table 2. Flux models used for the model mean truth proxy. TM5 – Transport model 5, TM3 – Transport model 3, LMDZ – 
Laboratoire de Meteorology, EnKF – Ensemble Kalman Filter, 4D-Var – 4 Dimensional Varia7on.  
 

Model name Institute Transport  
model 

Resolution 
[latxlonxtime] 

Inverse 
method 

Citation 

CarbonTracker NOAA Global 
Monitoring 
Laboratory 

TM5 2ºx3ºx3h EnKF Peters et al. (2007) 
CarbonTracker (2021) 

CarboScope Max Planck Institute 
for Biogeocehmistry 

TM3 4ºx5ºx6h 4D-Var Rödenbeck (2005);  
Rödenbeck et al. 
(2018) 
CarboScope (2021) 

CAMS Copernicus 
Amosphere  
Monitoring Service 

LMDZ 1.9ºx3.75ºx3h 4D-Var Chevallier et al. 
(2010) 
CAMS (2021) 

 

Line 128-129: it is my understanding (and you state as such in line 130) that XGBoost is not the average 
across an ensemble, but rather the sum across the ensemble. 

Yes, thank you for catching this error. We have corrected this in the manuscript. 

Line 135: how do you search for these hyperparameters? Are these the same for all of the XGBoost 
models discussed in this paper? 

We now thoroughly explain the hyperparameter search and regularization values for the final proposed 
bias correction models in the paragraph. 

XGBoost employs L1 and L2 norm regularization to reduce overfitting to outliers present in the training 
dataset. The effect of the regularization is governed by the hyper-parameters l and g, and must be 
carefully selected or tuned. To find these hyper-parameters we use a k-fold cross validation strategy in 
which the training dataset is divided into k subsets (we use k=10) and each subset is sequentially held out 
for evaluation for a model trained on the rest of the data. Performance across the k-folds is averaged and 
the process is repeated for each potential selection of hyper-parameters. We found a lLAND=2.5 and 
gLAND=3.75 for the land correction, and lOCEAN=2.0  and gOCEAN=10.0.  

 

Line 179: Is data from 2014-2018 used for all three proxy datasets? 

Yes, this is correct. Data range for all three proxies is from 2014-2018. 

Line 184-185: In Section 3.3 and elsewhere, it is stated that the models are trained for Ocean G and Land 
NG (2 models). In these lines, it is suggested that there are three models. 



We agree the final proposed correction is not clear and the section has been reworded. We have also 
worked to clarify this throughout the manuscript. 

3.3 Training and test split 

For training and evaluating the non-linear correction, we subset each of our truth proxy datasets into a 
training and testing datasets. First, datasets are split by the two surface types: ocean and land. In the B10, 
both operation modes (nadir and glint) are combined for the land bias correction due to low variance in 
feature importance between nadir and glint (O’Dell et al. 2018). To compare to the operational correction, 
we also combine both modes for the land correction model. The land and ocean data sets are subset once 
more by truth proxy to identify informative features for the final land and ocean models. To ensure that 
model performance is indicative of how well the models generalize to unseen data, we hold out a year of 
data for evaluation of the final land model and ocean model. Models are trained on data from 2014, 2015, 
2016, and 2017, then evaluated on data from 2018.  

Line 206: Is there a threshold you used for the correlation coefficient? 

We now clarify this value in the revised paragraph. 

To ensure robustness to correlation among features we (which information gain does not account for) we 
calculate Pearson’s correlation values between features. Features with an absolute Pearson value greater 
than 0.5 are included one a time and the feature with the highest importance is kept. 

Line 219: Is there a reason to specify that the prior pressure is from the strong band? Is the prior pressure 
different for the weak band? 

Yes, this due to an alignment offset in the pointing location between the three bands and there for the 
priors are used. 

Line 233: Why is the variable dp_sco2 considered? Lines 220-221 dp_frac discussed the disadvantages of 
this kind of pressure difference term. 

dpfrac takes into account the surface elevation and is only available over land, while dp_sco2 is used for 
ocean glint scenes. We have clarified this in the Section 4.1: 

4.1 Feature Selection 

We select informative features for our bias correction following an iterative procedure. In the first step, 
we train XGBoost models for each proxy by surface type and operation mode (6 models in total). These 
initial models are trained using a large subset of co-retrieved state vector variables (shown in Table C1) 
which are potentially informative for correcting DXCO2 from the B10 L2Lite files. The resulting models 
are used to rank features according to their information gain which is defined in Eq. 2. Features that are 
less informative are removed from the set and new models are trained with the reduced feature set. 
Afterwards, feature importance is once again evaluated. To ensure robustness to correlation among 
features we (which information gain does not account for) we calculate Pearson’s correlation values 
between features. Features with an absolute Pearson value greater than 0.5 are included one a time and the 
feature with the highest importance is kept. This process is iteratively repeated until reaching a relatively 
small subset of maximally informative features. These features are combined to train the final bias 
correction models, which are trained on all proxies. Seven features are selected for land correction and 



five features selected for ocean as shown in Figure 2. The resulting features used in the final models and a 
brief description is shown in Table 3. 

 

Features used for operational correction are also highly informative for the proposed non-linear 
corrections and include the difference between the retrieved CO2 profile and prior profile used for land 
and ocean (co2_grad_del), and two surface pressure difference terms dpfrac for land and dp_sco2 for 
ocean (Kiel et al., 2019). The co2_grad_del is the change in profile shape and prior and is calculated as 
the difference dry air mole fraction  at the surface, denoted as CO2(1), to the fraction at ~0.6316 times the 
retrieved surface pressure, and is in units of parts per million (ppm). The calculation for co2_grad_del is 
shown in Eq. 4. For land, the dpfrac term is a difference ratio that considers the smaller dry air column 
over higher elevations and is defined in Eq. 5 where XCO2,raw is the uncorrected retrieval of the column 
average and Pap,SCO2 and Pret are the prior surface pressure at the strong band pointing offset and retrieved 
pressure respectively. For ocean, dp_sco2 is used and is the retrieved surface pressure minus the strong 
band prior. The extensive use of co2_grad_del and surface pressure deltas for bias correction is discussed 
in Kulawik et al., 2019. 

 

co2_grad_del = [CO2,ret(1) – CO2,ret(0.6316)] – [CO2,prior(1) - CO2,prior(0.6316)]                                                       
(4) 

 

dpfrac = 𝑋-.",012(1 −
𝑃13,4-."

𝑃056
& )                                                                                                                        

(5) 

 

For land, the h2o_ratio is used and is the ratio of XH2O estimated by single band retrievals from the 
strong and weak CO2 bands separately using the IMAP-DOAS algorithm, which can differ from unity in 
the presence of atmospheric scattering (Taylor et al. 2016). We use three aerosol features for our bias 
correction over land scenes. The first being the sum of dust, water, and sea salt optical thickness termed 
DWS. We include retrieved ice particle optical depth (aod_ice) and the finer stratospheric aerosol optical 
depth (aod_stratear). The last feature used for land, as well as for ocean, is the albedo slope for the strong 
CO2 band termed albedo_slope_sco2. This variable represents the slope of the reflectance across the 
strong CO2 spectral band for land soundings and the slope of the Lambertian component of the combined 
Cox-Munk and Lambertian Bidirectional Reflectance Distribution Function (BRDF) for ocean soundings 
(Cox and Munk, 1954). In addition to the co2_grad_del, albedo_slope_sco2 and dp_sco2, two additional 
variables are used for the correction of Ocean G scenes. These are snr_wco2, which is the estimated 
signal to noise ratio derived during optimal estimation; and finally, rms_rel_wco2 which is the percent 
residual error from the forward modelled radiance for the weak CO2 to the measured radiance.  

 

 

 



 

 

Figure 2. Feature importance for final land model trained with all proxies (a), feature importance 
for final ocean model trained with all proxies (b). Error bars denote variance in feature importance 
across 10 runs with different random seeds. 

Figure 2: Why are there a different number of considered features for land and ocean? Were the same 27 
variables (Line 202) started with and a different subset dropped for LandNG versus OceanG because of 
different correlations (Line 206) for the different operation modes? 

Some features are not available or held constant over the ocean. We have simplified  Figure 2 to show 
only the final feature importance of the proposed correction models, as seen above. 

Line 276: what percentage of retrievals are filtered because of this? 

h2o_ratio filters out ~10% of the soundings. 

Figures 3 and 4: Is this just 2018 data? Could you add arrows to indicate the direction of the filters (or 
write the ranges like in Figures 7 and 8)? 

We have added arrows to indicate the region assigned QF=0 or “good” quality data. 

 

Figure 5: It seems to me you cannot properly evaluate the model with the training data (2016-2017) and 
this plot should only show 2018 data. Additionally, I am interested to know if this is data from all proxy 
datasets? This would help answer the question of if the remaining differences are due to shortcomings in 
the bias correction method or in the proxy datasets. 

Thank you for raising these points, this plot needed much clarification. The biases for each year in 2016-
2017 are estimated by a model (3 in total) trained on all years except for one year within the range which 



was used for inference. We used this process to increase the amount of available data for plotting – only 
the model mean is plotted but is included in for training. To address generalization to a held proxy we 
now have added a new Section 5.1 as shown above. 

 

Figure 5. Remaining XCO2 biases (DXCO2) after correction for 2016-2018 and model mean proxy, 
binned to a 2ºx2º resolution. DXCO2 after the XGBoost correction for QF=0 is shown in (a), DXCO2 
after the B10 correction for QF=0 is shown in (b), DXCO2 after the XGBoost correction for QF=1 is 
shown in (c), DXCO2 after the B10 correction for QF=1 is shown in (d),  and difference (B10 – 
XGB) for QF=0 is shown in (e). Three models are trained each with one year in [2016,2017,2018] 
used as holdout. The results on the holdout sets are then used for plotting. 

Line 338: Is this trained on QF = 0 + 1 data and all three of the truth proxies? And two different models 
(one for land and one for ocean)? 

Yes, this is correct. We have clarified that in the manuscript. 



4.5 Increased sounding throughput 

One of the benefits of the non-linear bias correction is the potential for increased throughput of well-
corrected QF = 1 data. Improved throughput of well corrected data would be of benefit to point analysis 
studies where data is limited by the operational QF, and potentially of benefit to flux models as well. To 
provide an empirical example of this, we create a modified version of the operational XCO2 quality flag 
utilizing our proposed ocean correction model and land correction model. We take a conservative 
approach where initial filter values are set equal to those of the operational quality filtering. Then, we 
select a few variables for which the filters are relaxed to increase sounding throughput while maintaining 
the RMSE of the combined operational correction and quality filter. With our new quality flag (QFNew), 
we are able to increase sounding throughput by approximately 16% over the B10 QF while matching the 
RMSE of the B10 correction as shown in Table 5. 

Figures 7/8: It is not clear to me what each of the colors represent. The black line is deltaXCO2 for the 
raw XCO2 retrievals. But between Line 348 and the figure captions, I can’t figure out what the difference 
between the light and dark green/blue lines are (maybe dark is XGBoost bias-corrected and light is 
operationally bias-corrected?). 

We have added clarification to the figure text. Figure 7 & 8 have now been moved to the appendix in 
order to stream line the section. 

 

 

Figure B1: Variables selected for land QFNew: the difference between the uncorrected retrieval 
and the model mean truth proxy is shown with the black curve. The difference between the 
operational correction and the model mean truth proxy is shown in the light green curve. The 
difference after the non-linear correction is show by the dark green curve. The binned Std error 
divided by the posterior uncertainty of XCO2 is show by the green pluses and right y-axis. B10 QF 
filters are indicated by the black vertical dashed lines and QFNew is shown by the red dashed lines. 
Region of data denoted as QF=0 is contained within the red values in the paratheses. 

 



 

 

Figure B2: Variables selected for ocean QFNew: the difference between the raw retrieval 
uncorrected retrieval and the model mean truth proxy is shown with the black curve. The 
difference between the operational correction and the model mean truth proxy is shown in the light 
blue curve. The difference after the non-linear correction is show by the dark blue curve. The 
binned Std error divided by the posterior uncertainty of XCO2 is show by the blue diamonds and 
right y-axis. B10 filters are indicated by the black vertical dashed lines and a potential filter is 
shown by the red dashed lines. Region of data denoted as QF=0 is contained within the red values 
in the paratheses. 

Figures 5/10: titles or different labels on the colormaps might make it more clear which plots are for 
operationally bias-corrected data and which are for XGBoost bias-corrected data (but this is clear in the 
caption). 

We agree and have added titles as seen above. 

Figure 10: Is this just for 2018? Is it for all proxy datasets? 

The figure shows 2018 data, this is now clarified in the figure text. Note, Figure 10 is now Figure 11. 

Figure 11. Hex bin plots show conditional distributions of 2018 DXCO2 vs. dpfrac and h2o_ratio. 
Remaining DXCO2 after the operational correction for B10 is shown in (a). Remaining DXCO2 after 
the non-linear correction is shown in (b). Binned sttdev of DXCO2 divided by the posteriori 
uncertainty from the retrieved XCO2 is shown in (c) for the operational correction for B10 and (d) 
for the non-linear correction. B10 QF filter thresholds for both features are shown with black 
dashed lines for reference. 

 

There are in-text references for Kuze2009, Palmer2019, Crowell2019, Peiro2021, Mendonca2021, 
Jacobs2020, Osterman2020, Worden2017, Taylor2012, Morino2018a, Morino2018b, and Hase2015 (and 
maybe others) in the text and tables that are missing in the Reference section. 



Thank you for thoroughly checking for and catching these errors. We have now corrected these in the 
revised manuscript. 

Technical Corrections 

There are many typos throughout this paper. It needs to be significantly cleaned up before publication. I 
tried to catch as many as I could here. 

Line 12: Obersvatory => Observatory 

Corrected.  

Line 15: correlate => correlated 

Corrected.  

 

Line 35: m). => m. 

Corrected.  

 

Line 36: Rogers => Rodgers 

Corrected.  

 

Line 42: Missing subscript on XCO2 

Corrected.  

 

Line 47: emperically => empirically 

Corrected.  

 

Line 53: reduce => reduces 

Corrected.  

Line 55: filter => filters 



Corrected.  

 

Line 55: correction. to which => correction to which 

Corrected.  

 

Line 57: missing word before “or too limiting” 

Or is too limiting 

Line 59: 2021 => 2022 

Corrected.  

Line 65: reproduceable => reproducible (or be consistent with Line 438) 

Claims of reproducibility have been removed. 

Line 66: remove “upcoming missions such as GeoCarb” 

This has now been removed. 

Line 68: mode => mole 

Corrected. 

Line 78: Lever => Level 

Corrected. 

Line 86: remove comma 

Removed 

Line 91: offering => offers 

Corrected. 

Table 1 caption: rephrase/missing words in “proxy the TCCON” 

Table 1. TCCON sites used in bias correction and filtering for B10 ACOS. 

Line 104: missing subscript on XCO2 



Corrected. 

Line 106: XCO2, is => XCO2 is 

Removed. 

Line 106: overs => offers 

Corrected. 

Line 110: Table 1 => Table 2 

Corrected. 

Line 121: employee => employ 

Corrected. 

Line 132: into => in 

Removed. 

Line 134: we hold out small subset => we hold out a small subset 

Removed. 

Line 145: variables not defined (though common notation is used) 

The variables in Eq 3 are now explained in the text. 

Line 172: remove “a” 

Removed. 

Line 176: mode; => mode, 

Corrected. 

Line 185: or features are => or features, are 

Removed. 

Line 186: This, allows =? This allows 

Removed. 

Line 192: data then, => data and then 



Removed. 

Line 205: delete “we” 

Removed. 

Line 213: Table 1 => Table 3 

Corrected. 

Line 223: retrivals => retrievals 

Corrected. 

Line 227 (and Table 3): aod_stratear => aod_strataer 

Corrected. 

Line 232: In addition to the albedo_slope_sco2, four => In addition to albedo_slope_sco2 and 
co2_grad_del, three 

Removed. 

Table 3 caption: features for in => features for use in 

Corrected. 

Table 3: dpfrac versus dp_frac is inconsistent between the text (Line 216) and here/other figures. 

Corrected throughout to dpfrac to stay consistent with lite file variable naming. 

Section 4.1 is repeated (4.1 Feature Selection, 4.1 Model evaluation for QF = 0). 

Corrected. 

Line 261: Table 2 => Table 4 

Corrected. 

Line 275: Sentence beginning with “However,” could be rephrased. The portion inside parentheses is 
confusing. 

Sentence now reads: 

Variables such as h2o_ratio which are responsible for the bulk of the quality filtering (h2o_ratio 
thresholds remove ~10% of soundings) exhibit such non-linear characteristics over their marginal 
distributions. 



Line 280: Table 3 => Table 5 

Corrected. 

Figures 3/4: inconsistent x-axis labels with the text/Table 3 (e.g., aod_st versus aod_strataer). Arrows 
designating the direction of the filters (e.g., on the aod_st plot) could be helpful but are not necessary. 

 

 

Figure 3. DXCO2 vs land features for 2018. Mean interaction and 2s Stddev for uncorrected 
DXCO2 plotted in red, XGBoost corrected in green and B10 corrected in blue. The vertical black 



dotted lines indicate B10 QF filters and arrows point towards the region assigned QF=0. Individual 
soundings are shown with grey scatter. 

 

 

Figure 4. DXCO2 vs ocean features for 2018. Mean interaction and 2s Stddev for uncorrected 
DXCO2 plotted in red, XGBoost corrected in green and B10 corrected in blue. The vertical black 
dotted lines indicate B10 QF filters and arrows point towards the region assigned QF=0. Individual 
soundings are shown with grey scatter. 

 

Line 304: Table 4 => Table 6 

Corrected. 

Line 307: double-check percentages. For example, for ocean QF=0, ((0.67^2)-(0.61^2))/(0.67^2) = 17%, 
not 4% (if I correctly understand your methodology). 

Thank you for catching this. We have updated these values. 

Table 6: stddev => standard deviation; caption mentions raw XCO2 data, but this is not present in the 
table. 



Raw retrieval values are now correctly included in Table 6. 

Line 342: Table 5 => Table 7 

Corrected. 

Line 348: Figure 8 and 9 => Figures 7 and 8 

Corrected to Figure B1 and Figure B2. 

Line 354: benefit of quality => benefit of a quality 

Corrected. 

Table 7: Region/Truth Proxy => “Surface/Mode” (?); through put => throughput 

Corrected. 

Line 383: Qf => QF 

Corrected. 

Line 384: Figure 9 => Figure 10; Feaures => Features 

Corrected. 

Line 394: filter bound h2o_ratio => filter bounds, h2o_ratio 

Corrected. 

Line 400: noteably => notably 

Corrected 

Lines 415-416: Figure 11 => Figure 10 

Figure 10 has now become Figure 11 

Line 442: remove ; and rephrase 

Corrected. 

Line 449: ISS not defined in text 

ISS is now defined correctly before abbreviation. 

Title: data driven => data-driven. Hyphen usage should be reviewed throughout (Lines 12, 13, 19, 32, 52, 
58, 87, 89, 103, 157, 164, 273, 336, 355, 421, 438, 447, etc.). 



Corrected throughout the manuscript. 
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