Preprints
https://doi.org/10.5194/egusphere-2023-247
https://doi.org/10.5194/egusphere-2023-247
27 Feb 2023
 | 27 Feb 2023

High potential for CH4 emission mitigation from oil infrastructure in one of EU’s major production regions

Foteini Stavropoulou, Katarina Vinković, Bert Kers, Marcel de Vries, Steven van Heuven, Piotr Korbeń, Martina Schmidt, Julia Wietzel, Pawel Jagoda, Jaroslav M. Necki, Jakub Bartyzel, Hossein Maazallahi, Malika Menoud, Carina van der Veen, Sylvia Walter, Béla Tuzson, Jonas Ravelid, Randulph Paulo Morales, Lukas Emmenegger, Dominik Brunner, Michael Steiner, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, Hugo Denier van der Gon, Antonio Delre, Maklawe Essonanawe Edjabou, Charlotte Scheutz, Marius Corbu, Sebastian Iancu, Denisa Moaca, Alin Scarlat, Alexandru Tudor, Ioana Vizireanu, Andreea Calcan, Magdalena Ardelean, Sorin Ghemulet, Alexandru Pana, Aurel Constantinescu, Lucian Cusa, Alexandru Nica, Calin Baciu, Cristian Pop, Andrei Radovici, Alexandru Mereuta, Horatiu Stefanie, Bas Hermans, Stefan Schwietzke, Daniel Zavala-Araiza, Huilin Chen, and Thomas Röckmann

Abstract. Ambitious methane (CH4) emissions mitigation represents one of the most effective opportunities to slow the rate of global warming over the next decades. The oil and gas (O&G) sector is a significant source of methane emissions, with technically feasible and cost-effective emission mitigation options. Romania, a key O&G producer within the EU, with one of the highest reported annual CH4 emissions from the energy sector (Greenhouse Gas Inventory Data - Comparison by Category, 2022), can play an important role towards the EU’s emission reduction targets. In this study, we quantify CH4 emissions from onshore oil production sites in Romania at source and facility level using a combination of ground-based measurement techniques. Measured emissions were characterised by heavily skewed distributions, with 10 % of the sites accounting for more than 70 % of total emissions. Integrating the results from all site-level quantifications with different approaches, we derive a central estimate of 5.4 kg h–1 site-1 of CH4 (3.6–8.4, 95 % confidence interval) for oil production sites. This estimate represents one of the highest when compared to measurement-based estimates of similar facilities from other production regions. Based on our results, we estimate a total of 120 ktons CH4 yr–1 (range: 79–180 ktons yr–1) from oil wells in our studied areas in Romania. This is approximately 2.5 times higher than the total reported emissions from the Romanian oil production sector for 2020. Based on the source level characterization, up to three quarters of the detected emissions from oil production sites are related to operational venting. Our results suggest that O&G production infrastructure in Romania holds a massive mitigation potential, specifically by implementing measures to capture the gas and minimize operational venting and leaks.

Journal article(s) based on this preprint

20 Sep 2023
High potential for CH4 emission mitigation from oil infrastructure in one of EU's major production regions
Foteini Stavropoulou, Katarina Vinković, Bert Kers, Marcel de Vries, Steven van Heuven, Piotr Korbeń, Martina Schmidt, Julia Wietzel, Pawel Jagoda, Jaroslav M. Necki, Jakub Bartyzel, Hossein Maazallahi, Malika Menoud, Carina van der Veen, Sylvia Walter, Béla Tuzson, Jonas Ravelid, Randulph Paulo Morales, Lukas Emmenegger, Dominik Brunner, Michael Steiner, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, Hugo Denier van der Gon, Antonio Delre, Maklawe Essonanawe Edjabou, Charlotte Scheutz, Marius Corbu, Sebastian Iancu, Denisa Moaca, Alin Scarlat, Alexandru Tudor, Ioana Vizireanu, Andreea Calcan, Magdalena Ardelean, Sorin Ghemulet, Alexandru Pana, Aurel Constantinescu, Lucian Cusa, Alexandru Nica, Calin Baciu, Cristian Pop, Andrei Radovici, Alexandru Mereuta, Horatiu Stefanie, Alexandru Dandocsi, Bas Hermans, Stefan Schwietzke, Daniel Zavala-Araiza, Huilin Chen, and Thomas Röckmann
Atmos. Chem. Phys., 23, 10399–10412, https://doi.org/10.5194/acp-23-10399-2023,https://doi.org/10.5194/acp-23-10399-2023, 2023
Short summary

Foteini Stavropoulou et al.

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-247', Anonymous Referee #1, 24 Apr 2023
    • AC2: 'Reply on RC1', Foteini Stavropoulou, 15 Jun 2023
  • RC2: 'Comment on egusphere-2023-247', Anonymous Referee #2, 03 May 2023
    • AC1: 'Reply on RC2', Foteini Stavropoulou, 15 Jun 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-247', Anonymous Referee #1, 24 Apr 2023
    • AC2: 'Reply on RC1', Foteini Stavropoulou, 15 Jun 2023
  • RC2: 'Comment on egusphere-2023-247', Anonymous Referee #2, 03 May 2023
    • AC1: 'Reply on RC2', Foteini Stavropoulou, 15 Jun 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Foteini Stavropoulou on behalf of the Authors (29 Jun 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (03 Jul 2023) by Tanja Schuck
AR by Foteini Stavropoulou on behalf of the Authors (24 Jul 2023)  Manuscript 

Journal article(s) based on this preprint

20 Sep 2023
High potential for CH4 emission mitigation from oil infrastructure in one of EU's major production regions
Foteini Stavropoulou, Katarina Vinković, Bert Kers, Marcel de Vries, Steven van Heuven, Piotr Korbeń, Martina Schmidt, Julia Wietzel, Pawel Jagoda, Jaroslav M. Necki, Jakub Bartyzel, Hossein Maazallahi, Malika Menoud, Carina van der Veen, Sylvia Walter, Béla Tuzson, Jonas Ravelid, Randulph Paulo Morales, Lukas Emmenegger, Dominik Brunner, Michael Steiner, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, Hugo Denier van der Gon, Antonio Delre, Maklawe Essonanawe Edjabou, Charlotte Scheutz, Marius Corbu, Sebastian Iancu, Denisa Moaca, Alin Scarlat, Alexandru Tudor, Ioana Vizireanu, Andreea Calcan, Magdalena Ardelean, Sorin Ghemulet, Alexandru Pana, Aurel Constantinescu, Lucian Cusa, Alexandru Nica, Calin Baciu, Cristian Pop, Andrei Radovici, Alexandru Mereuta, Horatiu Stefanie, Alexandru Dandocsi, Bas Hermans, Stefan Schwietzke, Daniel Zavala-Araiza, Huilin Chen, and Thomas Röckmann
Atmos. Chem. Phys., 23, 10399–10412, https://doi.org/10.5194/acp-23-10399-2023,https://doi.org/10.5194/acp-23-10399-2023, 2023
Short summary

Foteini Stavropoulou et al.

Foteini Stavropoulou et al.

Viewed

Total article views: 1,208 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
924 264 20 1,208 56 13 12
  • HTML: 924
  • PDF: 264
  • XML: 20
  • Total: 1,208
  • Supplement: 56
  • BibTeX: 13
  • EndNote: 12
Views and downloads (calculated since 27 Feb 2023)
Cumulative views and downloads (calculated since 27 Feb 2023)

Viewed (geographical distribution)

Total article views: 1,222 (including HTML, PDF, and XML) Thereof 1,222 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 14 Jan 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
In this study, we quantify CH4 emissions from onshore oil production sites in Romania at source and facility level using a combination of ground-based measurement techniques. We show that the total CH4 emissions in our studied areas are much higher than the reported emissions to UNFCCC. On the component scale, up to three-quarters of the detected emissions are related to operational venting. Our results suggest that O&G production infrastructure in Romania holds a massive mitigation potential.