Preprints
https://doi.org/10.5194/egusphere-2023-2370
https://doi.org/10.5194/egusphere-2023-2370
16 Nov 2023
 | 16 Nov 2023

Evaluation of CMIP6 model simulations of PM2.5 and its components over China

Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie Hammer, Larry Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura

Abstract. Earth system models (ESMs) participating in the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) simulate various components of fine particulate matter (PM2.5) as major climate forcers. Yet the model performance for PM2.5 components remains little evaluated due in part to lack of observational data. Here, we evaluate near-surface concentrations of PM2.5 and its five main components over China as simulated by fourteen CMIP6 models, including organic carbon (OC, available in 14 models), black carbon (BC, 14 models), sulfate (14 models), nitrate (4 models), and ammonium (5 models). For this purpose, we collect observational data between 2000 and 2014 from a satellite-based dataset for total PM2.5 and from 2469 measurement records in the literature for PM2.5 components. Seven models output total PM2.5 concentrations, and they all underestimate the observed total PM2.5 over eastern China, with GFDL-ESM4 (–1.5 %) and MPI-ESM-1-2-HAM (–1.1 %) exhibiting the smallest biases averaged over the whole country. The other seven models, for which we recalculate total PM2.5 from the available components output, underestimate the total PM2.5 concentrations, partly because of the missing model representations of nitrate and ammonium. Concentrations of the five individual components are underestimated in almost all models, except that sulfate is overestimated in MPI-ESM-1-2-HAM by 12.6 % and in MRI-ESM2-0 by 24.5 %. The underestimation is the largest for OC (by –71.2 % to –37.8 % across the 14 models) and the smallest for BC (–47.9 % to –12.1 %). The multi-model mean (MMM) reproduces fairly well the observed spatial pattern for OC (R = 0.51), sulfate (R = 0.57), nitrate (R = 0.70) and ammonium (R = 0.75), yet the agreement is poorer for BC (R = 0.39). The varying performances of ESMs on total PM2.5 and its components have important implications for the modeled magnitude and spatial pattern of aerosol radiative forcing.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

20 Jun 2024
Evaluation of CMIP6 model simulations of PM2.5 and its components over China
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024,https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its five components...
Share