
Responses to Reviewer 1’s comments 

This paper explores the performance of 14 CMIP6 models in simulating the spatial distribution, 

temporal variations, and components of PM2.5 concentrations in China by comparing the models' 

historical run from 2000–2014 with satellite-based total PM2.5 concentrations and ground-based 

PM2.5 components data derived from the literature. It is found that PM2.5 concentrations are 

generally underestimated, especially in eastern China. The concentrations of five individual 

components (OC, BC, sulfate, nitrate, and ammonium) are also largely underestimated. The 

potential causes of model biases and climate impacts on aerosol radiative forcing are also discussed. 

Overall, the paper is well-written, offering a thorough analysis and discussion that enhances our 

current understanding of the capabilities of the latest Earth system models. I have a few minor 

suggestions for the authors to consider. 

Reply: We thank a lot the Reviewer #1 for the comments. We have studied the comments carefully 

and tried to incorporate as many suggested changes as possible, which have greatly helped us in 

improving the manuscript. Our responses to the comments and suggestions are as follows. The 

original comments are in green while our replies are in black. 

1. Since the satellite-based PM2.5 is one of the primary datasets used to validate CMIP6 output, it 

would be informative to include details about the dataset in section 2.2. This could involve 

specifying the aerosol species simulated by the GEOS-Chem model, discussing the accuracy of this 

dataset in comparison with PM2.5 ground observations (if available), and providing information on 

the ground observations in China used in the dataset. 

Reply: As suggested, we have added the description in Lines 175-182 and cited it here: 

“The GEOS-Chem aerosol simulations include primary and secondary carbonaceous aerosols, 

sulfate, nitrate, ammonium, mineral dust, and sea salt. The dataset provides the annual average PM2.5 

concentrations during the period 2000–2014 with a high spatial resolution of 0.01° × 0.01° (~1 × 1 

km2). The adjusted satellite-derived PM2.5 concentrations over Asia are compared with surface PM2.5 

observations collected from the Global Burden of Disease (GBD) collaborators during the period 

2008–2013 (Meansatellite = 61.5 μg m-3 versus Meanobs = 59.1 μg m-3) (van Donkelaar et al., 2016) 

and from the China National Environmental Monitoring Center (CNEMC) during the period 2015–

2019 (Meansatellite = 45.9 μg m-3 versus Meanobs = 43.4 μg m-3) (van Donkelaar et al., 2021).” 

2. It may be helpful to explain why dust and sea salt concentrations are excluded from the PM2.5 

component analysis. For instance, are the ground observations available for these components? 

Reply: Thanks for pointing it out. As suggested, we have added the explanation in Lines 148-150 

and cited it here: 

“In evaluating PM2.5 components (Sect. 4), the evaluation of dust and sea salt concentrations is 

excluded due to the lack of available ground-based observations. We compare OC, BC, sulfate, 

nitrate, and ammonium simulations with the observed data available for these components.” 

3. In Section 3.2, is the positive trend in PM2.5 concentrations in eastern China consistent with 



findings from previous studies? Do the emissions also show a positive trend in the same period? 

Reply: The positive trend in PM2.5 concentrations over eastern China is consistent with findings 

from previous studies. The aerosol optical depth (AOD) retrieved from the MODerate resolution 

Imaging Spectroradiometer (MODIS) over eastern China increased from 2000 to 2013 and 

decreased from 2015 to 2018 (de Leeuw et al., 2022). Geng et al. (2021) developed an air pollutant 

database named Tracking Air Pollution in China (TAP, http://tapdata.org.cn/) using information 

from monitor-, satellite-, and simulation-based sources. The TAP data also captures the PM2.5 

concentrations increasing rapidly before 2006 and dropping sharply after 2013.  

CMIP6 emissions over eastern China also have a positive trend in the same period (Fig. R1). We 

have added the explanation in Lines 244-246 and cited it here: 

“The positive trend of satellite data over the eastern regions is consistent with findings from previous 

studies of AOD and PM2.5 (de Leeuw et al., 2022; Geng et al., 2021), as caused mainly by emission 

changes (Hoesly et al., 2018; Wang et al., 2022).” 

 

Figure R1. Trends of CMIP6 emissions for BC, CO, NH3, NMVOC, NOx, OC, and SO2 over eastern China from 

2000 to 2014. 

4. In line 85, I’m not sure Sockol and Griswold (2017) examined PM2.5 concentrations. 

Reply: Thanks for pointing it out. We have modified the expression in Lines 83-86 and cited it here: 

“Several studies have evaluated total PM2.5 simulations of CMIP models over China, using AOD 

data from satellite retrievals (Sockol and Small Griswold, 2017; Michou et al., 2020) and ground-

based aerosol networks (Mortier et al., 2020).” 

5. In line 214, none of the correlations in Fig. 2 are greater than 0.9. 

Reply: The correlation coefficient mentioned in Line 214 is the spatial correlation between 



simulations and satellite-based data over the eastern regions. We wanted to show that four models 

reproducing the spatial pattern over the eastern regions well with correlation coefficients greater 

than 0.9.  

To make it clearer, we have added the spatial correlation coefficient values over the eastern and 

western regions into Table S2, respectively. We have also modified the expression in Lines 226-228 

and cited it here: 

“Nevertheless, the spatial pattern over the eastern regions is well simulated by four models (GFDL-

ESM4, GISS-E2-1-OMA, MIROC-ES2L, and MPI-ESM-1-2-HAM) (R > 0.9, as shown in Table 

S2) with the maximum center over North China correctly reproduced.” 

Table S2. The specific values of a1 and a2 from Eq. 1. The average, trend, and spatial correlation coefficients of 

PM2.5 concentrations over the eastern regions and western regions during 2000−2014.  

 

Model a1 a2 

Eastern regions Western regions 

 
Average 

(μg m−3) 

Trend (μg 

m−3 yr-1)a 

Spatial 

Corr.b 

Average 

(μg m−3) 

Trend (μg 

m−3 yr-1) 

Spatial 

Corr. 

Satellite-

based 
   39.0 0.72 1 22.7 0.06* 1 

Total 

PM2.5 

from 

Direct 

ESM 

output 

GFDL-

ESM4 
  37.7 1.14 0.92 22.1 0.28 0.66 

GISS-E2-1-

OMA 

  
24.4 0.69 0.91 10.9 0.13 0.79 

MIROC-

ES2L 
  20.3 0.49 0.90 8.9 0.13 0.59 

MPI-ESM-1-

2-HAM 
  36.6 0.93 0.91 22.5 0.20* 0.36 

MRI-ESM2-

0 
  30.4 0.57 0.83 24.5 0.24 0.71 

NorESM2-

LM 
  22.1 0.32 0.87 35.5 0.03* 0.49 

NorESM2-

MM 
  23.6 0.40 0.90 43.1 –0.10* 0.53 

Total 

PM2.5 

from Eq. 

1 

BCC-ESM1 
  19.5 0.40 0.87 10.2 0.15 0.62 

CESM2-

WACCM 
0.25 0.1 24.0 0.73 0.92 10.1 0.22 0.67 

CNRM-

ESM2-1 
0.02 0.25 18.9 0.42 0.90 5.5 0.11 0.51 

EC-Earth3-

AerChem 
0.25 0.1 21.4 0.56 0.91 8.3 0.18 0.53 

GISS-E2-1-

MATRIX 
0.25 0.1 17.0 0.43 0.92 6.4 0.10 0.67 



HadGEM3-

GC31-LL 
0.27 0.35 26.5 0.80 0.89 7.9 0.18 0.50 

UKESM1-0-

LL 
0.27 0.35 26.5 0.71 0.89 8.1 0.18 0.52 

a Trends are estimated using the Theil-Sen Median method (Theil, 1950; Sen, 1968). Significant changes are 

identified using the non-parametric Mann-Kendall test (Kendall, 1938). * represents non-significant monotonous 

change at p = 0.05. b Spatial correlation coefficients between simulations and satellite-based data over the eastern 

and western regions are calculated. The spatial correlation coefficients of 14 models are at the 0.05 significance level. 

6. In Fig. 2, what does NMB stand for? Normalized mean bias? 

Reply: Thanks for pointing it out. NMB stands for normalized mean bias (i.e., NMB = (Meansimulation 

/ Meanobservation − 1) × 100%). Meansimulation and Meanobservation are the spatial average of simulated 

and observed concentrations, respectively. We have added the definition of NMB in Lines 269-273 

and Lines 764-765, and cited it here: 

Lines 269-273: “The national average of the 14-model mean (6.5 μg m−3, normalized mean bias 

(NMB) = –59.0%), which are spatially coincidently sampled with the ground-based observations 

(i.e., model values are obtained from grid cells with available observations), severely underestimates 

the observations, especially over parts of North China with the bias reaching –40 μg m−3 (Fig. 5 b).” 

Lines 764-765: “R stands for spatial correlation, and NMB stands for normalized mean bias.” 

7. In Fig. 4, consider marking the area where correlations are statistically significant. 

Reply: As suggested, we have marked the regions where the correlation coefficient is at the 0.05 

significance level. 

 

Figure 4. Spatial distribution of correlation coefficients between modeled and satellite-based data for interannual 

variations of annual mean total PM2.5 concentrations during 2000–2014. Black dots indicate a significance level of 

0.05. 

8. In Fig. 6, what do the dotted black lines denote? 



Reply: The dotted black lines denote the spatial correlation coefficient value of 0.5. We plotted the 

dotted black lines as references to compare the correlations of 14 models more clearly. We have 

added the description of dotted black lines behind Fig. 6 (Line 784) and cited it here: 

“The black dotted lines denote the spatial correlation coefficient value of 0.5.” 
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 Responses to Reviewer 2’s comments 

This manuscript presented a thorough and fundamental evaluation of the CMIP6 model simulations 

of PM2.5 over China. CMIP6 simulations are widely applied for climate related studies and it is 

necessary to fully understand model uncertainty as aerosol plays an important role in the climate 

system. Yet the performance of global model for predicting surface PM2.5 concentrations has been 

largely ignored as it was considered as a special task for chemical transport models, especially at 

regional scale. However, in recent decade many studies reported the significance of interactions 

between air pollution and climate, thus it is important to reveal how the CMIP6 simulations can 

reproduce surface PM2.5 as well. The manuscript is well organized with clear description of model 

and observational data employed. It provides a thorough discussion of the results and origins of 

uncertainties with solid method. Therefore, I would recommend it to be accepted with minor 

revisions if the following comments could be properly addressed. 

Reply: We thank a lot the Reviewer #2 for the comments. We have studied the comments carefully 

and tried to incorporate as many suggested changes as possible, which have greatly helped us in 

improving the manuscript. Our responses to the comments and suggestions are as follows. The 

original comments are in green while our replies are in black. 

1. line158: It would be helpful to show the comparison between direct summary of all fine aerosol 

species (e.g., PM2.5 = sulfate + oa + nitrate + ammonium + bc + fine dust + fine sslt + bc) and the 

value of this equation, for the 4 models which provide nitrate. This would help to demonstrate the 

accuracy of the equation. 

Reply: Thanks for the suggestion. We have added the comparison of PM2.5 concentrations between 

the value of Eq. 1 and the value including all fine aerosol species, for 4 models providing nitrate 

and ammonium. We have also calculated the proportion of nitrate and ammonium to total PM2.5, 

respectively. The result is shown in Table S3. We have added the following descriptions in Lines 

233-235 and cited it here: 

“The negative biases are in part because nitrate and ammonium are not included. About 15.1–20.6% 

and 11.4–14.6% of PM2.5 are nitrate and ammonium in the models that do contain them, as shown 

in Table S3.” 

Table S3. Multi-year averages of PM2.5 concentrations including five aerosol species (Eq. 1) and all fine aerosol 

species from 4 models providing nitrate and ammonium simulations. 

Model 
PM2.5 according to 

Eq. 1 (μg m−3) 

PM2.5 including all 

fine aerosol 

species (μg m−3)a 

Nitrate 

proportionb 

Ammonium 

proportion 

EC-Earth3-

AerChem 
12.1 18.7 20.6% 14.3% 

GFDL-ESM4 13.0 18.5 15.1% 14.6% 

GISS-E2-1-

OMA 
10.0 14.1 17.6% 11.4% 



GISS-E2-1-

MATRIX 
9.5 13.8 17.5% 13.2% 

a represents that PMଶ.ହ = OA + BC + SOସ
ଶି + 0.25SSLT + 0.1DST + NOଷ

ି + NHସ
ା. b represents that the proportion 

of nitrate to PM2.5 including all fine aerosol species. 

2. line171: It would be helpful to show comparison between satellite product and model results for 

AOD at monthly scale to reveal the performance of model in simulating seasonal variations of 

aerosol over China. This may provide more indications of model uncertainty, such as dust may 

dominate in spring and OA may dominate in summer. 

Reply: Evaluating the performance of seasonal simulations over China using AOD data is another 

interesting work, as Li et al. (2021) has done. Li et al. (2021) finds that CMIP6 models fail to capture 

the seasonal north-south shift of AOD maximum centers. The maximum centers of AOD in spring 

over South China and in summer over North China are underestimated due to the underestimation 

of organic aerosol (OA) AOD and sulfate AOD respectively. We have also mentioned it in Lines 92-

94 in the introduction and cited it here: 

“Nonetheless, the CMIP6 models fail to capture the seasonal north-south shift of AOD maximum 

center over China during 2000–2014 (Li et al., 2021) and the observed dipole pattern of AOD trends 

between China and India during 2006–2014 (Wang et al., 2021b).” 

3. line194: Not sure what is “effect of interannual variability”, please make it clear. 

Reply: Apologies for any confusion. In sections 4.1 and 4.2, we compared multi-year mean 

simulations with multi-year mean observations in grid cells with available observed data. In the 

same grid cell, the observations are not continuous in time while simulations are continuous from 

2000 to 2014. The potential problem is that the incomplete temporal match between models and 

observations exists due to the interannual variability. Therefore, we calculated the maximum values 

of annual mean simulations over 2000–2014 from grid cells with available observed data to test 

whether the overall underestimation of models is related to the incomplete match (in year) between 

models and observations. We find that there is a small difference between the average and maximum 

of annual mean values over 2000–2014 from these grid cells in the models. We have modified the 

expression to make it clear in Lines 204-208 and cited it here: 

 “To consider the effect of interannual variability (caused by incomplete temporal match in data 

availability between models and observations), we compute for each CMIP6 model the average and 

maximum of annual mean values during 2000–2014 from all grid cells with available observational 

data, and then compare with the multi-year averaged observations from these grid cells.” 

4. line201: A figure similar to Fig.4 but for bias between model and satellite-based product would 

be helpful to reveal the difference more clear. 

Reply: As suggested, we have added the bias between simulations and satellite-based data as Figure 

S2. 



 
Figure S2. Spatial distribution of bias in the multi-year average of simulate-based PM2.5 concentrations during 2000–

2014 for each model. 

5. line209: It would be helpful to provide a brief discussion of why certain specific model show 

better performance than others.  

Reply: As suggested, we have added a brief discussion about this problem in Lines 220-224 and 

cited it here: 

“Among the seven models that directly output total PM2.5 concentrations (Fig. 2 a-g), GFDL-ESM4 

and MPI-ESM-1-2-HAM show similar patterns and magnitudes to satellite data with small national 

average biases (–1.5% and –1.1%, respectively) because of better performance in BC, sulfate, and 

ammonium simulations (Fig. S4-S7), which are related to the aerosol-chemistry-climate schemes 

within CMIP6 models (Turnock et al., 2020).” 

6. line238: Can you add a brief discussion of possible causes for the decline over 2000-2005 in 

satellite data? Is it an observational fact or satellite bias, if it is a fact, then why model cannot 

reproduce it? 

Reply: As suggested, we have added the explanation in Lines 254-259 and cited it here: 

“There is a notable decline over 2000–2005 in satellite data (–1.12 μg m−3 yr−1, at the significance 

level of 0.1), consistent with the previous studies that use dust aerosol optical depth (DOD) and 

ground-based observations of dust storm (Wang et al., 2021a; Song et al., 2016). However, the 

dramatic drop is not captured by any model, reflecting large uncertainties and inter-model diversities 

in dust simulations stemming from many factors such as the driving mechanisms, dust particle size, 

and model structural differences (Zhao et al., 2022).” 

7. line250: Not sure what is “spatially coincidently sampled”, please make it clear. 

Reply: Apologies for any confusion. What we wanted to express is that model values are obtained 

from grid cells with available observations. We calculated the national average of model values from 

these grid cells. We have added the explanation in Lines 269-273 and cited it here: 

“The national average of the 14-model mean (6.5 μg m−3, normalized mean bias (NMB) = –59.0%), 



which is spatially coincidently sampled with the ground-based observations (i.e., model values are 

obtained from grid cells with available observations), severely underestimates the observations, 

especially over parts of North China with the bias reaching –40 μg m−3 (Fig. 5 b).” 

8. line255: It would be helpful to add a brief discussion to explain why model difference peaks at 

these regions. 

Reply: As suggested, we have added the explanation in Lines 296-304 and cited it here: 

“The inter-model discrepancies of OC and BC peak over North China and eastern Sichuan (Fig. 5 

c). The large absolute discrepancies are in part due to the higher air pollutant concentrations in these 

regions. Furthermore, many differences exist among CMIP6 models in PM2.5 component 

simulations, including the representation of aerosol size distribution; the simplification of chemical 

processes with photolytic, kinetic and heterogeneous reactions (e.g., 33 photolytic reactions in BCC-

ESM1 but 43 in GFDL-ESM4) (Turnock et al., 2020; Wu et al., 2020; Dunne et al., 2020); the 

treatment for transport of gaseous tracers and aerosols by advection and vertical convection; and the 

dry deposition and wet scavenging schemes (Su et al., 2022; Digby et al., 2024). ” 

9. line259: Is it because of spatial distribution pattern of CEDS emission? 

Reply: We have calculated the spatial correlation coefficients between three variables (i.e., CMIP6 

emissions, multi-model mean concentrations, and observed concentrations). For OC and BC, the 

modeled concentrations are consistent with emissions (R > 0.85), while the consistency is lower 

between emissions and observed concentrations (R = 0.42–0.55) (Fig. S3). Thus the spatial 

distribution of emissions plays a major role in the model performance of carboneous aerosol 

simulations. In contrast, for sulfate and nitrate, the correlation coefficients are modest between 

emissions and simulated concentrations (R = 0.6) and between emissions and observed 

concentrations (R = 0.49–0.51), indicating a key role of chemical processes. We have added the 

expression in Lines 286-288 and cited it here: 

“The spatial distributions of carbonaceous aerosol concentrations are mainly influenced by CEDS 

emissions used in models, with their spatial correlation coefficients greater than 0.85 (Fig. S3).” 

 



 
Figure S3. Multi-year average of CMIP6 emissions (a-e), multi-model mean concentrations (f-j), and observed 

concentrations (k-o) of air pollutants over 2000–2014. R (e, m), R (e, o), and R (m, o) denote the spatial correlation 

coefficients between CMIP6 emissions and multi-model mean concentrations, between CMIP6 emissions and 

observed concentrations, and between multi-model mean concentrations and observed concentrations. 

10. line269: How much was CEDS emission data, as compared to which dataset? 

Reply: Fan et al. (2022) has compared the CEDS inventory for CMIP6 models with a country-level 

inventory (i.e., MEIC v1.3) over China. The BC, POM, SO2, NH3 emissions in CEDS are 26.3%, 

10.5%, 31.3%, 3.8% higher than those in MEIC during 2006–2015 respectively, while NOx emission 

in CEDS is 21.7% lower than that in MEIC during the same period. We have added the expression 

in Lines 290-292 and cited it here: 

“For China, the CEDS emission data (ver. 2016-07-26) used in CMIP6 historical simulations are 

about 3.8–31.3% higher than those in MEIC inventory except for NOx emissions (–21.7%) (Fan et 

al., 2022).” 

11. line272: BC is primary 

Reply: Apologies for any confusion. We have modified the expression in Lines 293-296 and cited 

it here: 

“The model inadequacies in chemical processes (e.g., using simplified aerosols and chemistry 

schemes, which tends to underestimate aerosol formation (Turnock et al., 2020)) might lead to 

underestimated secondary organic aerosols (SOA, as a component of OC), especially over Central 

and South China (Chen et al., 2016).” 

12. line272: Do all models have warm bias over Xinjiang? In addition, some observation sites 

provide PBL measurements as well, so why not perform evaluation of simulated PBL directly? 

Reply: Most models have a warm bias over Xinjiang during the historical periods (2000–2014), 

according to the previous studies (Zhang et al., 2022; Fan et al., 2020). For example, Zhang et al. 

(2022) finds that climatological annual surface air temperature simulation over Xinjiang during 



1995–2014 as obtained from the median and arithmetic mean of 42 CMIP6 models (including 14 

models used in our study) are higher than the observations. For PBL evaluation, Yue et al. (2021) 

finds that the magnitude of PBL height in nine CMIP6 models is generally overestimated compared 

with the data from the fifth generation of the European Centre for Medium-Range Weather Forecasts 

(ECMWF) atmospheric reanalysis of the global climate (ERA5; Copernicus Climate Change 

Service 2017). We have added the PBL evaluation in Line 307-312 and cited it here: 

“Over the western regions, a notable warm bias over Xinjiang in most CMIP6 models (Zhang et al., 

2022) may contribute to higher planetary boundary layer height (Yue et al., 2021) and stronger 

vertical mixing, partly explaining the underestimation of OC and BC concentrations near the surface 

(Fig. 5); whereas the pronounced cold bias over the Tibetan Plateau (Zhu and Yang, 2020) might 

contribute to overestimated near-surface aerosol concentrations over there.” 

13. line292: It would be helpful to briefly explain how 14 models simulate sulfate formation 

chemistry. 

Reply: As suggested, we have added the explanation in Lines 324-331 and cited it here: 

“This section evaluates the model performance of secondary inorganic aerosols (sulfate, nitrate, and 

ammonium; SIOA). Sulfate aerosol in CMIP6 models is dependent on SO2 emissions (the main 

sulfuric acid precursor), chemical conversion of SO2 to sulfate, and loss through wet scavenging 

(Wu et al., 2020; Tegen et al., 2019). Some models also explicitly simulate nitrate and ammonium 

aerosols using the sulfate‐nitrate‐ammonia thermodynamic equilibrium. For instance, EC-Earth3-

AerChem, GISS-E2-1-MATRAX and GISS-E2-1-OMA use the Equilibrium Simplified Aerosol 

Model (EQSAM) (Metzger et al., 2002; Bauer et al., 2020; van Noije et al., 2021), while GFDL-

ESM4 treats ammonium and nitrate aerosols with ISORROPIA (Fountoukis and Nenes, 2007; 

Paulot et al., 2016; Dunne et al., 2020).” 

14. line344: Not sure what is “seasonal model results to match seasonal observational”, do you mean 

conduct model evaluation at seasonal scale, so all models and observations are averaged seasonally? 

Reply: Apologies for any confusion. We do not focus on the model evaluation at the seasonal scale. 

In section 4, we calculated the multi-year average of model values at each grid cell with available 

observations, and compared it with the mean of all available observations at that grid cell. However, 

the observations do not have the same number of records in each season. For example, for a given 

grid cell, if the number of observed records in winter are more than the number in other seasons, the 

multi-year average of observations would have a higher weight from winter, whereas the modeled 

multi-year average has the same weight from each season. To evaluate how this treatment affects 

our model evaluation of multi-year means, we conducted tests to match model values with 

observations in the same season (e.g., if there are 50 observed records in winter, then we take multi-

year winter mean values by 50 times from model simulations); this is described as the “seasonal 

model results to match seasonal observational records”. We find that different matching methods 

cannot change the main conclusions. 

15. line406: I would recommend to mention it as those causes for aerosol underestimation may also 

affect O3. 



Reply: Changed as suggested. We have added the explanation in Lines 444-446 and cited it here: 

“Those causes for aerosol underestimation may also affect ozone, and the underestimated aerosol 

concentrations might further affect the ozone simulation through radiative or heterogeneous 

chemical processes.” 
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