23 Oct 2023
 | 23 Oct 2023
Status: this preprint is open for discussion.

Global application of a regional frequency analysis on extreme sea levels

Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates

Abstract. Coastal regions face increasing threats from rising sea levels and extreme weather events, highlighting the urgent need for accurate assessments of coastal flood risk. This study presents a novel approach to estimating global Extreme Sea Level (ESL) exceedance probabilities, using a Regional Frequency Analysis (RFA) approach. The research combines observed and modelled hindcast data to produce a high-resolution (~1 km) dataset of ESL exceedance probabilities, including wave setup, along the entire global coastline, excluding Antarctica.

The RFA approach offers several advantages over traditional methods, particularly in regions with limited observational data. It overcomes the challenge of short and incomplete observational records by substituting long historical records with a collection of shorter but spatially distributed records. This spatially distributed data not only retains the volume of information but also addresses the issue of sparse tide gauge coverage in less populated areas and developing nations. The RFA process is illustrated using Cyclone Yasi (2011) as a case study, demonstrating how the approach can significantly improve the characterisation of ESLs in regions prone to tropical cyclone activity.

In conclusion, this study provides a valuable resource for quantifying global coastal flood risk, offering an innovative methodology that can contribute to preparing for, and mitigating against, coastal flooding.

Thomas P. Collings et al.

Status: open (until 18 Dec 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Review comment on egusphere-2023-2267', Anonymous Referee #1, 16 Nov 2023 reply

Thomas P. Collings et al.

Thomas P. Collings et al.


Total article views: 226 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
138 79 9 226 5 4
  • HTML: 138
  • PDF: 79
  • XML: 9
  • Total: 226
  • BibTeX: 5
  • EndNote: 4
Views and downloads (calculated since 23 Oct 2023)
Cumulative views and downloads (calculated since 23 Oct 2023)

Viewed (geographical distribution)

Total article views: 220 (including HTML, PDF, and XML) Thereof 220 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 06 Dec 2023
Short summary
Coastal areas are at risk of flooding from rising sea levels and extreme weather events. This study uses a new way to figure out how likely coastal flooding is around the world. The method uses data from observations and computer models to create a detailed map of where these floods might happen at the coast. The approach can predict flooding in areas where there is little or no data. The results can be used to help get ready for and prevent this type of flooding.