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Abstract  26 

Coastal regions face increasing threats from rising sea levels and extreme weather events, 27 

highlighting the urgent need for accurate assessments of coastal flood risk. This study 28 

presents a novel approach to estimating global Extreme Sea Level (ESL) exceedance 29 

probabilities, using a Regional Frequency Analysis (RFA) approach. The research combines 30 

observed and modelled hindcast data to produce a high-resolution (~1 km) dataset of ESL 31 

exceedance probabilities, including wave setup, along the entire global coastline, excluding 32 

Antarctica.  33 

 34 

The methodology presented in this paper is an extension of the regional framework from 35 

Sweet et al., (2022), with innovations made to incorporate wave setup and apply the 36 

method globally. Water level records from tide gauges and a global reanalysis of tide and 37 

surge levels are integrated with a global ocean wave reanalysis. Subsequently, these data 38 

are regionalised, normalised, and aggregated, and then fit with a Generalised Pareto 39 

distribution. The regional distributions are downscaled to the local scale using the tidal 40 

range at every location along the global coastline, obtained through a global tide model. The 41 

results show 8cm of positive bias at the 1-in-10-year return level, when compared against 42 

individual tide gauges.  43 

 44 

The RFA approach offers several advantages over traditional methods, particularly in regions 45 

with limited observational data. It overcomes the challenge of short and incomplete 46 

observational records by substituting long historical records with a collection of shorter but 47 

spatially distributed records. This spatially distributed data not only retains the volume of 48 

information but also addresses the issue of sparse tide gauge coverage in less populated 49 

areas and developing nations. The RFA process is illustrated using Cyclone Yasi (2011) as a 50 

case study, demonstrating how the approach can improve the characterisation of ESLs in 51 

regions prone to tropical cyclone activity. 52 

 53 

In conclusion, this study provides a valuable resource for quantifying global coastal flood 54 

risk, offering an innovative global methodology that can contribute to preparing for, and 55 

mitigating against, coastal flooding. 56 
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 57 

Plain language summary 58 

Coastal areas are at risk of flooding from rising sea levels and extreme weather events. This 59 

study uses a new way to figure out how likely coastal flooding is around the world. The 60 

method uses data from observations and computer models to create a detailed map of 61 

where these floods might happen at the coast. The approach can predict flooding in areas 62 

where there is little or no data. The results can be used to help get ready for and prevent 63 

this type of flooding. 64 

 65 

66 
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1. Introduction 67 

Flooding provides one of the greatest threats to coastal communities globally, causing 68 

devastating impacts to affected regions. Notable events which have caused significant 69 

coastal flooding in recent years include: Cyclone Amphan (2020), which struck the Bay of 70 

Bengal producing a storm surge of up to 4.6m along the coast of Western Bengal, killing 84 71 

people, and causing total losses over 13 billion USD (India Meteorological Department, 72 

2020; Kumar et al., 2021); Hurricane Harvey (2017), the second most costly hurricane to hit 73 

the US after Katrina (2005), which impacted 13 million people, hitting the state of Texas 74 

with a maximum storm surge of 3.8m (Amadeo, 2019); and Typhoon Jebi (2018), driving 75 

storm surges of over 3m in Osaka Bay, Japan, combined with wave action which led to 76 

flooding exceeding 5m above mean sea level (Mori et al., 2019). Approximately 10% of the 77 

world’s population (768 million people) live below 10m above mean sea level (McGranahan 78 

et al., 2007, Nicholls et al., 2021). Coastal flooding is expected to increase dramatically into 79 

the future, predominantly caused by sea-level rise (Calafat et al., 2022, Taherkhani et al., 80 

2020), and compounded by continued growth and development in coastal populations 81 

(Neumann et al., 2015). Therefore, continuing to improve the understanding of coastal 82 

flooding is vital. 83 

Coastal floods are driven by extreme sea levels, which arise as combinations of: (1) 84 

astronomical tides; (2) storm surges (driven by tropical and extra-tropical cyclones) and 85 

associated seiches; (3) waves, especially setup and runup; and (4) relative mean sea level 86 

changes (including sea-level rise and vertical land movement). Risk assessments of coastal 87 

flooding require high-quality and high-resolution flood hazard data, typically in the form of 88 

flood inundation maps. Inundation maps are usually derived from hydraulic models, which 89 

use high resolution extreme sea level (ESL) exceedance probabilities as a key input (e.g., 90 

(Bates et al., 2021, Mitchell et al., 2022). The development of coastal inundation maps is 91 

reliant on coastal boundary conditions points that vary in resolution depending on 92 

application. Previous studies (e.g., (Barnard et al., 2019)) have used 100m resolution at local 93 

scales, while regional studies (e.g., (Bates et al., 2021, Environment Agency, 2018)) have 94 

employed resolutions between 500m and 2km. 95 

Traditional methods for computing ESL exceedance probabilities involve extreme value 96 

analysis of measurements from individual tide gauges or wave buoys. However, long, 97 
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complete records spanning numerous decades are necessary to obtain robust estimates of 98 

ESL return levels (Coles, 2001). The Global Extreme Sea Level Analysis (GESLA-3) database 99 

provides sea level records for over 5,000 tide gauge stations (Haigh et al., 2021), but these 100 

tide gauges still cover only a small fraction of the world’s coastlines. Wave buoys are even 101 

more sparse, largely restricted to the Northern Hemisphere and long historical records are 102 

marred by discontinuities (Timmermans et al., 2020). Even in areas with relatively high tide 103 

gauge or wave buoy density, there are still large expanses of coastline which remain 104 

ungauged. While rare extreme weather events (such as intense tropical cyclones (TCs)) are 105 

often many hundreds of kilometres in size, the precise impact of the corresponding ESL can 106 

often be highly localised (Irish et al., 2008), meaning the peak surge occurs in an ungauged 107 

location. The particular locale of peak surge for an event is determined by storm 108 

characteristics, local bathymetry and coastal geography, amongst other factors (Shaji et al., 109 

2014). Therefore, relying on past observation-based analyses of ESL exceedance 110 

probabilities to characterise return levels across a region will likely lead to the under 111 

representation of rare extreme events. Finally, another limitation is that many previous 112 

analyses of ESL exceedance probabilities consider the still water level component (i.e., tide 113 

plus storm surge) separately from the wave set up and run up (Haigh et al., 2016, Muis et 114 

al., 2016, Ramakrishnan et al., 2022).  115 

One solution to overcome sparse datasets is to use ESL hindcasts created by state-of-the-art 116 

models. These include regional (e.g., (Andrée et al., 2021; Siahsarani et al., 2021; Tanim and 117 

Akter, 2019)) or global tide-surge (such as Deltares’ Global Tide Surge Model v3.0 (hereafter 118 

referred to as GTSM; (Muis et al., 2020)) or wave models (e.g., (Liang et al., 2019)).  These 119 

are used to fill the spatial and temporal gaps in the observation records via historical 120 

reanalysis simulation. However, their ability to accurately capture extreme events is 121 

hampered by the atmospheric forcing data that is used to drive the models, as reanalysis 122 

products like ERA5 (Hersbach et al., 2020) commonly contain biases in representing 123 

meteorological extremes such as TCs (Slocum et al., 2022), leading to an underestimation of 124 

event intensity. Furthermore, the time period captured in reanalysis products is not 125 

adequate to represent the characteristics (e.g., frequencies) of particularly rare events such 126 

as intense TCs. To overcome this limitation, some studies have used synthetic event 127 
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datasets representing TC activity over many thousands of years (e.g., (Dullaart et al., 2021, 128 

Haigh et al., 2014)) however this approach is computationally expensive.  129 

An alternative and less computationally demanding solution that helps address some of the 130 

problems inherent in estimating ESLs around the world’s coastlines from the observational 131 

record, is regional frequency analysis (RFA). The RFA methodology was originally developed 132 

to estimate streamflow within a hydrological context (e.g., (Hosking & Wallis, 1997))but has 133 

since been used in many applications requiring extreme value analysis of meteorological 134 

parameters including coastal storm surge (e.g., (Arns et al., 2015, Bardet et al., 2011, Weiss 135 

& Bernardara, 2013)) and extreme ocean waves (e.g., (Campos et al., 2019, Lucas et al., 136 

2017, Vanem, 2017)). The principle of an RFA is founded on the basis that a homogenous 137 

region can be identified, throughout which similar meteorological forcings and resultant 138 

storm surge or wave events could occur, even if the extreme events have not been seen in 139 

part of that region in the historical record (Hosking and Wallis, 1997). RFA has been used on 140 

a regional scale to produce coastal ESL exceedance probabilities including: France 141 

(Andreevsky et al., 2020; Hamdi et al., 2016); the US coastline (Sweet et al., 2022); Northern 142 

Europe (Frau et al., 2018); US coastal military sites (Hall et al., 2016); and the Pacific Basin 143 

(Sweet et al., 2020).  However, an RFA approach has not (to our knowledge) been applied 144 

globally.  145 

The overall aim of this paper is to, for the first time, apply an RFA approach to estimate ESL 146 

exceedance probabilities, including wave setup, along the entire global coastline. These 147 

exceedance probabilities aim to better characterise ESLs driven by rare, extreme events, 148 

such as those from TCs, which are poorly represented in the historical record. Uniquely, this 149 

study uses both measured and hindcast datasets; includes tides, storm surges, and wave 150 

setup; and calculates exceedance probabilities at high resolution (1 km) globally. The 151 

specific objectives of this paper are to:  152 

(1) develop and apply the RFA globally (excluding Antarctica), utilising both 153 

observational tide gauge, and modelled hindcast sea level and wave records; 154 

(2) illustrate how the RFA methodology improves the representation of rare extreme 155 

events in the ESL exceedance probabilities using cyclone Yasi, which impacted the 156 

Australian coastline in 2011, as a case study;  157 
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(3) validate the RFA against exceedance probabilities estimated from the GESLA-3 global 158 

tide gauge database; and  159 

(4) Finally, quantify how much the RFA increases the estimation of ESL exceedance 160 

probabilities in areas prone to TC activity when compared to single site analysis, 161 

using hindcast datasets (Muis et al., 2020) and (Dullaart et al., 2021). 162 

This paper is laid out as follows: The datasets used are described in Section 2. The 163 

methodology is detailed in Section 3, addressing objective 1. Results and validation are 164 

described in Section 4, addressing objectives 2, 3, and 4. A discussion of the key findings and 165 

conclusions are then given in Sections 5 and 6, respectively.  166 

 167 

2. Data 168 

We use seven primary sources of data in this study, namely: (1) still sea-level observations 169 

contained in the GESLA-3 tide gauge dataset; (2) global still sea-level simulations from the 170 

GTSM hindcast based on the ERA5 climate reanalysis; (3) tidal predictions from the FES2014 171 

finite element hydrodynamic model; (4) significant wave heights derived from the ERA5 172 

climate reanalysis; (5) mean dynamic topography from HYBRID-CNES-CLS18-CMEMS2020; 173 

(6) Copernicus DEM to create a global coastline dataset; and (7) the COAST-RP dataset from 174 

(Dullaart et al., 2021) to validate the RFA methodology. These seven datasets are described 175 

in turn below. 176 

Still sea level records are assembled from the GESLA-3 (Global Extreme Sea Level Analysis) 177 

tide gauge dataset version 3 (Caldwell et al., 2015, Haigh et al., 2021). The GESLA-3 dataset 178 

includes high-frequency water level time series from over 5,000 tide gauges around the 179 

globe, collated from 36 international and national providers. Data providers have differing 180 

methods of quality control, however each record was visually assessed by the authors of the 181 

GESLA-3 dataset and graded as either: (i) no obvious issues; (ii) possible datum issues; (iii) 182 

possible quality control issues; or (iv) possible datum and quality control issues. Only 183 

records with no obvious issues were used in this study. 184 

As discussed in Section 3, the hindcast, GTSM-ERA5 is used in all areas which are not 185 

covered by tide gauge observations. GTSM is a depth-averaged hydrodynamic model built 186 
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using the DELFT-3D hydrodynamic model, which makes use of an unstructured, global, 187 

flexible mesh with no open boundaries (Muis et al., 2020). The model has a coastal 188 

resolution of 2.5km (1.25km in Europe), and a deep ocean resolution of 25km.  The GTSM-189 

ERA5 dataset spans the period 1979-2018 and is developed by forcing GTSM with hourly 190 

fields of ERA5 10-metre wind speed and atmospheric pressure (Hersbach et al., 2020). 191 

GTSM-ERA5 has a 10-minute temporal resolution and provides a timeseries at locations 192 

approximately every 50km along the coastline (10km in Europe). Validation carried out by 193 

Muis et al. (2020) shows that the dataset performs well against observations of annual 194 

maximum water level, exhibiting a mean bias of -0.04 m and a mean absolute percentage 195 

error of 14%.  196 

We use the FES2014 tidal database to generate tidal timeseries at GTSM-ERA5 locations and 197 

RFA output locations. The RFA output resolution is much higher than the output resolution 198 

of GTSM-ERA5, which is why FES2014 is used instead. FES2014 is a finite element 199 

hydrodynamic model which combines data assimilation from satellite altimetry and tide 200 

gauges (Lyard et al., 2021). The model solves the barotropic tidal equations, as well as the 201 

effects from self-attraction and loading. The gridded resolution of the output is 1/16°. The 202 

model was extensively validated against tide gauges, satellite altimeter observations, and 203 

alternative global tide models by Lyard et al. (2021) and was found to have an improved 204 

variance reduction in nearly all areas, especially in shallow water regions.  The Python 205 

package distributed with the FES2014 data (https://github.com/CNES/aviso-fes) was used to 206 

simulate tidal timeseries.  207 

To calculate wave set up we use significant wave heights (Hs) from the ERA5 reanalysis 208 

(Hersbach et al., 2020), covering the period 1979 to 2020. The spatial resolution of the ERA5 209 

wave model output is 0.5° x 0.5°, and the temporal resolution is hourly. Independent 210 

validation of hourly Hs performed by (Wang & Wang, 2022) finds little bias in the dataset (-211 

0.058 m), however the authors go on to conclude that Hs of extreme waves tends to be 212 

underestimated (by 7.7% in the 95% percentile), a conclusion supported by (Fanti et al., 213 

2023).   214 

We use mean dynamic topography (MDT) to convert water levels from mean sea level as 215 

measured by tide gauges to mean sea level as referenced by a geoid, for use in subsequent 216 

future studies involving inundation assessments using hydraulic modelling. MDT describes 217 
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the change in sea surface height due to the effects of the winds and currents in the ocean. 218 

Digital elevation models (DEMs), a key input to hydraulic models, typically use a geoid as a 219 

vertical datum. A geoid is an equipotential surface of mean sea level under the sole effect of 220 

gravity, in the absence of land masses, currents and tides (Bingham and Haines, 2006). To 221 

convert water levels from tide gauge mean sea level to the geoid mean sea level, the 222 

HYBRID-CNES-CLS18-CMEMS2020 MDT dataset is used (Mulet et al., 2021). The spatial 223 

resolution of this dataset is 0.125° x 0.125°. Errors associated with this dataset are largely 224 

caused by the input satellite altimetry data and can be up to 10 cm in some areas. The MDT 225 

at the shoreline is illustrated in the Appendix Fig. A1.  226 

The Copernicus 30m DEM (European Space Agency, 2021) is used to create a high-resolution 227 

global coastline. This is used to define the RFA output points at approximately 1 km intervals 228 

along the global coastline (excluding Antarctica), resulting in over 3.4 million points.  229 

Finally, in addition to GTSM-ERA5, we use the COAST-RP dataset from (Dullaart et al., 2021) 230 

to validate the RFA methodology. COAST-RP uses the same hydraulic modelling framework 231 

as GTSM-ERA5 but simulates extra-tropical and tropical surge events separately using 232 

different forcing data. In areas prone to TC activity, synthetic TCs representing 3,000 years 233 

under current climate conditions are used from the STORM dataset (Bloemendaal et al., 234 

2020). These synthetic TC model runs have been validated against observed IBTrACS-forced 235 

model runs, and found to show differences in ESLs at the 1 in 25 year return level of less 236 

than 0.1 m at 67% of the output locations in TC prone areas (Dullaart et al., 2021). In regions 237 

impacted only by extra-tropical storms, a 38-year timeseries of ERA5 data is used (Hersbach 238 

et al., 2020). The surge levels from each set of simulations are probabilistically combined 239 

with tides to result in a global database of dynamically modelled storm-tides. 240 

 241 

3. Methods 242 

The first objective of this study is to develop and apply an RFA approach globally, 243 

encompassing still water levels and wave set up. In Section 3.1 we describe the methods 244 

used to process the data used in this study. In Section 3.2 we layout the global application of 245 

the RFA approach using observational and modelled data.  The methods used to validate the 246 

results are explained in Section 3.3. 247 
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An overview of our methodology is illustrated in Fig. 1. This study broadly follows the 248 

methodology of (Sweet et al., 2022) and applies an RFA to both tide gauge and GTSM-ERA5 249 

records. As such, the terms ‘water level record’ and ‘record location’ are used to describe 250 

both tide gauge records and GTSM-ERA5 data. The method can be summarised in five key 251 

steps: (i) collation and pre-processing of tide gauge, GTSM-ERA5, FES2014, and ERA5 Hs 252 

data; (ii) spatial discretisation of water level records into regions; (iii) application of the RFA 253 

to regional water level records (in areas unsuitable for an RFA (because there are less than 3 254 

gauges in a region, or the regional water levels records are heterogenous), a peaks-over-255 

threshold analysis of individual GTSM-ERA5 water level records is used); (iv) conversion 256 

(downscaling) of RFA exceedance levels to local exceedance levels at the output coastline 257 

points, using FES2014 tidal range (in areas unsuitable for an RFA, nearest-neighbour 258 

interpolation is used to assign local exceedance levels); and (v) correction of bias and 259 

datums to convert water levels to geoid mean sea level, using FES2014 mean higher high 260 

water and global MDT (HYBRID-CNES-CLS18-CMEMS2020). The final section of the methods 261 

(vi) describes the validation techniques. These steps are described in detail below. 262 
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     263 

 264 

Figure 1: Schematic flow diagram detailing the data sources and processes involved in producing a global set of extreme 265 
water levels 266 

3.1 Data processing 267 

 268 

 The GESLA-3 dataset was filtered to sample appropriate input data by removing duplicates, 269 

gauges located in rivers (away from the coast), and gauges that fail quality control checks 270 

carried out by the authors of the dataset (such as suspected datum jumps). The surge 271 

component of GTSM-ERA5 at each record location is isolated from the water level 272 

timeseries using a tide only simulation and superimposed upon a tidal timeseries created 273 

with FES2014, as the FES2014 tidal elevations performed better than those of GTSM in 274 

initial testing against in-situ observation. The decision to use tides from FES2014 is further 275 

supported by the conclusion from Muis et al., (2020), in which they state “It appears that 276 

biases increase in regions with a high tidal range, such as the North Sea, northern Australia, 277 

and the northwest of the United States and Canada, which could indicate that GTSM is 278 

outperformed by the FES2012 model that was used to develop the GTSR dataset.” Tidal 279 
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timeseries were also computed at each of the coastline output locations for use in 280 

downscaling the regional outputs, and in the bias and datum corrections of the local ESL.  281 

Wave setup is the static increase in water level attributed to residual energy remaining after 282 

a wave breaks (Dean and Walton, 2010), and therefore is only observed in areas exposed to 283 

direct wave action. In this study, wave setup is approximated as 20% significant wave height 284 

(Hs) from the ERA5 reanalysis, following the recommendation from the review of numerous 285 

laboratory and field experiments ((Dean & Walton, 2010) and previous related studies 286 

(Bates et al., 2021; Vousdoukas et al., 2016). Wave setup is assigned to the nearest record 287 

location using a nearest-neighbour approach.  Wave setup is assumed to be absent in 288 

sheltered areas (e.g., bays and estuaries). To account for this, the global coastline is 289 

classified as either sheltered or exposed, and the final extreme water levels are drawn from 290 

an RFA that is processed with or without wave setup added in. To classify the coastline, each 291 

coastline point is evaluated to determine if it is exposed from a minimum 22.5° angle over a 292 

fetch of 50km. A total of 16 equal angle transects are drawn, extending 50km from each 293 

coastline point. If two or more adjacent transects do not intersect with land, the coastline 294 

point is considered exposed. Applying wave setup using this approach is an obvious 295 

simplification that has been used for the ease of global application. In reality wave setup is 296 

impacted by local bathymetry and coastal geometry, as well as local wind and wave 297 

conditions. There are other more complex methods for estimating wave setup that 298 

incorporate some aspects of bathymetry and coastal geometry, such as Stockdon et al. 299 

(2006).  300 

To process the RFA with wave setup, daily maximum wave setup is added to the daily 301 

highest water levels. Where tide gauge records fall outside of the temporal range of the 302 

ERA5 data, a copula-based approach was used to fit a simple statistical model between daily 303 

peak water levels and daily max Hs, providing a prediction of the daily max Hs. The RFA is 304 

then executed as described below. Tide gauges are assumed to be located in sheltered 305 

regions, such as bays and estuaries, thus tide gauge records are not impacted by wave 306 

setup. 307 

3.2 Spatial discretisation of water level records into regions 308 

 309 
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Water level records are spatially clustered to form a potential pool from which regional 310 

exceedance levels can be characterised. To do this, the global coastline is divided into 1° by 311 

1° grid cells, which are used as the regions to apply the outputs for each RFA. All record 312 

locations within a 400km radius (same as (Hall et al., 2016) and (Sweet et al., 2022)) of the 313 

grid cell centroid that have at least 10 consecutive years of good (>90% completeness) data 314 

are identified (minimum of 3 water level records, maximum of 10 (same as Sweet et al. 315 

(2022)). This step is illustrated in Fig. 2A. Record locations which are geographically within 316 

range, but are separated by a large expanse of land, and thus likely forced by different 317 

storm patterns are removed from the record location selection. To achieve this, a line is 318 

drawn between the grid cell centroid and each record location. The land intersected by the 319 

line is divided, and the areas of land on either side of the line are summed. A ratio of the 320 

length of the line to the area of land segmented by the line is then calculated. A threshold of 321 

100 was empirically evaluated using expert judgement based on a number of test cases, 322 

above which records are removed from the grid cell analysis. This approach ensures that, for 323 

example, record locations located on the east coast of Florida (e.g., Mayport) are not 324 

grouped with those on the west coast (e.g., Cedar Key) when characterising regional growth 325 

curves, despite the relatively short straight-line distance between them. Fig. 2A exemplifies 326 

three tide gauges which have been excluded from possible selection despite lying within a 327 

400km radius to the grid cell centroid as the land that separates them is considerably large 328 

when compared to the distance.  This spatial discretisation of regions results in a total of 329 

836 tide gauge records (with a mean record length of 17 years) and 18628 GTSM-ERA5 330 

records for use in the application of the RFA. 331 
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 332 

Figure 2:  Illustrating a selection of the steps through the RFA. (A) The 1° by 1° grid cells along the East Coast of the US, 333 
along with the locations of the tide gauges, and the tide gauges selected for the RFA of the example grid cell. The tide 334 
gauges excluded from possible selection by the distance/land area ratio are also indicated. (B) The aggregated, declustered, 335 
normalised peak regional water levels over a threshold for each of the tide gauges used in the example grid cell. The colours 336 
indicate peak water levels from the individual tide gauges in the region. (C) The regional extreme water levels, ascertained 337 
by fitting a Generalised Pareto distribution to the data displayed in panel (B). (D) The index flood values of the example grid 338 
cell, found by linearly interpolating the u value from the two closest tide gauges, and scaling by tidal range. The locations of 339 
two coastline points used to produce local extreme water levels in panel E are also highlighted. (E) The local extreme water 340 
level at two shoreline points inside the example grid cell, each with different index flood values as indicated in panel D. 341 
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The RFA is preferentially applied to tide gauges in areas where the gauge density is sufficient 342 

(minimum 3 gauges within a 400km radius, same as (Hall et al., 2016) and (Sweet et al., 343 

2022)). Outside of these areas, the RFA is implemented using data from GTSM-ERA5. In 344 

some regions, the density of homogenous record locations from GTSM-ERA5 is also too low 345 

for the RFA to function, in which case the ESL exceedance probabilities are interpolated 346 

from a single site peaks-over-threshold analysis of the nearest GTSM-ERA5 record location. 347 

The geographical locations of these areas are shown in Fig. 3. From the 5,975 global coastal 348 

grid cells, ESLs at 851 are computed using tide gauge data, 4,555 are calculated using an RFA 349 

of GTSM-ERA5 data, and 569 are calculated using GTSM-ERA5 data from the nearest record 350 

location. 351 

 352 

Figure 3: This map shows the global distribution the areas in which the tide gauge RFA is used, the GTSM-ERA5 RFA is used, 353 
and the areas which are interpolations of single site analysis from GTSM-ERA5. 354 

3.3 Application of the RFA 355 

 356 

Tide gauge records are referenced to different vertical datums, so to ensure consistency, the 357 

mean over the most recent 19-year epoch is subtract from the water level record, and the 358 

timeseries is linearly detrended to the centre year of the most recent available epoch (2002-359 

2020), resulting in 2011. GTSM-ERA5 records are referenced to MSL over the period of 360 

1986-2005, and so the timeseries are linearly detrended to reference the same tidal epoch 361 

as the tide gauge records, centred on 2011. Within each cluster of gauge (or model) records, 362 
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the water level time series are resampled to hourly resolution and converted to mean 363 

higher high water, defined as the mean daily highest water level over a 19-year epoch, to 364 

account for differences in tidal range between record locations. In the case of records with 365 

fewer than 19 years of data available the maximum continuous epoch is used instead.  366 

Daily highest water level is determined from the hourly time series of each measured or 367 

modelled record. The time series are then declustered using a 4-day storm window to 368 

ensure event independence. This window length was used by Sweet et al., 2020 and Sweet 369 

et al., 2022, and is a similar length to the storms that cause surge events in the UK (Haigh et 370 

al., 2016). The index flood 𝑢, defined as the 98th percentile of the declustered daily highest 371 

water levels (Sweet et al., 2022), is used as the exceedance threshold at which to normalise 372 

the water level at each record location, as follows: 373 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 = (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑛𝑐𝑒 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 − 𝑢) /𝑢  (eq. 1) 374 

The normalised datasets are then aggregated and further declustered to ensure only one 375 

peak water level is retained for each regional event. This is shown in Fig. 2B for an example 376 

grid cell. Following Hosking and Wallis (1997), a statistical heterogeneity test (H) is 377 

undertaken to ensure the homogeneity of the region. If the H-score is less than 2, then the 378 

region is considered sufficiently homogenous. If the H-score is greater than 2, then the 379 

furthest water level record from the grid cell centroid is removed from the region, and the 380 

test re-run. This process is repeated until the H-score is less than 2. In a minority of cases, 381 

the heterogeneity test fails due to an anomalous record that lies within the closest 3 382 

sampling locations to the grid cell centroid. In this instance the test is rerun, except after the 383 

furthest record is removed, all the remaining records are sequentially removed and 384 

replaced, until the H-score is less than 2. 385 

After the region is confirmed to be homogenous, a Generalised Pareto distribution is fitted 386 

to the aggregated, declustered, normalised regional water levels using a penalised 387 

maximum likelihood method to estimate regional extreme water levels (REWLs). This is 388 

illustrated at an example in Fig. 2C.  This is repeated for the aggregated regional water levels 389 

for each 1° by 1° grid cell.  While theoretically correct, applying distribution fits to real world 390 

data can sometimes give unrealistic results, particularly in the estimation of the lower 391 

frequency space. In these cases, growth curve optimisation is undertaken to ensure the 392 
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output local extreme water levels are plausible in real world scenarios. To ensure 393 

consistency, an empirical threshold of 0.35 for the shape parameter is used to determine 394 

which curves will generate unrealistic extreme water levels. The empirical threshold of the 395 

shape parameter is determined based on expert judgement of plausible real world 396 

maximum surge heights in the low frequency events. To correct these curves, where this 397 

threshold is exceeded, we use the shape and scale parameters of the nearest grid cell which 398 

has a shape parameter less than 0.35. In total, 34 grid cells had their shape and scale 399 

parameters adjusted, mostly concentrated in the Gulf of Mexico and Japan. 400 

3.4 Downscaling to local extreme water levels 401 

 402 

Local extreme water levels (LEWLs) are then estimated from the regional growth curves 403 

using the following relationship: 404 

𝐿𝐸𝑊𝐿 = (𝑅𝐸𝑊𝐿 ∗ 𝑢) + 𝑢  (eq. 2) 405 

for each coastal point along the coastline contained within the grid cell represented by the 406 

REWL. The index 𝑢 is estimated at the coastline points using an inverse distance weighting 407 

interpolation of the 𝑢 values for the two closest record locations, scaled by tidal range. This 408 

deviates from the methodology set out by Sweet et al., (2022), in which they recommend 409 

drawing 𝑢 values from a linear regression of 𝑢 against tidal range values from record 410 

locations across a region. We found this approach led to significant differences in LEWLs at 411 

record locations when compared to single site analysis of water level records, and hence 412 

have modified the methodology. Fig. 2D exhibits an example of the index flood for every 413 

shoreline point in an example grid cell. Tidal ranges are calculated as the difference 414 

between mean higher high water and mean lower low water. Tidal harmonics from FES2014 415 

are used to predict mean higher high water and mean lower low water at each coastline 416 

point. The index flood, 𝑢, is used to downscale the REWLs, which represent the ESL 417 

characteristics of the entire grid cell. LEWLs are output in the format of return levels for a 418 

range of exceedance probabilities. Two example LEWL curves are shown in Fig. 2E, which 419 

have been computed using different index flood values, as indicated in Fig. 2D.  420 

3.5 Bias and datum corrections 421 

 422 
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The last stage of the LEWL calculation involved characterisation and removal of bias in the 423 

high frequency portion of the exceedance probability curves, relative to a single site analysis 424 

of water level records (within which we expect the high frequency water levels to be 425 

accurately modelled). Other surge RFA studies also concluded that the approach generally 426 

yields higher estimated surge heights when compared to single site analysis, because during 427 

the regionalisation process an extreme event that occurred in one location is assumed to 428 

have the same probability of occurring at another location within the homogeneous region. 429 

(Bardet et al., 2011; Sweet et al., 2022). Bias is quantified based on the divergence in the 1-430 

in-1-year return period at each tide gauge/GTSM-ERA5 location and the corresponding 431 

LEWL predictions. This bias is used as a correction term and is removed from the LEWLs. As 432 

the density of the coastline points is much greater than the density of the tide 433 

gauges/model output locations, the correction term is interpolated across all coastal LEWL 434 

points based on correlation between monthly values of the 99th percentile of tidal 435 

elevations produced over a 3-year period centred on 2011, computed using FES2014 at the 436 

tide gauge/GTSM-ERA5 location and neighbouring coastline points. The mean bias 437 

correction across all gauges is 8 cm. 438 

Datum corrections are applied to ensure the LEWLs are correctly referenced to a vertical 439 

datum which can be used for hazard assessment applications, such as inundation modelling. 440 

Inundation models utilise digital elevation models, which typically reference a geoid as the 441 

vertical datum. The output water levels from the RFA are transformed from mean higher 442 

high water to Mean Sea Level (MSL) by adding the approximation of mean higher high water 443 

(above MSL) from the FES2014 simulations to each of the boundary condition points. The 444 

corrected MDT dataset from (Mulet et al., 2021) is applied to convert water levels from MSL 445 

from the FES2014 model to the ‘MSL’ of a commonly used geoid, EGM08. 446 

3.6 Validation methods 447 

 448 

In this section we define a range of validation techniques used to address objectives 3 and 4. 449 

To validate the RFA ESLs against tide gauge records from GESLA (objective 3), a comparison 450 

is made against ESL exceedance probabilities calculated at the individual tide gauges used to 451 

inform the RFA. To quantify the degree to which the RFA approach improves the estimation 452 
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of ESL exceedance probabilities compared to single site analysis (objective 4), two 453 

assessments are made. 454 

Firstly, the divergence between GTSM-ERA5 RFA ESL and GTSM-ERA5 single site ESL for the 455 

entire global coastline are quantified. These are then contrasted against the differences 456 

between return levels from GTSM-ERA5 (Muis et al., 2020) and COAST-RP (Dullaart et al., 457 

2021). The comparison can then identify regions in which the historical ESLs are poorly 458 

represented due to the limited record lengths.  459 

Secondly, a leave-one-out cross validation is undertaken using GTSM-ERA5 data. Leave-one 460 

out-cross validation aims to address the common issues involved with validating statistical 461 

models. One common method to validate models is split-sample validation, in which the 462 

data is split into two groups, a training set and a validation set, which are generally 70% and 463 

30% of the data respectively. The model is then trained on the larger set and validated 464 

against the smaller set. The drawbacks of this method include a highly variable validation 465 

error, due to the selection of the training and validation sets, as well as a validation error 466 

bias caused by training the model on only 70% of the available data (James et al., 2013).  467 

Instead of using a 70/30 split of the data, leave-one-out cross validation uses a larger 468 

proportion of the data to train the model, while validating against a smaller sub-sample, but 469 

repeats this process multiple times to generate a robust validation. To do this, we identified 470 

1000 grid cells which use 10 GTSM-ERA5 records for the RFA and contain 3 GTSM-ERA5 471 

record locations inside the grid cell (and therefore the RFA can be used to directly estimate 472 

ESLs at the record locations). One of the GTSM-ERA5 records from inside the grid cell is 473 

removed from the RFA process, and the REWL is calculated using the 9 remaining gauges. 474 

The LEWL is then predicted at the record location which has been left out, using the index 475 

flood, u at the record location. These LEWLs are then contrasted with a single site analysis of 476 

the water level record that was removed from the RFA. The process is then repeated for the 477 

2 other GTSM-ERA5 record locations which lie within the grid cell. This means each of the 478 

1000 models is being tested three times, against 90% of the available data, thus giving a 479 

more robust realisation of the model when trained on 100% of the data. 480 

 481 
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4. Results  482 

The results section is divided into four sub-sections. Section 4.1 presents the results of the 483 

global application of the RFA, showing both the global view of two return periods and the 484 

return levels for selected sites around the world. Section 4.2 illustrates how the RFA 485 

methodology improves the characterisation of rare extreme events using Cyclone Yasi 486 

(objective 2). In section 4.3 we validate the RFA against estimates of ESL from GESLA tide 487 

gauges (objective 3). Finally, in section 4.4 we quantify the improvements made by using an 488 

RFA approach when compared to a single site analysis of water levels (objective 4). 489 

 490 

4.1 Global application of RFA 491 

The final ESL exceedance probabilities (including wave setup) created at high resolution 492 

around the global coastline are displayed in Fig. 4, for the 1-in-10 and 1-in-100-year return 493 

periods. Both the 1-in-10 year (Fig. 4A) and 1-in-100 year (Fig. 4B) return periods show 494 

similar spatial patterns, with 1-in-100-year return periods exhibiting greater increases as 495 

expected in areas prone to TC activity (e.g., the Gulf of Mexico, Australia, Japan, and China). 496 

ESLs are higher in regions with large tidal ranges such as the Bay of Fundy, the Patagonia 497 

Shelf, the Bristol Channel in UK, the northern coast of France, and the northwest coast of 498 

Australia. The return levels for 6 select tide gauge locations, 3 of which are characterised by 499 

a positive and 3 of which are characterised by negative shape parameter from the 500 

Generalised Pareto distribution are shown in Fig. 4C and 4D respectively, relative to mean 501 

higher high water. The locations of the 6 tide gauges are indicated in both Fig. 4A and 4B. 502 

Regions exhibiting positive shape parameters are typically prone to TC activity and 503 

associated surge and wave events. As a result, these regions experience more significant 504 

increases in return levels at higher return periods than regions with negative shape 505 

parameters. Regions characterised by negative shape parameters have different drivers of 506 

ESL events, for instance extra-tropical storms surges or tide dominated ESLs (Sweet et al., 507 

2020). 508 

 509 
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 510 

Figure 4: The final global RFA results output at approximately 1km resolution along the entire global coastline (excluding 511 
Antarctica) for RP10 (A) and RP100 (B). Return levels are referenced to DEM MSL, and so represent surge, waves and tide. 512 
Return levels (relative to mean higher high water) for 6 tide gauges in regions characterised by either positive or negative 513 
shape parameter of the Generalised Pareto distribution are shown in panels (C) and (D) respectively. The locations of the 6 514 
tide gauges are indicated by the diamonds plotted on both panels (A) and (B).   515 

 516 
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4.2 Tropical Cyclone Yasi 517 

Our second study objective is to illustrate how the RFA methodology previously described 518 

can draw on few, rare events, to provide more realistic representation of low frequency ESL 519 

exceedance probabilities across a region, using the case study of cyclone Yasi which 520 

impacted the Australian coastline in 2011. Cyclone Yasi made landfall on the North-eastern 521 

coast of Australia, in the Queensland region, between 14:00 and 15:00 UTC on the 2nd of 522 

February 2011. It is the strongest cyclone to have impacted the region since 1918, with 523 

possible windspeeds of 285km/h and minimum record pressure centre of 929 hPa (Australia 524 

Bureau of Meteorology, 2011). When it made landfall, Yasi was a category 4 storm on the 525 

Saffir-Sampson scale. The path and strength of the storm are shown in Fig. 5A.  526 

The total water levels, relative to mean higher high water, for all the tide gauges in the 527 

region are shown in Fig. 5B. Cardwell had the highest surge, and highest total water level, by 528 

a considerable margin compared to neighbouring tide gauges, receiving a surge of over 3m 529 

above mean higher high water. Clump Point also showed a definitive but less substantial 530 

surge signal, whereas the other gauges showed much smaller surge effects or even no surge 531 

at all. The historical water level records of all the gauges in the regions are included in Fig. 532 

5C. The tide gauges span different temporal ranges, and many have years which are 533 

incomplete. The longest record is at Townsville, which started in the late 1950s. Despite this 534 

record, the largest event is cyclone Yasi by over 1.5m (at Cardwell).  535 

Based on this historical record, no other surge event of this magnitude has impacted this 536 

section of coastline since the records began. There are, however, records of other historic 537 

extreme events that predate tide gauges affecting the region. For example, Cyclone Mahina, 538 

which made landfall in Princess Charlotte Bay (approximately 100km north of Cooktown) in 539 

1899, reportedly had a surge height approaching 10m (Needham et al., 2015). The idea that 540 

this stretch of coastline is at risk of TC generated ESLs is further supported by STORM, a 541 

dataset of 10,000 years of synthetic hurricane tracks (Bloemendaal et al., 2020). IBTrACS 542 

shows just eight category 4 and 5 hurricanes impacting this 700km stretch of coastline 543 

between 1980 and 2022 (shown in the Appendix Fig. A2; (Knapp et al., 2010)). In contrast, 544 

the STORM dataset has 333 events affecting the area, producing a more continuous spread 545 

of landfall locations along the coastline. In addition, large surges are sometimes not 546 

captured in this region due to the lack of gauges in rural areas (Needham et al., 2015).  547 
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 548 

Figure 5: Tropical Cyclone Yasi: (A) The storm track of cyclone Yasi, covering a 24-hour period over the landfall event. The 549 
locations of the 10 closest tide gauges along the Queensland coast are also included. Times are in UTC. (B) The observed 550 
water level timeseries for the same 24-hour period at each of the 10 tide gauges in the region. Times are in UTC. (C)  The 551 
entire historical record of all 10 gauges in the region. (D) The return period curves of individual gauges fit with Generalised 552 
Pareto distribution. (E) The return period curves at the gauge locations from the RFA. 553 

The return period curves, calculated by fitting a Generalised Pareto distribution to the 554 

peaks-over-threshold water levels at each individual tide gauge, for each of the 10 gauges in 555 
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the region, are shown in Fig. 5D.  As expected, Cardwell has the largest return levels and the 556 

steepest curve. All the other gauges, except Bowen, exhibit negative shape parameters, 557 

characterised by a decreasing gradient of the return period curves. In a region which is 558 

prone to TCs, this is a dangerous underestimation of the risk from cyclone induced surges. In 559 

some coastal ESL studies, ESLs are calculated at each gauge, and then interpolated along the 560 

coastline, such as in the UK (Environment Agency, 2018). In this case, that approach would 561 

lead to a gross disparity from the actual risk of storm surges to coastal communities in the 562 

area. 563 

In contrast, Fig. 5E shows the return period curves estimated from the RFA at the tide gauge 564 

locations. All of the curves now have positive shape parameters, characterised by increasing 565 

gradients of the curves. The curves of Cardwell and Bowen have been reduced somewhat, 566 

while all the other curves have been increased significantly. This demonstrates the 567 

regionalisation process, by which the extreme event at Cardwell can be used to propagate 568 

the risk along the coastline to areas which have not had an extreme event on record, or 569 

have short, incomplete, or non-existent tide gauge records. This reinforces the key strengths 570 

of the RFA, namely: (1) the ability to spatially account for rare extreme events, (2) the use of 571 

short and incomplete tide gauge records to produce robust parameter fits, and (3) the 572 

ability to downscale the results into regions which aren’t covered by tide gauges at all.   573 

4.3 Comparisons with GESLA 574 

The third objective is to validate ESLs calculated using our RFA against those calculated 575 

directly from the measured GESLA-3 global tide gauge database. Contrasting the RFA results 576 

with ESL exceedance probabilities calculated through a Generalised Pareto distribution fit at 577 

individual tide gauges yields promising results. Fig. 6A shows the spatial distribution of the 578 

difference at the 1-in-10-year return period for Europe, the United States, and the East 579 

Pacific. In areas impacted by TCs (e.g., the Gulf of Mexico, North-Eastern Coast of Australia, 580 

and Japan) we broadly see that the RFA has increasing return levels across most gauges. 581 

Increases in the 1-in-10-year return level are also observed in areas usually associated with 582 

extra-tropical storms (e.g., Europe), suggesting gauges in these regions also suffer from 583 

under sampling of rare surge events. Extreme surge events can be undersampled for two 584 

reasons. Firstly, by their very nature, they are rare and might never have occurred at a 585 
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specific location. Secondly, as a result of a scarcity of in-situ tide gauges, surges can occur 586 

and remain unrecorded. 587 

In all areas shown in Figure 6A, some gauges show decreases in the return levels. This could 588 

be driven by either shape parameter limiting (to prevent unrealistically large water levels), 589 

an anomalously large number of events impacting the gauge, or due to a single anomalously 590 

large event impacting the gauge, which is then smoothed out through the regionalisation 591 

process, as was the case in Cardwell, Australia (Fig. 5E). Of the gauges shown in the Fig. 6A, 592 

only 5 had limited shape parameters, which were located in the Gulf of Mexico. The 593 

distribution of the differences at RP10 is shown in Fig. 6B with a positive skew, detailing the 594 

5th and 95th percentiles as -8cm and 27cm respectively. The spread of the data increases 595 

across the three selected return periods (1-in-2, 1-in-10 and 1-in-100 year) presented in in 596 

Fig. 6C, as well as the mean bias, which increased from 2 cm in the 1-in-2 year return level, 597 

to 21cm in the 1-in-100 year return level.  598 
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 599 

Figure 6: Comparison of RFA water levels against extreme water levels calculated at individual gauges from GESLA by fitting 600 
a Generalised Pareto distribution to peaks-over-threshold water levels. (A) The spatial distribution of the difference at RP10 601 
for (i) the contiguous US, (ii) Europe, (iii) Japan, Malaysia, Australia and New Zealand, (B) a histogram of the distributions of 602 
difference at RP10, including the locations of the 5th and 95th percentiles and 1 standard deviation from the mean, and (C) a 603 
scatter plot of EWLs (RP2, RP10, RP100) from the RFA and the EWLs calculated using a single site Generalised Pareto 604 
distribution fit. The black line indicates a 1:1 perfect fit.  605 

 606 

4.4 Quantifying the increases made by the RFA when compared to single site 607 

analysis 608 

The fourth objective is to quantify the increases made to ESL exceedance probabilities in TC 609 

prone areas by the RFA, when compared to a single site analysis. Figure 7A shows the 610 

deviation in the 1-in-100-year return period between the GTSM-ERA5 RFA carried out across 611 

the global coastline, and a single site peaks-over-threshold analysis of GTSM-ERA5 water 612 

level records. Only differences greater or less than 0.25 m and -0.25 m respectively, are 613 
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plotted. There are evident increases to RFA ESLs in areas prone to TCs. The Gulf of Mexico, 614 

the East Coast of the US, Southern China, and the North-East Coast of Australia show the 615 

largest increases. Sporadic negative differences are also observed in Fig. 7A, which are 616 

driven by a smoothing of ESL exceedance probabilities at locations which have experienced 617 

anomalously high ESL compared to the local region. From this we see that the RFA is capable 618 

of incorporating the influence of TCs that were not present in the historical record, but 619 

statistically could occur as indicated by the regional characteristic. 620 

 621 

Figure 7: The spatial distributions of: (A) the differences between the GTSM-ERA5 RFA 1-in-100-year return period (RP100) 622 
and the RP100 of single site GTSM-ERA5 data fit with a Generalised Pareto distribution to the peaks-over-threshold water 623 
levels; and (B) the differences in RP100 published by the COAST-RP (GTSM forced with STORM) paper (Dullaart et al., 2021) 624 
and RP100 published by the original GTSM paper (Muis et al., 2020). Only differences greater or less than 0.25 m and -0.25 625 
m, respectively, are plotted. 626 
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These findings can be supported by the results shown in Fig. 7B, which shows the 627 

differences between COAST-RP and GTSM-ERA5. COAST-RP is GTSM forced with STORM 628 

(10,000 years of synthetic TCs) in areas prone to TC activity, instead of ERA5 (Dullaart et al., 629 

2021). The areas of positive difference highlight locations where COAST-RP is greater than 630 

GTSM-ERA5, and so give an indication of the areas in which the synthetic hurricanes make 631 

landfall. These patterns are broadly similar to those of the RFA, shown in Fig. 7A. However, 632 

there are two areas which stand out for being poorly characterised by the RFA, namely: the 633 

Bay of Bengal and the western Gujarat region of India. Large differences are also observed 634 

in Hudson Bay, Canada, however we suspect these discrepancies are the result of 635 

differences in the approach to modelling extra-tropical regions, as TCs do not make landfall 636 

here. 637 

Figure 8 shows the results of the leave-one-out cross validation of the global coastal LEWLs. 638 

In general, the RFA tends to increase return levels due to the regionalisation process. These  639 

findings match those of (Sweet et al., 2022, Sweet et al., 2020) upon which our approach is 640 

based. This is evident throughout the world, with the majority of gauges exhibiting increases 641 

of less than 5 cm at the 1-in-10-year return period (Fig. 8A). The central 90th percentile 642 

band of the data for the 1-in-10-year return period ranges from -3 to 18 cm, as shown in Fig. 643 

8B. However, the spread of the data is more pronounced at the higher return periods, as 644 

shown in Fig. 8C. Some regions of the world have greater increases, in the order of 30 – 40 645 

cm for the 1-in-10 year return period. These gauges are mostly concentrated in TC basins, 646 

namely the Caribbean, the Gulf of Mexico, Japan, China, the Philippines, plus the East and 647 

West Coasts of Australia. This demonstrates the process by which the RFA better represents 648 

extreme rare events that are typically under sampled in the historical record. By drawing on 649 

all the events captured by gauges across the region, the RFA reveals that there is greater risk 650 

of extreme events by considering their potential occurrence in areas that, by chance, have 651 

not been previously impacted as observed in historical records. Similarly, oversampling is 652 

clearly evident at 1-in-100-year return periods, for which nearly a third of locations show 653 

decreases in ESL exceedance probabilities compared to the single site analysis. The 654 

magnitude of these decreases tend to be much smaller than the increases seen. 655 
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 656 

 657 

Figure 8: The results of the leave-one-out cross validation of the RFA on GTSM-ERA5 gauges. (A) The spatial distribution of 658 
difference between the leave-one-out cross validation RFA RP10 (1 in 10-year return period) and the single site Generalised 659 
Pareto distribution RP10, (B) a histogram of the distribution of the differences in RP10 including the locations of the 5th and 660 
95th percentiles and 1 standard deviation from the mean, and (C) a scatter plot of EWLs (RP2, RP10, and RP100) predicted 661 
using the leave-one-out cross validation RFA and the EWLs calculated using a single site Generalised Pareto distribution fit. 662 
The black line indicates a 1:1 perfect fit. 663 

5. Discussion 664 

The ESL exceedance probabilities dataset that is presented in this paper is the first global 665 

dataset, to our knowledge, to be derived using an RFA approach, using a synthesis of 666 

observed and modelled hindcast data. The resulting data is output at high resolution (~1 667 

km) along the entire global coastline (excluding Antarctica), includes wave setup, and better 668 
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captures the coastal flood risk from TCs. This approach is notable for being computationally 669 

inexpensive compared to more traditional approaches for deriving ESL exceedance 670 

probabilities via hydrodynamic modelling.  671 

As previously discussed in the introduction section, relying solely on observational records 672 

to estimate ESL exceedance probabilities can significantly bias results. To fit robust 673 

parameter estimates and obtain confident exceedance probabilities sufficient for informing 674 

flood risk managers, long term and consistent high quality observational records are needed 675 

(Coles, 2001).  While some tide gauge and wave records span numerous decades, many 676 

records only cover a handful of recent decades (e.g., 10-30 years) or have significant gaps in 677 

their historical records. This often means quality data is excluded from analyses as their 678 

records are too short to produce robust parameter estimates. Furthermore, gauges are 679 

relatively sparse, especially in less populated areas and developing nations. While surges 680 

and waves typically impact large regions, peak water levels are usually only observed over 681 

smaller areas (i.e., a single bay, estuary or beach). As a result, measured records can easily 682 

miss the maximum of an extreme event, thus mischaracterising extreme water levels of the 683 

event. As such, rare extreme events that characterise the upmost tails of the distributions of 684 

ESLs, such as TCs, are repeatedly under sampled in the historic record, in both frequency 685 

and magnitude.  686 

By using an RFA approach, we demonstrate how we have improved these issues. The RFA 687 

can be viewed as a space-for-time approach, where long historical records (which give 688 

robust parameter estimates) are substituted for a collection of shorter records that cover a 689 

larger area. The volume of data (and subsequent extreme events) is retained, but the 690 

individual records can be much shorter. In this study, records as short as 10 years have been 691 

utilised. Furthermore, the regionalisation process works to overcome the issues with gauge 692 

density by disseminating the hazard presented by rare extreme events, as shown using the 693 

Cyclone Yasi example. From the 10 gauges in the region, the only record to have captured 694 

an historic extreme surge event of the magnitude observed during Cyclone Yasi was 695 

Cardwell, despite this section of coastline being at known risk to TC activity. A single site 696 

analysis of tide gauge data in this region would likely underpredict the real risk of ESLs 697 

generated by TCs in areas which haven’t had a direct impact in the observational record. On 698 
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the other hand, the damping of the return levels in the RFA output at Cardwell and Bowen 699 

could mean an underprediction of the risk from surges in these locations.   700 

Global hydrodynamic models that simulate tide and surge (e.g., GTSM) or waves have been 701 

developed to substitute observational records, especially in regions not covered by tide 702 

gauges. These models have been demonstrated to represent historic extreme events to a 703 

high degree of accuracy when forced using historical observational data pertaining to the 704 

event (Yang et al., 2020). However, using these models for the characterisation of 705 

exceedance probabilities is limited by the availability of long term high-quality global 706 

reanalysis data, that captures the full extent of meteorological extremes that drive large 707 

surge events. The RFA is aims to address this by using a space-for-time approach, however it 708 

is still limited by the bounds of the GTSM-ERA5 data. As demonstrated in Fig. 7, the 709 

distribution of increases to local return levels made by the RFA broadly follows the same 710 

patterns globally as the differences between COAST-RP and GTSM-ERA5. As TC hazard is 711 

typically underrepresented due to short records, it can be inferred that the increases 712 

observed across these regions are an improvement on a single site analysis.  713 

While the RFA is capable of identifying areas of increased risk from TC activity, it is still 714 

constrained by the training data available. This is demonstrated in Fig. 7. Two distinct areas 715 

lack increased water levels in the RFA difference plot (Fig. 7A), namely: the Bay of Bengal 716 

and Northwestern coasts of India and Pakistan. ERA5, the forcing data used for GTSM-ERA5 717 

has been found to consistently underestimate TC intensity in both minimum sea level 718 

pressure and maximum windspeed (Dulac et al., 2023). Consequently, the intensity of 719 

extreme events in GTSM-ERA5 in these regions could underrepresent the potential hazard 720 

from TC activity. If the maximums of extremes are not captured in the reanalysis data, then 721 

the full magnitude of the surge cannot be simulated by GTSM-ERA5. As such, the RFA will 722 

have smaller or fewer extremes with which to draw data from when characterising rare 723 

extreme events, therefore leading to a persistent underestimation of the return levels.  724 

Coastal flood hazard mapping is usually carried out using inundation models that simulate 725 

the propagation of water over the coastal floodplain. To accurately capture the footprint of 726 

the surge on the land, inundation models require high-resolution boundary conditions at 727 

regular intervals along the coastline. The density of boundary condition points needs to be 728 

sufficient to capture local variability in ESLs along a coastline, which can be caused by 729 
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bathymetric and topographic features such as narrow channels, enclosed bays, barrier 730 

island and estuaries. The spatial resolution of tide gauges, even in the areas of highest gauge 731 

density, is insufficient for direct use in inundation modelling and therefore requires some 732 

form of interpolation and/or extrapolation. Similarly, while GTSM-ERA5, is run at a 733 

reasonably high coastal resolution, publicly available data is only output at approximately 734 

50km resolution outside of Europe, and therefore does not meet the standards necessary 735 

for coastal floodplain inundation modelling. Using the RFA to downscale the regional 736 

extreme water levels allows for the possibility of implementing tide gauge data and the 737 

outputs from GTSM-ERA5 as boundary conditions for subsequent inundation models. In 738 

addition, the downscaling process involves scaling the water levels by tidal range and thus 739 

enables dynamic characteristics of the surge, such as amplification at the head of estuaries, 740 

to be reproduced in the inundation models. This downscaling process is, however, limited 741 

by the resolution of the tide model used to obtain the tidal range values. In the case of this 742 

study, FES2014 is output at 1/16th of a degree (approximately 7km at the equator). 743 

Ultimately, the future of delineating the flood hazard from TCs lies in multi-ensemble 744 

models using 100’s of 1,000’s of years’ worth of synthetically generated storms forcing high-745 

resolution tide-surge-wave models. However, the computational cost of running such 746 

simulations is enormous when compared to the cost of running an RFA on a relatively short 747 

hindcast record. In the same way, dynamically modelled waves are usually excluded from 748 

global simulations that consider exceedance probabilities due to the computational 749 

expense. At the same time, failing to consider the joint dependence of surge and waves can 750 

lead to an underestimation of ESL exceedance levels by up to a factor of two along 30% of 751 

the global coastline (Marcos et al., 2019).  This reinforces the significance of the RFA 752 

methodology in characterising global coastal flood risk.  753 

Validating the RFA is nuanced, as assessing metrics compared with observed record is: (a) 754 

validating against the data used to build the RFA in the first place; and (b) not recognising 755 

the inadequacies of the tide gauge records that the RFA is attempting to mitigate. Leave-756 

one-out cross validation highlights the strengths of the RFA, without succumbing to the 757 

shortfalls inherent in the observational record. The increased LEWLs in the regions prone to 758 

TC activity once again demonstrates the RFA’s ability to spatially disperse the hazard of low 759 

probability extreme events across a region. It is worth noting that the leave-one-out cross 760 
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validation is the best possible representation of the RFA as only grid cells that use data from 761 

10 record locations are used, so each model is trained on the maximum amount of data 762 

possible. In some areas, the number of records used can be as low as three, and so the 763 

ability for the RFA to reproduce water levels in these regions could be compromised. 764 

Applying the RFA as done in this study does have its limitations. Firstly, changing our 765 

definition of a homogeneous region would likely have a great impact on our results. In 766 

future iterations of this study, we recommend carrying out a sensitivity analysis to 767 

understand how using different maximum radii to select water level records impacts upon 768 

estimated extreme water levels within the region. Secondly, delineating the global coastline 769 

into 1° by 1° tiles and evaluating a different RFA for each tile results in some complex areas 770 

of coastline being summarised by a single regional growth function. Examples of this are 771 

seen in Japan, where exposed coastlines of the North Coast are contained in the same tile as 772 

a sheltered bay that is open to the South Coast. A solution to this would be to classify 773 

coastlines based on descriptors, as carried out by Sweet et al. (2020). These descriptors 774 

could include characteristics such as dominant forcing type, geographic location, and/or 775 

local coastal dynamics. The method used to incorporate wave setup is another constraint, as 776 

it has been greatly simplified for ease of global application. Improving upon this should also 777 

be a focus of future studies. Lastly, another limitation of the approach used in this study is 778 

the static shape parameter limiter. It is probable that the maximum shape parameter varies 779 

by location around the world, and that by implementing a fixed threshold globally we are 780 

perhaps limiting some of the most extreme events in some regions. Improving this section 781 

of the methodology is a high priority for future updates. 782 

The outputs from the RFA should be supplemented with local knowledge wherever possible, 783 

and the uncertainties in the results should be considered before the data is used. The RFA is 784 

a powerful tool for estimating return levels in ungauged locations or in locations where the 785 

historical records are short or incomplete, but there are risks associated with both 786 

overpredicting and underpredicting surge heights. Underprediction can lead to complacency 787 

among coastal managers and the potentially dangerous assumption that communities are 788 

safe from surge risk. Conversely, overprediction can result in unnecessary cost for risk 789 

mitigation measures and potential economic loss driven by a lack of investment in a region 790 

deemed at risk. Disseminating the risk of TC generated surges over a region could lead to 791 
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overprediction in some locations, and so conducting sensitivity analyses to understand the 792 

robustness of findings is recommended, especially in the context of coastal management 793 

and safety assessments. The RFA has been developed in this study as a method for regional 794 

to continental to global scale risk analyses from globally available data, and not local 795 

studies. The results give a first order approximation of extreme water levels in ungauged 796 

locations. It is not expected that they would be used in the design for local flood defences, 797 

for example. 798 

Going forward, the RFA framework developed in this study can be easily updated with the 799 

availability of new data. Possible next steps could also include using GTSM simulations of 800 

future climate scenarios, as well as measured wave data. To this end, a global wave dataset 801 

similar to GESLA would be instrumental in collating wave data from the numerous buoys 802 

globally. Future updates could also include an assessment of using different extreme value 803 

distributions, perhaps following the mixed climate approach of (O’Grady et al., 2022).  804 

In the near future, we plan to use the global exceedance probabilities derived in this paper 805 

as boundary conditions for inundation modelling of the coastal floodplain of the entire 806 

globe, using the 2D hydraulic model LISFLOOD-FP (Bates et al., 2010). This presents an 807 

exciting opportunity to provide an invaluable resource that will help to better quantify 808 

global coastal flood risk. 809 

 810 

6. Conclusions 811 

In this paper we have demonstrated an RFA approach utilising both measured and modelled 812 

hindcast records to estimate ESL exceedance probabilities, including wave setup, at high 813 

resolution (~1 km) along the entire global coastline (with the exception of Antarctica). Our 814 

methodology is computationally inexpensive and is more effective in accurately estimating 815 

the low frequency exceedance probabilities that are associated with rare extreme events, 816 

compared to approaches that consider data from single sites. We have demonstrated, using 817 

Cyclone Yasi (2011) which impacted the Australia coast, the ability of the RFA to better 818 

characterise ESLs in regions prone to TC activity. Furthermore, on the global scale we have 819 

exemplified how the RFA, when trained on relatively short reanalysis data, can reproduce 820 

patterns of increased water levels similar to those present in dynamic simulations of 10,000 821 
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years of synthetic hurricane tracks. The RFA methodology shown provides a promising 822 

avenue for improving our understanding of coastal flooding and enhancing our ability to 823 

prepare for and mitigate its devastating impacts. In the future, we plan to use the 824 

exceedance probabilities from this study as boundary conditions for an inundation model 825 

covering the global coastal floodplain. 826 

827 
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 1018 

Figure A1: HYBRID-CNES-CLS18-CMEMS2020 MDT dataset from (Mulet et al., 2021), extracted at the shoreline for use in 1019 
correcting the output from the RFA for future uses such as inundation modelling. 1020 

 1021 

Figure A2: (A) Category 4 and 5 IBTrACS hurricane impacting the Queensland coastline between 1980-2022 (Knapp et al., 1022 
2010) and (B) equivalent STORM events impacting the same the stretch of coastline (Bloemendaal et al., 2020). 1023 
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 1025 

Figure A3: The number of water level records used per grid cell (A) as a scatter plot showing the distribution globally, and 1026 
(B) as a bar plot showing the number of water level records vs the number of grid cells. 1027 

 1028 

9. Code Availability 1029 

The Python scripts used for handling the GESLA dataset can be downloaded for: 1030 

https://github.com/philiprt/GeslaDataset 1031 

The Conda package (Python) used for creating the FES2014 tidal timeseries can found at: 1032 

https://anaconda.org/fbriol/pyfes 1033 

10. Data availability 1034 

GESLA tide gauge data is available at: https://gesla787883612.wordpress.com/downloads/ 1035 

GTSM data is available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-water-level-1036 

change-timeseries?tab=overview 1037 

ERA5 wave hindcast data is available at: 1038 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview 1039 

FES2014 tidal heights can be downloaded from: 1040 

https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes.html 1041 

HYBRID-CNES-CLS18-CMEMS2020 is available at: 1042 

https://github.com/philiprt/GeslaDataset
https://anaconda.org/fbriol/pyfes
https://gesla787883612.wordpress.com/downloads/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-water-level-change-timeseries?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-water-level-change-timeseries?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes.html
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https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mdt/mdt-global-hybrid-cnes-1043 

cls-cmems.html 1044 

Copernicus 30m DEM is found at: https://spacedata.copernicus.eu/collections/copernicus-digital-1045 

elevation-model 1046 

COAST-RP dataset is downloaded from:  https://data.4tu.nl/articles/_/13392314 1047 

The data produced in this study is available for academic, non-commercial research only. Please 1048 

contact the corresponding author for access. 1049 
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