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Abstract  26 

Coastal regions face increasing threats from rising sea levels and extreme weather events, 27 

highlighting the urgent need for accurate assessments of coastal flood risk. This study 28 

presents a novel approach to estimating global Extreme Sea Level (ESL) exceedance 29 

probabilities, using a Regional Frequency Analysis (RFA) approach. The research combines 30 

observed and modelled hindcast data to produce a high-resolution (~1 km) dataset of ESL 31 

exceedance probabilities, including wave setup, along the entire global coastline, excluding 32 

Antarctica.  33 

 34 

The methodology presented in this paper is an extension of the regional framework from 35 

Sweet et al. (2022), with innovations made to incorporate wave setup and apply the method 36 

globally. Water level records from tide gauges and a global reanalysis of tide and surge 37 

levels are integrated with a global ocean wave reanalysis. Subsequently, these data are 38 

regionalised, normalised, and aggregated, and then fit with a Generalised Pareto 39 

distribution. The regional distributions are downscaled to the local scale using the tidal 40 

range at every location along the global coastline, obtained through a global tide model. The 41 

results show 8cm of positive bias at the 1-in-10-year return level, when compared against 42 

individual tide gauges.  43 

 44 

The RFA approach offers several advantages over traditional methods, particularly in regions 45 

with limited observational data. It overcomes the challenge of short and incomplete 46 

observational records by substituting long historical records with a collection of shorter but 47 

spatially distributed records. This spatially distributed data not only retains the volume of 48 

information but also addresses the issue of sparse tide gauge coverage in less populated 49 

areas and developing nations. The RFA process is illustrated using Cyclone Yasi (2011) as a 50 

case study, demonstrating how the approach can significantly improve the characterisation 51 

of ESLs in regions prone to tropical cyclone activity. 52 

 53 

In conclusion, this study provides a valuable resource for quantifying global coastal flood 54 

risk, offering an innovative global methodology that can contribute to preparing for, and 55 

mitigating against, coastal flooding. 56 
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 57 

Plain language summary 58 

Coastal areas are at risk of flooding from rising sea levels and extreme weather events. This study 59 

uses a new way to figure out how likely coastal flooding is around the world. The method uses data 60 

from observations and computer models to create a detailed map of where these floods might 61 

happen at the coast. The approach can predict flooding in areas where there is little or no data. The 62 

results can be used to help get ready for and prevent this type of flooding. 63 

 64 

65 
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1. Introduction 66 

Flooding provides one of the greatest threats to coastal communities globally, causing 67 

devastating impacts to affected regions. Notable events which have caused significant 68 

coastal flooding in recent years include: Cyclone Amphan (2020), which struck the Bay of 69 

Bengal producing a storm surge of up to 4.6m along the coast of Western Bengal, killing 84 70 

people, and causing total losses over 13 billion USD (India Meteorological Department, 71 

2020, Kumar et al., 2021); Hurricane Harvey (2017), the second most costly hurricane to hit 72 

the US after Katrina (2005), which impacted 13 million people, hitting the state of Texas 73 

with a maximum storm surge of 3.8m (Amadeo, 2019); and Typhoon Jebi (2018), driving 74 

storm surges of over 3m in Osaka Bay, Japan, combined with wave action which led to 75 

flooding exceeding 5m above mean sea level (Mori et al., 2019). Approximately 10% of the 76 

world’s population (768 million people) live below 10m above mean sea level (Nicholls et 77 

al., 2021). Coastal flooding is expected to increase dramatically into the future, 78 

predominantly caused by sea-level rise (Taherkhani et al., 2020), and compounded by 79 

continued growth and development in coastal populations (Neumann et al., 2015). 80 

Therefore, continuing to improve the understanding of coastal flooding is vital. 81 

Coastal floods are driven by extreme sea levels, which arise as combinations of: (1) 82 

astronomical tides; (2) storm surges (driven by tropical and extra-tropical cyclones) and 83 

associated seiches; (3) waves, especially setup and runup; and (4) relative mean sea level 84 

changes (including sea-level rise and vertical land movement). Risk assessments of coastal 85 

flooding require high-quality and high-resolution flood hazard data, typically in the form of 86 

flood inundation maps. Inundation maps are usually derived from hydraulic models, which 87 

use high resolution extreme sea level (ESL) exceedance probabilities as a key input (e.g., 88 

Bates et al., 2021; Mitchell et al., 2022). The development of coastal inundation maps is 89 

reliant on coastal boundary conditions points that vary in resolution depending on 90 

application. Previous studies (e.g., Barnard et al., 2019) have used 100m resolution at local 91 

sales, while regional studies (e.g., Bates et al., 2021, Environment Agency, 2018) have 92 

employed resolutions between 500m and 2km. 93 

Traditional methods for computing ESL exceedance probabilities involve extreme value 94 

analysis of measurements from individual tide gauges or wave buoys. However, long, 95 

complete records spanning numerous decades are necessary to obtain robust estimates of 96 
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ESL return levels (Coles, 2001). The Global Extreme Sea Level Analysis (GESLA-3) database 97 

provides sea level records for over 5,000 tide gauge stations (Haigh et al., 2021), but these 98 

tide gauges still cover only a small fraction of the world’s coastlines. Wave buoys are even 99 

more sparse, largely restricted to the Northern Hemisphere and long historical records are 100 

marred by discontinuities (Timmermans et al., 2020). Even in areas with relatively high tide 101 

gauge or wave buoy density, there are still large expanses of coastline which remain 102 

ungauged. While rare extreme weather events (such as intense tropical cyclones (TCs)) are 103 

often many hundreds of kilometres in size, the precise impact of the corresponding ESL can 104 

often be highly localised (Irish et al., 2008), meaning the peak surge occurs in an ungauged 105 

location. The particular locale of peak surge for an event is determined by storm 106 

characteristics, local bathymetry and coastal geography, amongst other factors (Shaji et al., 107 

2014). Therefore, relying on past observation-based analyses of ESL exceedance 108 

probabilities to characterise return levels across a region will likely lead to the under 109 

representation of rare extreme events. Finally, another limitation is that many previous 110 

analyses of ESL exceedance probabilities consider the still water level component (i.e., tide 111 

plus storm surge) separately from the wave set up and run up (Haigh et al., 2016, Muis et 112 

al., 2016, Ramakrishnan et al., 2022).  113 

One solution to overcome sparse datasets is to use ESL hindcasts created by state-of-the-art 114 

models. These include regional (e.g., (Andrée et al., 2021, Siahsarani et al., 2021, Tanim & 115 

Akter, 2019) or global tide-surge (such as Deltares’ Global Tide Surge Model v3.0 (hereafter 116 

referred to as GTSM; Muis et al., 2020) or wave models (e.g., Liang et al., 2019).  These are 117 

used to fill the spatial and temporal gaps in the observation records via historical reanalysis 118 

simulation. However, their ability to accurately capture extreme events is hampered by the 119 

atmospheric forcing data that is used to drive the models, as reanalysis products like ERA5 120 

(Hersbach et al., 2020) commonly contain biases in representing meteorological extremes 121 

such as tropical cycloneTCs (Slocum et al., 2022), leading to an underestimation of event 122 

intensity. Furthermore, the time period captured in reanalysis products is not adequate to 123 

represent the characteristics (e.g., frequencies) of particularly rare events such as intense 124 

tropical cycloneTCs. To overcome this limitation, some studies have used synthetic event 125 

datasets representing tropical cycloneTC activity over many thousands of years (e.g., Haigh 126 

et al., 2014; Dullaart et al., 2021),  however this approach is computationally expensive.  127 
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An alternative and less computationally demanding solution that helps address some of the 128 

problems inherent in estimating ESLs around the world’s coastlines from the observational 129 

record, is regional frequency analysis (RFA). The RFA methodology was originally developed 130 

to estimate streamflow within a hydrological context (e.g., Hosking and Wallis, 1997), but 131 

has since been used in many applications requiring extreme value analysis of meteorological 132 

parameters including coastal storm surge (e.g., Bardet et al., 2011; Weiss and Bernardara, 133 

2013; Arns et al., 2015; Calafat et al. 2022) and extreme ocean waves (e.g., Campos et al., 134 

2019, Lucas et al., 2017, Vanem, 2017). The principle of an RFA is founded on the basis that 135 

a homogenous region can be identified, throughout which similar meteorological forcings 136 

and resultant storm surge or wave events could occur, even if the extreme events have not 137 

been seen in part of that region in the historical record (Hosking and Wallis, 1997). RFA has 138 

been used on a regional scale to produce coastal ESL exceedance probabilities including: 139 

France (Andreevsky et al., 2020, Hamdi et al., 2016); the US coastline (Sweet et al., 2022); 140 

Northern Europe (Frau et al., 2018); US coastal military sites (Hall et al., 2016); and the 141 

Pacific Basin (Sweet et al., 2020).  However, an RFA approach has not (to our knowledge) 142 

been applied globally.  143 

The overall aim of this paper is to, for the first time, apply an RFA approach to estimate ESL 144 

exceedance probabilities, including wave setup, along the entire global coastline. These 145 

exceedance probabilities aim to better characterise ESLs driven by rare, extreme events, 146 

such as those from tropical cycloneTCs, which are poorly represented in the historical 147 

record. Uniquely, this study uses both measured and hindcast datasets; includes tides, 148 

storm surges, and wave setup; and calculates exceedance probabilities at high resolution (1 149 

km) globally. The specific objectives of this paper are to:  150 

(1) develop and apply the RFA globally (excluding Antarctica), utilising both 151 

observational tide gauge, and modelled hindcast sea level and wave records; 152 

(2) illustrate  how the RFA methodology improves the representation of rare extreme 153 

events in the ESL exceedance probabilities using cyclone Yasi, which impacted the 154 

Australian coastline in 2011, as a case study;  155 

(3) validate the RFA against exceedance probabilities estimated from the GESLA-3 global 156 

tide gauge database; and  157 

Field Code Changed
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(4) Finally, quantify how much the RFA improves increases the estimation of ESL 158 

exceedance probabilities in areas prone to TC activity  when compared to single site 159 

analysis, using hindcast datasets (Muis et al., 2020 and Dullaart et al., 2021). 160 

This paper is laid out as follows: The datasets used are described in Section 2. The 161 

methodology is detailed in Section 3, addressing objective 1. Results and validation are 162 

described in Section 4, addressing objectives 2, 3, and 4. A discussion of the key findings and 163 

conclusions are then given in Sections 5 and 6, respectively.  164 

 165 

2. Data 166 

We use seven primary sources of data in this study, namely: (1) still sea-level observations 167 

contained in the GESLA-3 tide gauge dataset; (2) global still sea-level simulations from the 168 

GTSM hindcast based on the ERA5 climate reanalysis; (3) tidal predictions from the FES2014 169 

finite element hydrodynamic model; (4) significant wave heights derived from the ERA5 170 

climate reanalysis; (5) mean dynamic topography from HYBRID-CNES-CLS18-CMEMS2020; 171 

(6) Copernicus DEM to create a global coastline dataset; and (7) the COAST-RP dataset from 172 

Dullaart et al., (2021) to validate the RFA methodology. These seven datasets are described 173 

in turn below. 174 

Still sea level records are assembled from the GESLA-3 (Global Extreme Sea Level Analysis) 175 

tide gauge dataset version 3 (Caldwell et al., 2015, Haigh et al., 2021). The GESLA-3 dataset 176 

includes high-frequency water level time series from over 5,000 tide gauges around the 177 

globe, collated from 36 international and national providers. Data providers have differing 178 

methods of quality control, however each record was visually assessed by the authors of the 179 

GESLA-3 dataset and graded as either: (i) no obvious issues; (ii) possible datum issues; (iii) 180 

possible quality control issues; or (iv) possible datum and quality control issues. Only 181 

records with no obvious issues were used in this study. 182 

As discussed in Section 3, the hindcast, GTSM-ERA5 is used in all areas which are not 183 

covered by tide gauge observations. GTSM is a depth-averaged hydrodynamic model built 184 

using the DELFT-3D hydrodynamic model, which makes use of an unstructured, global, 185 

flexible mesh with no open boundaries (Muis et al., 2020). The model has a coastal 186 
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resolution of 2.5km (1.25km in Europe), and a deep ocean resolution of 25km.  The GTSM-187 

ERA5 dataset spans the period 1979-2018, and is developed by forcing GTSM with hourly 188 

fields of ERA5 10-metre wind speed and atmospheric pressure (Hersbach et al., 2020). 189 

GTSM-ERA5 has a 10-minute temporal resolution and provides a timeseries at locations 190 

approximately every 50km along the coastline (10km in Europe). Validation carried out by 191 

Muis et al. (2020) shows that the dataset performs well against observations of annual 192 

maximum water level, exhibiting a mean bias of -0.04 m and a mean absolute percentage 193 

error of 14%.  194 

We use the FES2014 tidal database to generate tidal timeseries at GTSM-ERA5 locations and 195 

RFA output locations. The RFA output resolution is much higher than the output resolution 196 

of GTSM-ERA5, which is why FES2014 is used instead. FES2014 is a finite element 197 

hydrodynamic model which combines data assimilation from satellite altimetry and tide 198 

gauges (Lyard et al., 2021). The model solves the barotropic tidal equations, as well as the 199 

effects from self-attraction and loading. The gridded resolution of the output is 1/16°. The 200 

model was extensively validated against tide gauges, satellite altimeter observations, and 201 

alternative global tide models by Lyard et al. (2021) and was found to have an improved 202 

variance reduction in nearly all areas, especially in shallow water regions.  The Python 203 

package distributed with the FES2014 data (https://github.com/CNES/aviso-fes) was used to 204 

simulate tidal timeseries.  205 

To calculate wave set up we use significant wave heights (Hs) from the ERA5 reanalysis 206 

(Hersbach et al., 2020), covering the period 1979 to 2020. The spatial resolution of the ERA5 207 

wave model output is 0.5° x 0.5°, and the temporal resolution is hourly. Independent 208 

validation of hourly Hs performed by Wang & Wang (2022) finds little bias in the dataset (-209 

0.058 m), however the authors go on to conclude that Hs of extreme waves tends to be 210 

underestimated (by 7.7% in the 95% percentile), a conclusion supported by Fanti et al. 211 

(2023).   212 

We use mean dynamic topography (MDT) to convert water levels from mean sea level as 213 

measured by tide gauges to mean sea level as referenced by a geoid, for use in subsequent 214 

future studies involving inundation assessments using hydraulic modelling. MDT describes 215 

the change in sea surface height due to the effects of the winds and currents in the ocean. 216 

Digital elevation models (DEMs), a key input to hydraulic models, typically use a geoid as a 217 
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vertical datum. A geoid is an equipotential surface of mean sea level under the sole effect of 218 

gravity, in the absence of land masses, currents and tides (Bingham & Haines, 2006). To 219 

convert water levels from tide gauge mean sea level to the geoid mean sea level, the 220 

HYBRID-CNES-CLS18-CMEMS2020 MDT dataset is used (Mulet et al., 2021). The spatial 221 

resolution of this dataset is 0.125° x 0.125°. Errors associated with this dataset are largely 222 

caused by the input satellite altimetry data and can be up to 10 cm in some areas. The MDT 223 

at the shoreline is illustrated in the Appendix Fig. A1.  224 

The Copernicus 30m DEM (European Space Agency, 2021) is used to create a high-resolution 225 

global coastline. This is used to define the RFA output points at approximately 1 km intervals 226 

along the global coastline (excluding Antarctica), resulting in over 3.4 million points.  227 

Finally, in addition to GTSM-ERA5, we use the COAST-RP dataset from Dullaart et al. (2021) 228 

to validate the RFA methodology. COAST-RP uses the same hydraulic modelling framework 229 

as GTSM-ERA5 but simulates extra-tropical and tropical surge events separately using 230 

different forcing data. In areas prone to tropical cycloneTC activity, synthetic tropical 231 

cycloneTCs representing 103,000 years under current climate conditions are used from the 232 

STORM dataset (Bloemendaal et al., 2020). These synthetic tropical cycloneTC model runs 233 

have been validated against observed IBTrACS-forced model runs, and found to show 234 

differences in ESLs at the 1 in 25 year return level of less than 0.1 m at 67% of the output 235 

locations in tropical cycloneTC prone areas (Dullaart et al., 2021). In extra-tropical regions 236 

impacted only by extra-tropical storms, a 38-year timeseries of ERA5 data is used (Hersbach 237 

et al., 2020). The surge levels from each set of simulations are probabilistically combined 238 

with tides to result in a global database of dynamically modelled storm-tides. 239 

 240 

3. Methods 241 

The first objective of this study is to develop and apply an RFA approach globally, 242 

encompassing still water levels and wave set up. In Section 3.1 we describe the methods 243 

used to process the data used in this study. In Section 3.2 we layout the global application of 244 

the RFA approach using observational and modelled data.  The methods used to validate the 245 

results are explained in Section 3.3. 246 
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An overview of our methodology is illustrated in Fig. 1. This study broadly follows the 247 

methodology of Sweet et al. (2022) and applies an RFA to both tide gauge and GTSM-ERA5 248 

records. As such, the terms ‘water level record’ and ‘record location’ are used to describe 249 

both tide gauge records and GTSM-ERA5 data. The method can be summarised in five key 250 

steps: (i) collation and pre-processing of tide gauge, GTSM-ERA5, FES2014, and ERA5 Hs 251 

data; (ii) spatial discretisation of water level records into regions; (iii) application of the RFA 252 

to regional water level records (in areas unsuitable for an RFA (because there are less than 3 253 

gauges in a region, or the regional water levels records are heterogenous), a peaks-over-254 

threshold analysis of individual GTSM-ERA5 water level records is used); (iv) conversion 255 

(downscaling) of RFA exceedance levels to local exceedance levels at the output coastline 256 

points, using FES2014 tidal range (in areas unsuitable for an RFA, nearest-neighbour 257 

interpolation   is used to assign local exceedance levels); and (v) correction of bias and 258 

datums to convert water levels to geoid mean sea level, using FES2014 mean higher high 259 

water and global MDT (HYBRID-CNES-CLS18-CMEMS2020). The final section of the methods 260 

(vi) describes the validation techniques. These steps are described in detail below. 261 
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     262 

 263 

Figure 1: Schematic flow diagram detailing the data sources and processes involved in producing a global set of extreme 264 
water levels 265 

3.1 Data processing 266 

 267 

 The GESLA-3 dataset was filtered to sample appropriate input data by removing duplicates, 268 

gauges located in rivers (away from the coast), and gauges that fail quality control checks 269 

carried out by the authors of the dataset (such as suspected datum jumps). A total of 2,223 270 

tide gauges with a mean record length of 21.4 years were used in the RFA. The surge 271 

component of GTSM-ERA5 at each record location is isolated from the water level 272 

timeseries using a tide only simulation and superimposed upon a tidal timeseries created 273 

with FES2014, as the FES2014 tidal elevations performed better than those of GTSM in 274 

initial testing against in-situ observation. The decision to use tides from FES2014 is further 275 

supported by the conclusion from Muis et al, (2020), in which they state “It appears that 276 

biases increase in regions with a high tidal range, such as the North Sea, northern Australia, 277 

and the northwest of the United States and Canada, which could indicate that GTSM is 278 
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outperformed by the FES2012 model that was used to develop the GTSR dataset.” Tidal 279 

timeseries were also computed at each of the coastline output locations for use in 280 

downscaling the regional outputs, and in the bias and datum corrections of the local ESL.  281 

Wave setup is the static increase in water level attributed to residual energy remaining after 282 

a wave breaks (Dean & Walton, 2010), and therefore is only observed in areas exposed to 283 

direct wave action. In this study, wave setup is approximated as 20% significant wave height 284 

(Hs) from the ERA5 reanalysis, following the recommendation from the review of numerous 285 

laboratory and field experiments (Dean & Walton, 2010) and previous related studies (Bates 286 

et al., 2021, Vousdoukas et al., 2016). Wave setup is interpolated assigned to the nearest 287 

record location using a nearest-neighbour approach.  Wave setup is assumed to be absent in 288 

sheltered areas (e.g., bays and estuaries). To account for  thisthe lack of wave setup in 289 

sheltered areas (e.g., bays and estuaries), the global coastline is classified as either sheltered 290 

or exposed, and the final extreme water levels are drawn from an RFA that is processed with 291 

or without wave setup added in. To classify the coastline, each coastline point is evaluated 292 

to determine if it is exposed from a minimum 22.5° angle over a fetch of 50km. A total of 16 293 

equal angle transects are drawn, extending 50km from each coastline point. If two or more 294 

adjacent transects do not intersect with land, the coastline point is considered exposed. 295 

Applying wave setup using this approach is an obvious simplification that has been used for 296 

the ease of global application. In reality wave setup is impacted by local bathymetry and 297 

coastal geometry, as well as local wind and wave conditions. There are other more complex 298 

methods for estimating wave setup that incorporate some aspects of bathymetry and 299 

coastal geometry, such as Stockdon et al. (2006).  300 

To process the RFA with wave setup, daily maximum wave setup is added to the daily 301 

highest water levels. Where tide gauge records fall outside of the temporal range of the 302 

ERA5 data, a copula-based approach was used to fit a simple statistical model between daily 303 

peak water levels and daily max Hs, providing a prediction of the daily max Hs. The RFA is 304 

then executed as described below. Tide gauges are assumed to be located in sheltered 305 

regions, such as bays and estuaries, thus tide gauge records are not impacted by wave 306 

setup. 307 

3.2 RFASpatial discretisation of water level records into regions 308 

 309 
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Water level records are spatially clustered to form a potential pool from which regional 310 

exceedance levels can be characterised. To do this, the global coastline is divided into 1° by 311 

1° grid cells, which are used as the regions to apply the outputs for each RFA. All record 312 

locations within a 400km radius (same as Hall et al. (2016) and Sweet et al. (2022)) of the 313 

grid cell centroid that have at least 10 consecutive years of good (>90% completeness) data 314 

are identified (minimum of 3 water level records, maximum of 10 (same as Sweet et al. 315 

(2022)). This step is illustrated in Fig. 2A. Record locations which are geographically within 316 

range, but are separated by a large expanse of land, and thus likely forced by different 317 

storm patterns are removed from the record location selection. To achieve this, a line is 318 

drawn between the grid cell centroid and each record location. The land intersected by the 319 

line is divided, and the areas of land on either side of the line are summed. A ratio of the 320 

length of the line to the area of land segmented by the line is then calculated. A threshold of 321 

100 was empirically evaluated using expert judgement based on a number of test cases, 322 

above which records are removed from the grid cell analysis. This approach ensures that, for 323 

example, record locations located on the east coast of Florida (e.g., Mayport) are not 324 

grouped with those on the west coast (e.g., Cedar Key) when characterising regional growth 325 

curves, despite the relatively short straight-line distance between them. Fig. 2A exemplifies 326 

three tide gauges which have been excluded from possible selection despite lying within a 327 

400km radius to the grid cell centroid as the land that separates them is considerably large 328 

when compared to the distance.  This spatial discretisation of regions results in a total of 329 

836 tide gauge records (with a mean record length of 17 years) and 18628 GTSM-ERA5 330 

records for use in the application of the RFA. 331 

Formatted: Font: Italic



14 
 

332 



15 
 

 333 

Figure 2:  Illustrating a selection of the steps through the RFA. (A) The 1° by 1° grid cells along the East Coast of the US, 334 
along with the locations of the tide gauges, and the tide gauges selected for the RFA of the example grid cell. The tide 335 
gauges excluded from possible selection by the distance/land area ratio are also indicated. (B) The aggregated, declustered, 336 
normalised peak regional water levels over a threshold for each of the tide gauges used in the example grid cell. The colours 337 
indicate peak water levels from the individual tide gauges in the region. (C) The regional extreme water levels, ascertained 338 
by fitting a Generalised Pareto distribution to the data displayed in panel (B). (D) The index flood values of the example grid 339 
cell, found by linearly interpolating the u value from the two closest tide gauges, and scaling by tidal range. The locations of 340 
two coastline points used to produce local extreme water levels in panel E are also highlighted. (E) The local extreme water 341 
level at two shoreline points inside the example grid cell, each with different index flood values as indicated in panel D. 342 
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The RFA is preferentially applied to tide gauges in areas where the gauge density is sufficient 343 

(minimum 3 gauges within a 400km radius, same as Hall et al. (2016) and Sweet et al. 344 

(2022)). Outside of these areas, the RFA is implemented using data from GTSM-ERA5. In 345 

some regions, the density of homogenous record locations from GTSM-ERA5 is also too low 346 

for the RFA to function, in which case the ESL exceedance probabilities are interpolated 347 

from a single site peaks-over-threshold analysis of the nearest GTSM-ERA5 record location. 348 

The geographical locations of these areas are shown in Fig. 3. From the 5,975 global coastal 349 

grid cells, ESLs at 851 are computed using tide gauge data, 4,555 are calculated using an RFA 350 

of GTSM-ERA5 data, and 569 are calculated using GTSM-ERA5 data from the nearest record 351 

location. 352 

 353 

Figure 3: This map shows the global distribution the areas in which the tide gauge RFA is used, the GTSM-ERA5 RFA is used, 354 
and the areas which are interpolations of single site analysis from GTSM-ERA5. 355 

3.3 Application of the RFA 356 

 357 

Water levelTide gauge records are referenced to different vertical datums, so to ensure 358 

consistency, the mean over the most recent 19-year epoch is subtract from the water level 359 

record, and the timeseries is linearly detrended to the centre year of the most recent 360 

available epoch (2002-2020), resulting in 2011. GTSM-ERA5 records are referenced to MSL 361 

over the period of 1986-2005, and so the timeseries are linearly detrended to reference the 362 

same tidal epoch as the tide gauge records, centred on 2011. Within each cluster of gauge 363 
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(or model) records, the water level time series are resampled to hourly resolution and 364 

converted to mean higher high water, defined as the mean daily highest water level over a 365 

19-year epoch, to account for differences in tidal range between record locations. In the 366 

case of records with fewer than 19 years of data available the maximum continuous epoch 367 

is used instead.  368 

Daily highest water level is determined from the hourly time series of each measured or 369 

modelled record. The time series are then declustered using a 4-day moving window of the 370 

stormstorm window to ensure event independence. This window length  was used by Sweet 371 

et al., 2020 and Sweet et al., 2022, and is a similar length to the storms that cause surge 372 

events in the UK was selected as storms that cause surge events are known to last 373 

approximately 4 days (Haigh et al., 2016). The index flood 𝑢, defined as the 98th percentile 374 

of the declustered daily highest water levels (Sweet et al., 2022), is used as the exceedance 375 

threshold at which to normalise the water level at each record location, as follows: 376 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 = (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑛𝑐𝑒 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 − 𝑢) /𝑢  (eq. 1) 377 

The normalised datasets are then aggregated and further declustered to ensure only one 378 

peak water level is retained for each regional event. This is shown in Fig. 2B for an example 379 

grid cell. Following Hosking and Wallis (1997), a statistical heterogeneity test (H) is 380 

undertaken to ensure the homogeneity of the region. If the H-score is less than 2, then the 381 

region is considered sufficiently homogenous. If the H-score is greater than 2, then the 382 

furthest water level record from the grid cell centroid is removed from the region, and the 383 

test re-run. This process is repeated until the H-score is less than 2. In a minority of cases, 384 

the heterogeneity test fails due to an anomalous record that lies within the closest 3 385 

sampling locations to the grid cell centroid. In this instance the test is rerun, except after the 386 

furthest record is removed, all the remaining records are sequentially removed and 387 

replaced, until the H-score is less than 2. 388 

After the region is confirmed to be homogenous, a Generalised Pareto distribution is fitted 389 

to the aggregated, declustered, normalised regional water levels using a penalised 390 

maximum likelihood method to estimate regional extreme water levels (REWLs). This is 391 

illustrated at an example in Fig. 2C.  This is repeated for the aggregated regional water levels 392 

for each 1° by 1° grid cell.  While theoretically correct, applying distribution fits to real world 393 
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data can sometimes give unrealistic results, particularly in the estimation of the lower 394 

frequency space. In these cases, growth curve optimisation is undertaken to ensure the 395 

output local extreme water levels are plausible in real world scenarios. To ensure 396 

consistency, an empirical threshold of 0.35 for the shape parameter is used to determine 397 

which curves will generate unrealistic extreme water levels. The empirical threshold of the 398 

shape parameter is determined based on expert judgement of plausible real world 399 

maximum surge heights in the low frequency events. To correct these curves, where this 400 

threshold is exceeded, we use the shape and scale parameters of the nearest grid cell which 401 

has a shape parameter less than 0.35. In total, 34 grid cells had their shape and scale 402 

parameters adjusted, mostly concentrated in the Gulf of Mexico and Japan. 403 

3.4 Downscaling to local extreme water levels 404 

 405 

Local extreme water levels (LEWLs) are then estimated from the regional growth curves 406 

using the following relationship: 407 

𝐿𝐸𝑊𝐿 = (𝑅𝐸𝑊𝐿 ∗ 𝑢) + 𝑢  (eq. 2) 408 

for each coastal point along the coastline contained within the grid cell represented by the 409 

REWL. The index 𝑢 is estimated at the coastline points using an inverse distance weighting 410 

interpolation of the 𝑢 values for the two closest record locations, scaled by tidal range. This 411 

deviates from the methodology set out by Sweet et al. (2022), in which they recommend 412 

drawing 𝑢 values from a linear regression of 𝑢 against tidal range values from record 413 

locations across a region. We found this approach led to significant differences in LEWLs at 414 

record locations when compared to single site analysis of water level records, and hence 415 

have modified the methodology. Fig. 2D exhibits an example of the index flood for every 416 

shoreline point in an example grid cell. Tidal ranges are calculated as the difference 417 

between mean higher high water and mean lower low water. Tidal harmonics from FES2014 418 

are used to predict mean higher high water and mean lower low water at each coastline 419 

point. The index flood, 𝑢, is used to downscale the REWLs, which represent the ESL 420 

characteristics of the entire grid cell. LEWLs are output in the format of return levels for a 421 

range of exceedance probabilities. Two example LEWL curves are shown in Fig. 2E, which 422 

have been computed using different index flood values, as indicated in Fig. 2D. The index 423 

flood, 𝑢, is used to downscale the REWLs, which represent the ESL characteristics of the 424 
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entire grid cell. LEWLs are output in the format of return levels for a range of exceedance 425 

probabilities. The index 𝑢 is then estimated at the coastline points using an inverse distance 426 

weighting interpolation of the 𝑢 values for the two closest record locations, scaled by tidal 427 

range. This deviates from the methodology set out by Sweet et al. (2022), in which they 428 

recommend drawing 𝑢 values from a linear regression of 𝑢 against tidal range values from 429 

record locations across a region. We found this approach led to significant differences in 430 

LEWLs at record locations when compared to single site analysis of water level records, and 431 

hence have modified the methodology. Fig. 2D exhibits an example of the index flood for 432 

every shoreline point in an example grid cell. Tidal ranges are calculated as the difference 433 

between mean higher high water and mean lower low water. Tidal harmonics from FES2014 434 

are used to predict mean higher high water and mean lower low water at each coastline 435 

point. 436 

3.5 Bias and datum corrections 437 

 438 

The last stage of the LEWL calculation involved characterisation and removal of bias in the 439 

high frequency portion of the exceedance probability curves, relative to the a single site 440 

analysis of water level records (within which we expect the high frequency water levels to 441 

be accurately modelled). Other surge RFA studies also concluded that the approach 442 

generally yields higher estimated surge heights when compared to single site analysis, 443 

because during the regionalisation process an extreme event that occurred in one location is 444 

assumed to have the same probability of occurring at another location within the 445 

homogeneous region. (Bardet et al., 2011; Sweet et al., 2022). Bias is quantified based on 446 

the divergence in the 1-in-1-year return period at each tide gauge/GTSM-ERA5 location and 447 

the corresponding LEWL predictions. This bias is used as a correction term and is removed 448 

from the LEWLs. As the density of the coastline points is much greater than the density of 449 

the tide gauges/model output locations, the correction term is interpolated across all 450 

coastal LEWL points based on correlation between Q99 monthly values of the 99th 451 

percentile of tidal elevations produced over a 3-year period centred on 2011, tidal 452 

elevations computed using FES2014 at the tide gauge/GTSM-ERA5 location and 453 

neighbouring coastline points. The mean bias correction across all gauges is 8 cm. 454 
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Datum corrections are applied to ensure the LEWLs are correctly referenced to a vertical 455 

datum which can be used for hazard assessment applications, such as inundation modelling. 456 

Inundation models utilise digital elevation models, which typically reference a geoid as the 457 

vertical datum. The output water levels from the RFA are transformed from mean higher 458 

high water to Mean Sea Level (MSL) by adding the approximation of mean higher high water 459 

(above MSL) from the FES2014 simulations to each of the boundary condition points. The 460 

corrected MDT dataset from (Mulet et al., 2021) is applied to convert water levels from MSL 461 

from the FES2014 model to the ‘MSL’ of a commonly used geoid, EGM08. 462 

3.63 Validation methods 463 

 464 

In this section we define a range of validation techniques used to address objectives 3 and 4. 465 

To validate the RFA ESLs against tide gauge records from GESLA (objective 3), a comparison 466 

is made against ESL exceedance probabilities calculated at the individual tide gauges used to 467 

inform the RFA. To quantify the degree to which the RFA approach improves the estimation 468 

of ESL exceedance probabilities compared to single site analysis (objective 4), two 469 

assessments are made. 470 

Firstly, the divergence between GTSM-ERA5 RFA ESL and GTSM-ERA5 single site ESL for the 471 

entire global coastline are quantified. These are then contrasted against the differences 472 

between return levels from GTSM-ERA5 (Muis et al., 2020) and COAST-RP (Dullaart et al. 473 

2021). GTSM-ERA5 is forced with 39 years of ERA5 data, a relatively short period when 474 

considering exceedance probabilities for rare extreme events (e.g., tropical cyclones). To 475 

overcome this data paucity, GTSM was subsequently run with STORM a database containing 476 

10,000 years of synthetic storm tracks (Bloemendaal et al., 2020). resulting in COAST-RP, a 477 

database containing 10,000 years of synthetic storm tracks (Bloemendaal et al., 2020). The 478 

comparison can then identify regions in which the historical ESLs are poorly represented due 479 

to the limited record lengths.  480 

Secondly, a leave-one-out cross validation is undertaken using GTSM-ERA5 data. Leave-one 481 

out-cross validation aims to address the common issues involved with validating statistical 482 

models. One common method to validate models is split-sample validation, in which the 483 

data is split into two groups, a training set and a validation set, which are generally 70% and 484 

30% of the data respectively. The model is then trained on the larger set and validated 485 
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against the smaller set. The drawbacks of this method include a highly variable validation 486 

error, due to the selection of the training and validation sets, as well as a validation error 487 

bias caused by training the model on only 70% of the available data (James et al., 2013).  488 

Instead of using a 70/30 split of the data, leave-one-out cross validation uses a larger 489 

proportion of the data to train the model, while validating against a smaller sub-sample, but 490 

repeats this process multiple times to generate a robust validation. In this study,To do this, 491 

we identified 1000 grid cells which have use 10 GTSM-ERA5 records  used for the RFA and 492 

contain 3 GTSM-ERA5 record locations inside the grid cell  (and therefore the RFA can be 493 

used to directly estimate ESLs at the record locations)are identified. One of the GTSM-ERA5 494 

records from inside the grid cell is removed from the RFA process, and the REWL is 495 

calculated using the 9 remaining gauges. The LEWL is then predicted at the record location 496 

which has been left out, using the index flood, u at the record location. These LEWLs are 497 

then contrasted with a single site analysis of the water level record that was removed from 498 

the RFA. The process is then repeated for the 2 other GTSM-ERA5 record locations which lie 499 

within the grid cell. This means each of the 1000 models is being tested three times, against 500 

90% of the available data, thus giving a more robust realisation of the model when trained 501 

on 100% of the data. 502 

 503 

4. Results  504 

The results section is divided into four sub-sections. Section 4.1 presents the results of the 505 

global application of the RFA, showing both the global view of two return periods and the 506 

return levels for selected sites around the world. Section 4.2 illustrates how the RFA 507 

methodology improves the characterisation of rare extreme events using Cyclone Yasi 508 

(objective 2). In section 4.3 we validate the RFA against estimates of ESL from GESLA tide 509 

gauges (objective 3). Finally, in section 4.4 we quantify the improvements made by using an 510 

RFA approach when compared to a single site analysis of water levels (objective 4). 511 

 512 
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4.1 Global application of RFA 513 

The final ESL exceedance probabilities (including wave setup) created at high resolution 514 

around the global coastline are displayed in Fig. 4, for the 1-in-10 and 1-in-100-year return 515 

periods. Both the 1-in-10 year (Fig. 4A) and 1-in-100 year (Fig. 4B) return periods show 516 

similar spatial patterns, with 1-in-100-year return periods exhibiting greater increases as 517 

expected in areas prone to tropical cycloneTC activity (e.g., the Gulf of Mexico, Australia, 518 

Japan, and China). ESLs are higher in regions with large tidal ranges such as the Bay of 519 

Fundy, the Patagonia Shelf, the Bristol Channel in UK, the northern coast of France, and the 520 

northwest coast of Australia. The return levels for 6 select tide gauge locations, 3 of which 521 

are characterised by a positive and 3 of which are characterised by negative shape 522 

parameter from the Generalised Pareto distribution are shown in Fig. 4C and 4D 523 

respectively, relative to mean higher high water. The locations of the 6 tide gauges are 524 

indicated in both Fig. 4A and 4B. Regions exhibiting positive shape parameters are typically 525 

prone to tropical cycloneTC activity and associated surge and wave events. As a result, these 526 

regions experience more significant increases in return levels at higher return periods than 527 

regions with negative shape parameters. Regions characterised by negative shape 528 

parameters have different drivers of ESL events, for instance extra-tropical storms surges or 529 

tide dominated ESLs (Sweet et al., 2020). 530 

 531 
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 532 

Figure 4: The final global RFA results output at approximately 1km resolution along the entire global coastline (excluding 533 
Antarctica) for RP10 (A) and RP100 (B). Return levels are referenced to DEM MSL, and so represent surge, waves and tide. 534 
Return levels (relative to mean higher high water) for 6 tide gauges in regions characterised by either positive or negative 535 
shape parameter of the Generalised Pareto distribution are shown in panels (C) and (D) respectively. The locations of the 6 536 
tide gauges are indicated by the diamonds plotted on both panels (A) and (B).   537 

 538 
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4.2 Tropical Cyclone Yasi 539 

Our second study objective is to illustrate how the RFA methodology improves the 540 

representation of rare extreme eventspreviously described can draw on few, rare events, to 541 

provide more realistic representation of low frequency  in the ESL exceedance probabilities 542 

across a region, using the case study of cyclone Yasi which impacted the Australian coastline 543 

in 2011. As demonstrated in this study, one major advantage the RFA approach benefits 544 

from is its capacity to capture the extreme rare events that are typically under sampled in 545 

historical records. Cyclone Yasi made landfall on the North-eastern coast of Australia, in the 546 

Queensland region, between 14:00 and 15:00 UTC on the 2nd of February 2011. It is the 547 

strongest cyclone to have impacted the region since 1918, with possible windspeeds of 548 

285km/h and minimum record pressure centre of 929 hPa (Australia Bureau of 549 

Meteorology, 2011). When it made landfall, Yasi was a category 4 storm on the Saffir-550 

Sampson scale. The path and strength of the storm are shown in Fig. 5A.  551 

The total water levels, relative to mean higher high water, for all the tide gauges in the 552 

region are shown in Fig. 54B. Cardwell had the highest surge, and highest total water level, 553 

by a considerable margin compared to neighbouring tide gauges, receiving a surge of over 554 

3m above mean higher high water. Clump Point also showed a definitive but less substantial 555 

surge signal, whereas the other gauges showed much smaller surge effects or even no surge 556 

at all. The historical water level records of all the gauges in the regions are included in Fig. 557 

5C. The tide gauges span different temporal ranges, and many have years which are 558 

incomplete. The longest record is at Townsville, which started in the late 1950s. Despite this 559 

record, the largest event is cyclone Yasi by over 1.5m (at Cardwell).  560 

Cardwell is not unique in location. The width of the continental shelf is reasonably constant 561 

throughout this section of coastline, and while the position of the tide gauge is located 562 

towards the back of a semi-enclosed bay, any local effects due to surge (from bathymetry or 563 

coastline shape) will be accounted for by normalising the data using the index flood. Based 564 

on this historical record, no other major surge event of this magnitude has impacted this 565 

section of coastline since the records began. There are, however, records of other historic 566 

extreme events that predate tide gauges affecting the region. For example, Cyclone Mahina, 567 

which made landfall in Princess Charlotte Bay (approximately 100km north of Cooktown) in 568 

1899, reportedly had a surge height approaching 10m (Needham et al., 2015). The idea that 569 
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this stretch of coastline is at risk of tropical cycloneTC generated ESLs is further supported 570 

by STORM, a dataset of 10,000 years of synthetic hurricane tracks (Bloemendaal et al., 571 

2020). IBTrACS shows just eight category 4 and 5 hurricanes impacting this 700km stretch of 572 

coastline between 1980 and 2022 (shown in the Appendix Fig. A2; Knapp et al., 2010). In 573 

contrast, the STORM dataset has 333 events affecting the area, producing a more 574 

continuous spread of landfall locations along the coastline. In addition, large surges are 575 

sometimes not captured in this region due to the lack of gauges in rural areas (Needham et 576 

al., 2015).  577 
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 578 

Figure 5: Tropical Cyclone Yasi: (A) The storm track of cyclone Yasi, covering a 24-hour period over the landfall event. The 579 
locations of the 10 closest tide gauges along the Queensland coast are also included. Times are in UTC. (B) The observed 580 
water level timeseries for the same 24-hour period at each of the 10 tide gauges in the region. Times are in UTC. (C)  The 581 
entire historical record of all 10 gauges in the region. (D) The return period curves of individual gauges fit with Generalised 582 
Pareto distribution. (E) The return period curves at the gauge locations from the RFA. 583 

The return period curves, calculated by fitting a Generalised Pareto distribution to the 584 

peaks-over-threshold water levels at each individual tide gauge, for each of the 10 gauges in 585 
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the region, are shown in Fig. 5D.  As expected, Cardwell has the largest return levels and the 586 

steepest curve. All the other gauges, except Bowen, exhibit negative shape parameters, 587 

characterised by a decreasing gradient of the return period curves. In a region which is 588 

prone to tropical cycloneTCs, this is a dangerous underestimation of the risk from cyclone 589 

induced surges. In some coastal ESL studies, ESLs are calculated at each gauge, and then 590 

interpolated along the coastline, such as in the UK (Environment Agency, 2018). In this case, 591 

that approach would lead to a gross disparity from the actual risk of storm surges to coastal 592 

communities in the area. 593 

In contrast, Fig. 5E shows the return period curves estimated from the RFA at the tide gauge 594 

locations. All of the curves now have positive shape parameters, characterised by increasing 595 

gradients of the curves. The curves of Cardwell and Bowen have been reduced somewhat, 596 

while all the other curves have been increased significantly. This demonstrates the 597 

regionalisation process, by which the extreme event at Cardwell can be used to propagate 598 

the risk along the coastline to areas which have not had an extreme event on record, or 599 

have short, incomplete, or non-existent tide gauge records. This reinforces the key strengths 600 

of the RFA, namely: (1) the ability to spatially account for rare extreme events, (2) the use of 601 

short and incomplete tide gauge records to produce robust parameter fits, and (3) the 602 

ability to downscale the results into regions which aren’t covered by tide gauges at all.   603 

4.3 Comparisons with GESLA 604 

The third objective is to validate ESLs calculated using our RFA against those calculated 605 

directly from the measured GESLA-3 global tide gauge database. Contrasting the RFA results 606 

with ESL exceedance probabilities calculated through a Generalised Pareto distribution fit at 607 

individual tide gauges yields promising results. Fig. 6A shows the spatial distribution of the 608 

difference at the 1-in-10-year return period for Europe, the United States, and the East 609 

Pacific. In areas impacted by tropical cycloneTCs (e.g., the Gulf of Mexico, North-Eastern 610 

Coast of Australia, and Japan) we broadly see that the RFA has increasing return levels 611 

across most gauges. Increases in the 1-in-10-year return level are also observed in areas 612 

usually associated with extra-tropical storms (e.g., Europe), suggesting gauges in these 613 

regions also suffer from under sampling of rare surge events. Extreme surge events can be 614 

undersampled for two reasons. Firstly, by their very nature, they are rare and might never 615 
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have occurred at a specific location. Secondly, as a result of a scarcity of in-situ tide gauges, 616 

surges can occur and remain unrecorded. 617 

In all areas shown in Figure 6A, some gauges show decreases in the return levels. This could 618 

be driven by either shape parameter limiting (to prevent unrealistically large water levels), 619 

an anomalously large number of events impacting the gauge, or due to a single anomalously 620 

large event impacting the gauge, which is then smoothed out through the regionalisation 621 

process, as was the case in Cardwell, Australia (Fig. 5E). Of the gauges shown in the Fig. 6A, 622 

only 5 had limited shape parameters, which were located in the Gulf of Mexico. The 623 

distribution of the differences at RP10 is shown in Fig. 6B with a positive skew, detailing the 624 

5th and 95th percentiles as -8cm and 27cm respectively. The spread of the data increases 625 

across the three selected return periods (1-in-2, 1-in-10 and 1-in-100 year) presented in in 626 

Fig. 6C, as well as the mean bias, which increased from 2 cm in the 1-in-2 year return level, 627 

to 21cm in the 1-in-100 year return level.  628 
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 629 

Figure 6: Comparison of RFA water levels against extreme water levels calculated at individual gauges from GESLA by fitting 630 
a Generalised Pareto distribution to peaks-over-threshold water levels. (A) The spatial distribution of the difference at RP10 631 
for (i) the contiguous US, (ii) Europe, (iii) Japan, Malaysia, Australia and New Zealand, (B) a histogram of the distributions of 632 
difference at RP10, including the locations of the 5th and 95th percentiles and 1 standard deviation from the mean, and (C) a 633 
scatter plot of EWLs (RP2, RP10, RP100) from the RFA and the EWLs calculated using a single site Generalised Pareto 634 
distribution fit. The black line indicates a 1:1 perfect fit.  635 

 636 

4.4 Quantifying the improvements increases made by the RFA when compared 637 

to single site analysis 638 

The fourth objective is to quantify the improvements increases made to ESL exceedance 639 

probabilities in TC prone areas by the RFA, when compared to a single site analysis. Figure 640 

7A shows the deviation in the 1-in-100-year return period between the GTSM-ERA5 RFA 641 

carried out across the global coastline, and a single site peaks-over-threshold analysis of 642 

GTSM-ERA5 water level records. Only differences greater or less than 0.25 m and -0.25 m 643 
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respectively, are plotted. There are evident increases to RFA ESLs in areas prone to tropical 644 

cycloneTCs. The Gulf of Mexico, the East Coast of the US, Southern China, and the North-645 

East Coast of Australia show the largest increases. Sporadic negative differences are also 646 

observed in Fig. 7A, which are driven by an over-sampling of extreme events at these record 647 

locations, and subsequent reduction in ESL exceedance probabilities by the RFAby a 648 

smoothing of ESL exceedance probabilities at locations which have experienced 649 

anomalously high ESL compared to the local region. From this we see that the RFA is capable 650 

of incorporating the influence of tropical cycloneTCs that were not present in the historical 651 

record, but statistically could occur as indicated by the regional characteristic. 652 

 653 

Figure 7: The spatial distributions of: (A) the differences between the GTSM-ERA5 RFA 1-in-100-year return period (RP100) 654 
and the RP100 of single site GTSM-ERA5 data fit with a Generalised Pareto distribution to the peaks-over-threshold water 655 
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levels; and (B) the differences in RP100 published by the COAST-RP (GTSM forced with STORM) paper (Dullaart et al., 2021) 656 
and RP100 published by the original GTSM paper (Muis et al., 2020). Only differences greater or less than 0.25 m and -0.25 657 
m, respectively, are plotted. 658 

These findings can be supported by the results shown in Fig. 7B, which shows the 659 

differences between COAST-RP and GTSM-ERA5. COAST-RP is GTSM forced with STORM 660 

(10,000 years of synthetic tropical cycloneTCs) in areas prone to tropical cycloneTC activity, 661 

instead of ERA5 (Dullaart et al., 2021). The areas of positive difference highlight locations 662 

where COAST-RP is greater than GTSM-ERA5, and so give an indication of the areas in which 663 

the synthetic hurricanes make landfall. These patterns are broadly similar to those of the 664 

RFA, shown in Fig. 7A. However, there are two areas which stand out for being poorly 665 

characterised by the RFA, namely: the Bay of Bengal and the western Gujarat region of 666 

India. Large differences are also observed in Hudson Bay, Canada, however we suspect 667 

these discrepancies are the result of differences in the approach to modelling extra-tropical 668 

regions, as tropical cycloneTCs do not make landfall here. 669 

Figure 8 shows the results of the leave-one-out cross validation of the global coastal LEWLs. 670 

In general, the RFA tends to increase return levels due to the regionalisation process. These  671 

findings match those of (Sweet et al., 2020, Sweet et al., 2022) upon which our approach is 672 

based. This is evident throughout the world, with the majority of gauges exhibiting increases 673 

of less than 5 cm at the 1-in-10-year return period (Fig. 8A). The central 90th percentile 674 

band of the data for the 1-in-10-year return period ranges from -3 to 18 cm, as shown in Fig. 675 

8B. However, the spread of the data is more pronounced at the higher return periods, as 676 

shown in Fig. 8C. Some regions of the world have greater increases, in the order of 30 – 40 677 

cm for the 1-in-10 year return period. These gauges are mostly concentrated in tropical 678 

cycloneTC basins, namely the Caribbean, the Gulf of Mexico, Japan, China, the Philippines, 679 

plus the East and West Coasts of Australia. This demonstrates the process by which the RFA 680 

better represents extreme rare events that are typically under -sampled in the historical 681 

record. By drawing on all the events captured by gauges across the region, the RFA reveals 682 

that there is greater risk of extreme events by considering their potential occurrence in 683 

areas that, by chance, have not been previously impacted as observed in historical records. 684 

Similarly, oversampling is clearly evident at 1-in-100-year return periods, for which nearly a 685 

third of locations show decreases in ESL exceedance probabilities compared to the single 686 
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site analysis. The magnitude of these decreases tend to be much smaller than the increases 687 

seen. 688 

 689 

 690 

Figure 8: The results of the leave-one-out cross validation of the RFA on GTSM-ERA5 gauges. (A) The spatial distribution of 691 
difference between the leave-one-out cross validation RFA RP10 (1 in 10-year return period) and the single site Generalised 692 
Pareto distribution RP10, (B) a histogram of the distribution of the differences in RP10 including the locations of the 5th and 693 
95th percentiles and 1 standard deviation from the mean, and (C) a scatter plot of EWLs (RP2, RP10, and RP100) predicted 694 
using the leave-one-out cross validation RFA and the EWLs calculated using a single site Generalised Pareto distribution fit. 695 
The black line indicates a 1:1 perfect fit. 696 
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5. Discussion 697 

The ESL exceedance probabilities dataset that is presented in this paper is the first global 698 

dataset, to our knowledge, to be derived using an RFA approach, using a synthesis of 699 

observed and modelled hindcast data. The resulting data is output at high resolution (~1 700 

km) along the entire global coastline (excluding Antarctica), includes wave setup, and better 701 

captures the coastal flood risk from tropical cycloneTCs. This approach is notable for being 702 

computationally inexpensive compared to more traditional approaches for deriving ESL 703 

exceedance probabilities via hydrodynamic modelling.  704 

As previously discussed in the introduction section, relying solely on observational records 705 

to estimate ESL exceedance probabilities can significantly bias results. To fit robust 706 

parameter estimates and obtain confident exceedance probabilities sufficient for informing 707 

flood risk managers, long term and consistent high quality observational records are needed 708 

(Coles, 2001).  While some tide gauge and wave records span numerous decades, many 709 

records only cover   a handful of recent decades (e.g., 10-30 years) or have significant gaps 710 

in their historical records. This often means quality data is excluded from analyses as their 711 

records are too short to produce robust parameter estimates. Furthermore, gauges are 712 

relatively sparse, especially in less populated areas and developing nations. While surges 713 

and waves typically impact large regions, peak water levels are usually only observed over 714 

smaller areas (i.e., a single bay, estuary or beach). As a result, measured records can easily 715 

miss the maximum of an extreme event, thus mischaracterising extreme water levels at the 716 

gaugeof the event. As such, rare extreme events that characterise the upmost tails of the 717 

distributions of ESLs, such as tropical cycloneTCs, are repeatedly under sampled in the 718 

historic record, in both frequency and magnitude.  719 

By using an RFA approach, we demonstrate how we have overcome improved these issues. 720 

The RFA can be viewed as a space-for-time approach, where long historical records (which 721 

give robust parameter estimates) are substituted for a collection of shorter records that 722 

cover a larger area. The volume of data (and subsequent extreme events) is retained, but 723 

the individual records can be much shorter. In this study, records as short as 10 years have 724 

been utilised. Furthermore, the regionalisation process works to overcome the issues with 725 

gauge density by disseminating the hazard presented by rare extreme events, as shown 726 
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using the Cyclone Yasi example. From the 10 gauges in the region, the only record to have 727 

captured an historic extreme surge event of the magnitude observed during Cyclone Yasi 728 

was Cardwell, despite this section of coastline being at known risk to tropical cycloneTC 729 

activity. A single site analysis of tide gauge data in this region would woefully likely 730 

underpredict the real risk of ESLs generated by tropical cycloneTCs in areas which haven’t 731 

had a direct impact in the observational record. On the other hand, the damping of the 732 

return levels in the RFA output at Cardwell and Bowen could mean an underprediction of 733 

the risk from surges in these locations.    734 

Global hydrodynamic models that simulate tide and surge (e.g., GTSM) or waves have been 735 

developed to substitute observational records, especially in regions not covered by tide 736 

gauges. These models have been demonstrated to represent historic extreme events to a 737 

high degree tof accuracy when forced using historical observational data pertaining to the 738 

event (Yang et al., 2020). However, using these models for the characterisation of 739 

exceedance probabilities is limited by the availability of long term high-quality global 740 

reanalysis data, that captures the full extent of meteorological extremes that drive large 741 

surge events. Once again, the RFA provides a solution to this problemThe RFA is aims to 742 

address this by using a space-for-time approach, however it is still limited by the bounds of 743 

the GTSM-ERA5 data. . As demonstrated in Fig. 7, the distribution of increases to local 744 

return levels made by the RFA broadly follows the same patterns globally as the differences 745 

between COAST-RP and GTSM-ERA5. As TC hazard is typically underrepresented due to 746 

short records, it can be inferred that the increases observed across these regions are an 747 

improvement on a single site analysis. This highlights the ability of the RFA to characterise 748 

tropical cyclone hazard which is typically underrepresented as a result of short records.  749 

While the RFA is capable of identifying areas of increased risk from tropical cycloneTC 750 

activity, it is still constrained by the training data available. This is demonstrated in Fig. 7. 751 

Two distinct areas lack increased water levels in the RFA difference plot (Fig. 7A), namely: 752 

the Bay of Bengal and Northwestern coasts of India and Pakistan. ERA5, the forcing data 753 

used for GTSM-ERA5The model hindcast, GTSM-ERA5, only covers the relatively short period 754 

of 1979-2018. has been found to consistently underestimate TC intensity in both minimum 755 

sea level pressure and maximum windspeed (Dulac et al., 2023). Consequently, the intensity 756 

of extreme events in GTSM-ERA5 in these regions does not accuratelycould under represent 757 
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the potential hazard from tropical cycloneTC activity. If the maximums of extremes are not 758 

captured in the reanalysis data, then the full magnitude of the surge cannot be simulated by 759 

GTSM-ERA5. As such, the RFA has little basis uponwill have smaller or fewer extremes with 760 

which to draw data from when characterising rare extreme events, therefore leading to a 761 

persistent underestimation of the return levels.   762 

Coastal flood hazard mapping is usually carried out using inundation models that simulate 763 

the propagation of water over the coastal floodplain. To accurately capture the footprint of 764 

the surge on the land, inundation models require high-resolution boundary conditions at 765 

regular intervals along the coastline. The density of boundary condition points needs to be 766 

sufficient to capture local variability in ESLs along a coastline, which can be caused by 767 

bathymetric and topographic features such as narrow channels, enclosed bays, barrier 768 

island and estuaries. The spatial resolution of tide gauges, even in the areas of highest gauge 769 

density, is insufficient for direct use in inundation modelling and therefore requires some 770 

form of interpolation and/or extrapolation. Similarly, while GTSM-ERA5, is run at a 771 

reasonably high coastal resolution, publicly available data is only output at approximately 772 

50km resolution outside of Europe, and therefore does not meet the standards necessary 773 

for coastal floodplain inundation modelling. Using the RFA to downscale the regional 774 

extreme water levels allows for the possibility of implementing tide gauge data and the 775 

outputs from GTSM-ERA5 as boundary conditions for subsequent inundation models. In 776 

addition, the downscaling process involves scaling the water levels by tidal range and thus 777 

enables dynamic characteristics of the surge, such as amplification at the head of estuaries, 778 

to be reproduced in the inundation models. This downscaling process is, however, limited 779 

by the resolution of the tide model used to obtain the tidal range values. In the case of this 780 

study, FES2014 is output at 1/16th of a degree (approximately 7km at the equator). 781 

Ultimately, the future of delineating the flood hazard from tropical cycloneTCs lies in multi-782 

ensemble models using 100’s of 1,000’s of years’ worth of synthetically generated storms 783 

forcing high-resolution tide-surge-wave models. However, the computational cost of 784 

running such simulations is enormous when compared to the cost of running an RFA on a 785 

relatively short hindcast record. In the same way, dynamically modelled waves are usually 786 

excluded from global simulations that consider exceedance probabilities due to the 787 

computational expense. At the same time, failing to considering the joint dependence of 788 
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surge and waves can lead to an underestimation of ESL exceedance levels by up to a factor 789 

of two along 30% of the global coastline (Marcos et al., 2019).  This reinforces the 790 

significance of the RFA methodology in characterising global coastal flood risk.  791 

Validating the RFA is nuanced, as assessing metrics compared with observed record is: (a) 792 

validating against the data used to build the RFA in the first place; and (b) not recognising 793 

the inadequacies of the tide gauge records that the RFA is attempting to mitigate. Leave-794 

one-out cross validation highlights the strengths of the RFA, without succumbing to the 795 

shortfalls inherent in the observational record. The increased LEWLs in the regions prone to 796 

tropical cycloneTC activity once again demonstrates the RFA’s ability to spatially disperse 797 

the hazard of low probability extreme events across a region. It is worth noting that the 798 

leave-one-out cross validation is the best possible representation of the RFA as only grid 799 

cells that use data from 10 record locations are used, so each model is trained on the 800 

maximum amount of data possible. In some areas, the number of records used can be as 801 

low as three, and so the ability for the RFA to reproduce water levels in these regions could 802 

be compromised. 803 

Applying the RFA as done in this study does have its limitations. Firstly, changing our 804 

definition of a homogeneous region would likely have a great impact on our results. In 805 

future iterations of this study, we recommend carrying out a sensitivity analysis to 806 

understand how using different maximum radii to select water level records impacts upon 807 

estimated extreme water levels within the region. Secondly, dDelineating the global 808 

coastline into 1° by 1° tiles and evaluating a different RFA for each tile results in some 809 

complex areas of coastline being summarised by a single regional growth function. Examples 810 

of this are seen in Japan, where exposed coastlines of the North Coast are contained in the 811 

same tile as a sheltered bay that is open to the South Coast.  A solution to this would be to 812 

classify coastlines based on descriptors, as carried out by Sweet et al. (2020). These 813 

descriptors could include characteristics such as dominant forcing type, geographic location, 814 

and/or local coastal dynamics. The method used to incorporate wave setup is another 815 

constraint, as it has been greatly simplified for ease of global application. Improving upon 816 

this should also be a focus of future studies.  Lastly, another limitation of the approach used 817 

in this study is the static shape parameter limiter. It is probable that the maximum shape 818 

parameter varies by location around the world, and that by implementing a fixed threshold 819 
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globally we are perhaps limiting some of the most extreme events in some regions. 820 

Improving this section of the methodology is a high priority for future updates. 821 

The outputs from the RFA should be supplemented with local knowledge wherever possible, 822 

and the uncertainties in the results should be considered before the data is used. The RFA is 823 

a powerful tool for estimating return levels in ungauged locations or in locations where the 824 

historical records are short or incomplete, but there are risks associated with both 825 

overpredicting and underpredicting surge heights. Underprediction can lead to complacency 826 

among coastal managers and the potentially dangerous assumption that communities are 827 

safe from surge risk. Conversely, overprediction can result in unnecessary cost for risk 828 

mitigation measures and potential economic loss driven by a lack of investment in a region 829 

deemed at risk. Disseminating the risk of TC generated surges over a region could lead to 830 

overprediction in some locations, and so conducting sensitivity analyses to understand the 831 

robustness of findings is recommended, especially in the context of coastal management 832 

and safety assessments. The RFA has been developed in this study as a method for regional 833 

to continental to global scale risk analyses from globally available data, and not local 834 

studies. The results give a first order approximation of extreme water levels in ungauged 835 

locations. It is not expected that they would be used in the design for local flood defences, 836 

for example. 837 

Going forward, the RFA framework developed in this study can be easily updated with the 838 

availability of new data. Possible next steps could also include using GTSM simulations of 839 

future climate scenarios, as well as measured wave data. To this end, a global wave dataset 840 

similar to GESLA would be instrumental in collating wave data from the numerous buoys 841 

globally. Future updates could also include an assessment of using different extreme value 842 

distributions, perhaps following the mixed climate approach of O’Grady et al., (2022).  843 

In the near future, we plan to use the global exceedance probabilities derived in this paper 844 

as boundary conditions for inundation modelling of the coastal floodplain of the entire 845 

globe, using the 2D hydraulic model LISFLOOD-FP (Bates et al., 2010). This presents an 846 

exciting opportunity to provide an invaluable resource that will help to better quantify 847 

global coastal flood risk. 848 

 849 
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6. Conclusions 850 

In this paper we have demonstrated an RFA approach utilising both measured and modelled 851 

hindcast records to estimate ESL exceedance probabilities, including wave setup, at high 852 

resolution (~1 km) along the entire global coastline (with the exception of Antarctica). Our 853 

methodology is computationally inexpensive and is more effective in accurately estimating 854 

the low frequency exceedance probabilities that are associated with rare extreme events, 855 

compared to approaches that consider data from single sites. We have demonstrated, using 856 

Cyclone Yasi (2011) which impacted the Australia coast, the ability of the RFA to better 857 

characterise ESLs in regions prone to tropical cycloneTC activity. Furthermore, on the global 858 

scale we have exemplified how the RFA, when trained on relatively short reanalysis data, 859 

can reproduce patterns of increased water levels similar to those present in dynamic 860 

simulations of 10,000 years of synthetic hurricane tracks. The RFA methodology shown 861 

provides a promising avenue for improving our understanding of coastal flooding and 862 

enhancing our ability to prepare for and mitigate its devastating impacts. In the future, we 863 

plan to use the exceedance probabilities from this study as boundary conditions for an 864 

inundation model covering the global coastal floodplain. 865 

866 
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 1200 

Figure A1: HYBRID-CNES-CLS18-CMEMS2020 MDT dataset from Mulet et al., (2021), extracted at the shoreline for use in 1201 
correcting the output from the RFA for future uses such as inundation modelling. 1202 

 1203 

Figure A2: (A) Category 4 and 5 IBTrACS hurricane impacting the Queensland coastline between 1980-2022 (Knapp et al., 1204 
2010) and (B) equivalent STORM events impacting the same the stretch of coastline (Bloemendaal et al., 2020). 1205 

 1206 
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 1207 

Figure A3: The number of water level records used per grid cell (A) as a scatter plot showing the distribution globally, and 1208 
(B) as a bar plot showing the number of water level records vs the number of grid cells. 1209 

 1210 
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9. Code Availability 1212 

The Python scripts used for handling the GESLA dataset can be downloaded for: 1213 

https://github.com/philiprt/GeslaDataset 1214 

The Conda package (Python) used for creating the FES2014 tidal timeseries can found at: 1215 

https://anaconda.org/fbriol/pyfes 1216 

10. Data availability 1217 

GESLA tide gauge data is available at: https://gesla787883612.wordpress.com/downloads/ 1218 

GTSM data is available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-water-level-1219 

change-timeseries?tab=overview 1220 

ERA5 wave hindcast data is available at: 1221 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview 1222 

FES2014 tidal heights can be downloaded from: 1223 

https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes.html 1224 
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HYBRID-CNES-CLS18-CMEMS2020 is available at: 1225 

https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mdt/mdt-global-hybrid-cnes-1226 

cls-cmems.html 1227 

Copernicus 30m DEM is found at: https://spacedata.copernicus.eu/collections/copernicus-digital-1228 

elevation-model 1229 

COAST-RP dataset is downloaded from:  https://data.4tu.nl/articles/_/13392314 1230 

The data produced in this study is available for academic, non-commercial research only. Please 1231 

contact the corresponding author for access. 1232 
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