Preprints
https://doi.org/10.5194/egusphere-2023-2256
https://doi.org/10.5194/egusphere-2023-2256
09 Oct 2023
 | 09 Oct 2023

Mechanisms of Global Ocean Ventilation Age Change during the Last Deglaciation

Lingwei Li, Zhengyu Liu, Jinbo Du, Lingfeng Wan, and Jiuyou Lu

Abstract. Marine radiocarbon (14C) is widely used to trace deep ocean circulation, providing insight into the atmosphere-ocean exchange of CO2 during the last deglaciation. Using two transient simulations with tracers of 14C and ideal age, we found that the oldest ventilation age is not observed at the Last Glacial Maximum (LGM). In contrast, the model shows a modestly younger ventilation age during the LGM compared to present day, mainly due to a stronger glacial Antarctic Bottom Water (AABW) transport associated with sea ice expansion. Notably, the ocean ventilation age is significantly older around 14–12 ka compared to the age at the LGM, with deep Pacific waters playing a predominant role, primarily caused by the weakening of AABW transport. 

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

15 May 2024
Mechanisms of global ocean ventilation age change during the last deglaciation
Lingwei Li, Zhengyu Liu, Jinbo Du, Lingfeng Wan, and Jiuyou Lu
Clim. Past, 20, 1161–1175, https://doi.org/10.5194/cp-20-1161-2024,https://doi.org/10.5194/cp-20-1161-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Radiocarbon proxies suggest that the deep waters are poorly ventilated, with the old ventilation...
Share