Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-1987
https://doi.org/10.5194/egusphere-2023-1987
13 Sep 2023
 | 13 Sep 2023

Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic-aperture-radar demonstration using airborne SnowSAR in SnowEx17

Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros

Abstract. A physical-statistical framework to estimate Snow Water Equivalent (SWE) and snow depth from SAR measurements is presented and applied to four SnowSAR flight-line data sets collected during the SnowEx’2017 field campaign in Grand Mesa, Colorado, USA. The physical (radar) model is used to describe the relationship between snowpack conditions and volume backscatter. The statistical model is a Bayesian inference model that seeks to estimate the joint probability distribution of volume backscatter measurements, snow density and snow depth, and physical model parameters. Prior distributions are derived from multilayer snow hydrology predictions driven by downscaled numerical weather prediction (NWP) forecasts. To reduce noise to signal ratio, SnowSAR measurements at 1 m resolution were upscaled by simple averaging to 30 and 90 m resolution. To reduce the number of physical parameters, the multilayer snowpack is transformed for Bayesian inference into an equivalent single- or two-layer snowpack with the same snow mass and volume backscatter. Successful retrievals, defined by absolute convergence backscatter errors ≤ 1.2 dB and local SnowSAR incidence angles between 30° and 45° for X- and Ku-band VV-pol backscatter measurements, were achieved for 75 % to 87 % for all grassland pixels with SWE up to 0.7 m and snow depth up to 2 m. SWE retrievals compare well with snow pit observations showing strong skill in deep snow with average absolute SWE residuals of 5–7 % (15–18 %) for the two-layer (single-layer) retrieval algorithm. Furthermore, the spatial distributions of snow depth retrievals vis-à-vis LIDAR estimates have Bhattacharya Coefficients above 94 % (90 %) for grassland pixels at 30 m (90 m resolution), and values up to 76 % in mixed forest and grassland areas indicating that the retrievals closely capture snowpack spatial variability. Because NWP forecasts are available everywhere, the proposed approach could be applied to SWE and snow depth retrievals from a dedicated global snow mission.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

20 Feb 2024
Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic aperture radar – demonstration using airborne SnowSAr in SnowEx'17
Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros
The Cryosphere, 18, 747–773, https://doi.org/10.5194/tc-18-747-2024,https://doi.org/10.5194/tc-18-747-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Seasonal snowfall accumulation (snowpack) plays a critical role in climate. The water stored in...
Share