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Abstract 10 

A physical-statistical framework to estimate Snow Water Equivalent (SWE) and snow depth from 11 
SAR measurements is presented and applied to four SnowSAR flight-line data sets collected 12 

during the SnowEx’2017 field campaign in Grand Mesa, Colorado, USA. The physical (radar) 13 
model is used to describe the relationship between snowpack conditions and volume backscatter. 14 
The statistical model is a Bayesian inference model that seeks to estimate the joint probability 15 

distribution of volume backscatter measurements, snow density and snow depth, and physical 16 
model parameters.   Prior distributions are derived from multilayer snow hydrology predictions 17 

driven by downscaled numerical weather prediction (NWP) forecasts. To reduce noise to signal 18 
ratio, SnowSAR measurements at 1 m resolution were upscaled by simple averaging to 30 and 90 19 
m resolution. To reduce the number of physical parameters, the multilayer snowpack is 20 

transformed for Bayesian inference into an equivalent single- or two-layer snowpack with the same 21 

snow mass and volume backscatter. Successful retrievals meeting NASEM (2018) science 22 
requirements are defined by absolute convergence backscatter errors ≤ 1.2 dB and local SnowSAR 23 
incidence angles between 30o and 45o for X- and Ku-band VV-pol backscatter measurements and 24 

were achieved for 75% to 87% for all grassland pixels with SWE up to 0.7m and snow depth up 25 
to 2 m. SWE retrievals compare well with snow pit observations showing strong skill in deep snow 26 

with average absolute SWE residuals of 5-7% (15-18%) for  the two-layer (single-layer) retrieval 27 
algorithm. Furthermore, the spatial distributions of snow depth retrievals vis-à-vis LIDAR 28 
estimates have Bhattacharya Coefficients above 94% (90%) for homogeneous grassland pixels at 29 

30 m (90 m resolution), and values up to 76% in mixed forest and grassland areas indicating that 30 
the retrievals closely capture snowpack spatial variability.  Because NWP forecasts are available 31 

everywhere, the proposed approach could be applied to SWE and snow depth retrievals from a 32 
dedicated global snow mission.  33 
  34 
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1. Introduction 35 

The seasonal snowpack plays a critical role in climate and weather variability due to its role in the 36 

surface energy budget on account of its high albedo, and in the surface water budget  as temporary 37 

storage of frozen precipitation in the cold season until it melts in the warm season and becomes 38 

available as runoff. The water stored in the snowpack is measured by the Snow Water Equivalent 39 

(SWE), the depth of liquid water per unit area that would be released if the snowpack were to melt 40 

completely. It is the product of the specific gravity of snow with respect to water (ρsnow/ρw) and 41 

the depth of the snowpack (SD). To map SWE in the cold season is to map snow water resources. 42 

To map onset of melt and snow wetness is to map the timing and geography of snow water 43 

resources availability. Climate variability and change with increasing air temperature, shifts in 44 

atmospheric moisture convergence patterns, and increases in the frequency of extreme events is 45 

already causing significant changes in frequency and patterns and timing of seasonal snow 46 

accumulation and melt with severe implications for water and food security in addition to 47 

cascading economic and ecosystem impacts (Huang and Swain, 2022; Musselman et al., 2021; 48 

Sturm et al., 2010). 49 

The need to capture snowpack heterogeneity and dynamics tied to weather, climate, landcover and 50 

landform variability remains a chief challenge to developing a snow observing system at the spatial 51 
and temporal scales required to answer water cycle science questions and for societal decision-52 

making. The potential for systematic snowpack monitoring in remote regions has long been 53 
investigated, including the integration of remote sensing measurements and physical models (e.g. 54 
(Martinec et al. 1991; Mote et al. 2003; Bateni et al. 2015; Li et al. 2017; Kim et al. 2019; Cao and 55 

Barros, 2023a).  Assimilation of radiance or backscatter is most powerful with a time series of 56 

observations.  Time-series observations are available presently from tower measurements, albeit 57 
at the point scale of the tower footprint (see summary by Tsang et al. 2022), and do not capture 58 
the large joint spatial and temporal variability of snowpacks from local to regional scales 59 

depending on weather and climate, landform, land use and landcover. Frequent spatial 60 
observations are required for this purpose. Airborne observations can be used for mapping but 61 

typically occur once or twice during a winter season and over limited areas.  A dedicated satellite 62 
mission is necessary to acquire time-series of measurements globally.    63 

Presently, advances in radar technology and retrieval algorithms (Tsang et al., 2022), and 64 
especially the  demonstrated capabilities of NewSpace satellite missions (Villano et al. 2020) make 65 
high spatial resolution of Synthetic Aperture Radar (SAR; 10’s m ) Earth observations from space 66 

feasible in contrast to  the challenges faced  in the past (Rott et al. 2012). During the SnowEx’17  67 

field campaign (Kim et al., 2017), a comprehensive data set consisting of airborne dual-frequency 68 

SAR (X- and Ku-band Synthetic Aperture Radar) backscatter measurements using the SnowSAR 69 
instrument (Macedo et al. 2020), the Airborne Snow Observatory (ASO, Painter et al. 2018) and a 70 
plethora of high-quality ground-validation measurements of snowpack properties and ancillary 71 
data (Table 1) offer an unprecedented opportunity to investigate the full potential of SAR toward 72 
developing the next generation of retrieval algorithms. 73 

Due to the highly nonlinear snow physics and the time-varying stratigraphy of snowpacks, 74 
radiance or backscatter measurements depend on the vertical structure of snowpack physical 75 

properties such as snow density, snow temperature, and snow grain size in addition to SWE and 76 
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snow depth. Because the number of observations is smaller than the number of parameters required 77 
to solve the inverse-problem, retrieval of SWE and snow depth is an underdetermined estimation 78 

problem. This challenge can be addressed using a physical-statistical approach for retrieval.  79 
Physical-statistical approaches combine physical process models with a Bayesian statistical 80 
framework to inform how geophysical states and parameters relate to measurements by obeying 81 
fundamental physical constraints (Berliner, 2003;  Lowman and Barros, 2014).  In this manuscript, 82 
we propose, and evaluate a general physical-statistical framework to retrieve SWE from SnowSAR 83 

measurements across a heterogeneous landscape during SnowEx’17. 84 

 85 

2. Previous Work 86 

2.1 Forward Simulation - From SWE to Backscatter 87 

The advantage of SAR technology is the high-spatial resolution of its measurements, which is 88 

necessary to capture the spatial heterogeneity of snowpack physical processes (e.g. Deems et al. 89 

2016; Mendoza et al., 2020; Manickam and Barros, 2020) as demonstrated in forward simulations.  90 

Cao and Barros (2020, 2023a; hereafter CB20 and CB23) demonstrated the utility of a multi-layer 91 

snow hydrology (MSHM) coupled with a radiative transfer model (RTM) forced by high-92 

resolution operational numerical weather prediction (NWP) model forecasts to capture the 93 

seasonal hysteresis behavior of the seasonal snowpack at Grand Mesa and Senator Beck in 94 

Colorado against Sentinel-1 C-band measurements.  95 

The MSHM is a physically driven snow hydrology model that simulates the evolution of snowpack 96 

physical properties including detailed stratigraphy (Kang and Barros, 2012a-b; CB20). During 97 

snowfall events, fresh snow is added to the top layer of the snowpack until a threshold 98 

accumulation is met, and a new layer forms. The RTM used here is MEMLS3a (Microwave 99 

Emission Model of Layered Snowpacks adapted to include backscattering by  Proksch et al., 2015). 100 

MEMLS is a physically driven radiative transfer model which takes snowpack characteristics as 101 

inputs and simulates its microwave emission for a frequency band with  four polarizations – HH, 102 

VV, HV and VH (originally proposed by Wiesmann and Mätzler, 1999). To estimate total 103 

scattering, ground backscatter σbkg must be modeled as well, as described below. .  104 

Figure 1 illustrates the various backscatter mechanisms contributing to total backscatter (σtotal) in 105 

active microwave measurements represented in MEMLS3&a, the RTM: volume backscatter (σvol) 106 

from the multiple interactions of the incoming radar signal within the snowpack, the backscatter 107 

at the snowpack-air interface (σsurf) and at the snowpack-ground interface including interactions 108 

with submerged vegetation and litter (σbkg).  In forested areas, additional backscatter mechanisms 109 

are associated with the multiple bounce pathways among tree canopy, intercepted snow, tree 110 

trunks, and snowpack. Depending on viewing geometry (flight path and incidence angle), σtotal 111 

measurements from areas without trees in regions of mixed landcover can include significant 112 

contribution from trees along the grassland-forest transitions. 113 

 114 
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 115 

Figure 1: Scattering mechanisms for grassland submerged by snow and snowpack over bare soil or rock: (1) Volume Backscatter 116 
σvol; (2) surface backscatter σsurf; (3) background backscatter at the snow-ground interface σbkg; (4) snowpack-ground-canopy-tree 117 
trunk interactions at forested boundaries.  Red arrows (1), (2) and (3) are resolved in the retrieval applications demonstrated here. 118 

 119 

CB23 used the coupled MSHM-MEMLS in forward mode to predict Sentinel-1 C-band volume 120 

backscatter σ
vol

 without calibration or nudging of ground observations without bias and within ± 121 

2.5 dB at  90 m resolution across terrain slopes in the [10o-52o] range for barren land, alpine grass 122 

and shrubs and in forested areas with snow-free canopy at the beginning of spring  in the Senator 123 

Beck Basin in Colorado.  They estimated  σbkg as the average of Sentinel-1 measurements for 124 

snow-free conditions.  Cao and Barros (2023b) modified MEMLS3&a to include double-bounce 125 

effects among snowpack and vegetation (MEMLS-V) and retrieved σbkg from total backscatter 126 

σ
total 

measurements in mixed landcover using simulated annealing.  Their estimates are consistent 127 

with CB23, suggesting  potential to simplify the inverse-problem of estimating snowpack physical 128 

properties from total backscatter measurements in mixed landcover and further simplify the 129 

physical-statistical retrieval framework proposed here, although further evaluation is necessary.  130 

 131 

2.2 Physical-Statistical Retrieval 132 

For retrieval in a Bayesian framework, the probability of the retrieved geophysical variable x (the 133 

inferred posterior distribution) is conditional on the a priori knowledge of the variable x (the prior 134 

distribution),  indirect measurements D, and a physical model M(η) (e.g., the snow radiative 135 

transfer algorithm in this case ) with physical parameters η (including x) and statistical error 136 

parameters ζ.  The joint probability distribution of M, D, η, and ζ can be written as: 137 

𝑃(𝑀, 𝐷, 𝜂, 𝜁) = 𝑃(𝐷|𝑀, 𝜂, 𝜁) × 𝑃(𝑀|𝜂, 𝜁) × 𝑃(𝜂, 𝜁) (1) 138 

The first term to the right-hand side of Eq. (1) is the backscatter data model, the second term is the 139 

prior of the backscatter, and the third term is the prior of the snowpack physical parameters 140 

(including snow depth and snow density, etc) with statistical error parameters. Assuming the 141 
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measurements do not depend on the physical parameters, the model does not depend on the 142 

statistical error parameters, and that the physical parameters and the statistical parameters are 143 

independent,  Eq. (1) can be revised to read 144 

𝑃(𝑀, 𝐷, 𝜂, 𝜁) = 𝑃(𝐷|𝑀, 𝜂) × 𝑃(𝑀|𝜂) × 𝑃(𝜂)  × 𝑃(𝜁) (2)                                        145 

And finally in the context of specific measurements y with known uncertainty described by P(y) 146 

  147 

 148 

𝑃(𝑀, 𝜂, 𝜁| 𝑦) = 𝑃(𝑦|𝑀, 𝜂) × 𝑃(𝑀|𝜂) ×
𝑃(𝜂) ×𝑃(𝜁)

𝑃(𝑦)
 (3) 149 

The physical model M and P(y) are invariant and assuming that we have a good understanding of 150 

the statistical errors, then Eq. (3) can be further simplified as follows 151 

𝑃(𝜂|𝑦)  ∝ 𝑃(𝑦|𝜂) × 𝑃(𝜂) (4)    152 

      153 

In the context of Bayesian inference the goal is to maximize P(η|y), the posterior probability of 154 

physical parameters conditional on measurements informed by the a priori parameter probabilities 155 

P(η). This implies maximizing the second term in Eq.(4), the posterior of the backscatter 156 

conditional on physical parameters η, implies minimizing the difference between measurements y 157 

with known error covariance matrix Σ𝑦 and model predictions M(η). For multiple concurrent 158 

measurements, 𝑃(𝑦|𝜂) can be described by a multivariate normal distribution,  159 

𝑃(𝑦|𝜂) = (2𝜋)(−
𝑁
2

) ∣ Σ𝑦 ∣−
1
2 𝑒𝑥𝑝 [−

1

2
(𝑦 − 𝑀(𝜂))𝑇Σ𝑦

−1(𝑦 − 𝑀(𝜂))] (5) 160 

where N is the number of measurements at a given location and time (e.g. backscatter at different 161 

frequencies as in Durand and Liu, (2012). 162 

Pan et al. (2023, hereafter P23) adapted a  Bayesian retrieval algorithm previously developed to 163 

estimate SWE from passive microwave measurements (Pan et al. 2017, hereafter P17 ) to active 164 

microwave, hereafter referred to as Base-AM. The snow radiative transfer algorithm in Base-AM 165 

is MEMLS, and the semi-empirical Dobson model is used to estimate the soil dielectric constant 166 

as a function of soil moisture and soil texture (Dobson et al. 1985; Hallikainen et al. 1985). A 167 

Monte Carlo Markov Chain (MCMC) iterative algorithm (Metropolis et al. 1953) is used to sample 168 

from P(η|y) starting from initial values and using the likelihood ratio criteria to achieve 169 

convergence.  In this work, realistic snowpack predictions from MSHM-MEMLS are used to 170 

define the prior distributions of parameters and constrain the Bayesian retrievals: y represents the 171 

SnowSAR backscatter measurements and η represents to all model parameters and geophysical 172 

variables including SWE, SD, snow density. 173 

 174 

3. Study Area and Data 175 

3.1 Study Area and Ancillary Data 176 
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The study region is  Grand Mesa, Colorado, a plateau that is 2,000 m above adjacent low-lying 177 

areas and is surrounded by ridges up to 500m  in elevation (as depicted in Fig. 2).  Grand Mesa 178 

has an alpine climate, experiencing snowfall throughout the year except during the months of July 179 

and August.  Landcover is heterogeneous with grasslands in the west and a mix of evergreen and 180 

deciduous forest to the east. Numerous wetlands are widespread across the Mesa, especially in the 181 

transition from grassland to forest. The land cover data were obtained from the National Land Data 182 

Assimilation System (NLDAS). The datasets were upscaled to 90 m using nearest neighbor 183 

interpolation to support retrievals at 90 m resolution (see Section 4). NLDAS is used to determine 184 

landcover type in the snow hydrology model. NALCMS is used to upscale the evaluation data. 185 

Hourly albedo is derived from NLDAS at 12.5 km resolution. A summary of all the datasets used 186 

in this study is available in Table 1. 187 

 188 

Table 1: Summary list of datasets used in the study.  189 

Data Source 

Spatial 

Resolution 

Temporal 

Resolution 
Date 

Range 

Relevant 

Link 
Initial Final Initial Final 

Rainfall 

HRRR 3 km 
30 m, 90 

m 
1 hr 30 min 

9/1/2016 - 

2/25/2017 
https://rapidrefresh.noaa.gov/hrrr/ 

Temperature 

Air Pressure 

Incoming SW 

radiation 

Incoming 

Longwave 

radiation 

Wind speed 

Humidity 

Albedo NLDAS 12.5 km 30 m 1 hr 30 min 
9/1/2016-

2/25/2017 
https://ldas.gsfc.nasa.gov/ 

Backscatter 
SnowSAR – 

SnowEx’17 
1 m 

30 m, 

90 m 
- - 2/21/2017 https://nsidc.org/data/snex17_snowsar/versions/1  

Landcover 
NLCD, 

NALCMS 
30 m 

30 m, 90 

m 
- - - 

https://www.usgs.gov/centers/eros/science/national-

land-cover-database 

http://www.cec.org/north-american-land-change-

monitoring-system/ 

Snow Depth 
LIDAR – 

SnowEx’17 
3 m 

30 m, 

90 m 
- - 2/25/2017 https://nsidc.org/data/aso_3m_sd/versions/1  

SWE 
Snowpit – 

SnowEx’17 
- - - - 

2/20/2017-

2/24/2017 
https://nsidc.org/data/snex17_snowpits/versions/1 

 190 

https://rapidrefresh.noaa.gov/hrrr/
https://ldas.gsfc.nasa.gov/
https://nsidc.org/data/snex17_snowsar/versions/1
https://www.usgs.gov/centers/eros/science/national-land-cover-database
https://www.usgs.gov/centers/eros/science/national-land-cover-database
http://www.cec.org/north-american-land-change-monitoring-system/
http://www.cec.org/north-american-land-change-monitoring-system/
https://nsidc.org/data/aso_3m_sd/versions/1
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 191 

Figure 2: Study area in Grand Mesa, Colorado. a) Location of Grand Mesa in Colorado, with historical Apr 1 SWE average as 192 
base map. b) Paths of 4 SnowSAR SnowEx’17 flights on 21 Feb 2017, with true color image obtained from Landsat on 03/11/2017 193 
as the base map. c) Land cover of the study region. Forest-1 are needle leaf forests; Forest-2 are broadleaf forests. d) Digital 194 
elevation map of the study region. 195 

 196 

3.2 Atmospheric Forcing  197 

Numerical Weather Prediction (NWP) outputs are used as the atmospheric forcing for the snow 198 

hydrology model and to set up boundary conditions. Previously, CB20 and CB23 relied on HRRR 199 

(High-Resolution Rapid Refresh) hourly forecasts at 3 km and downscaled it to 90 m in Grand 200 

Mesa. Here, the same data set was independently downscaled to 30 m as well.  The HRRR dataset 201 

is produced by National Ocean and Atmospheric Agency (NOAA) by hourly assimilation of  202 

observations at 13 km resolution (Benjamin et al., 2016; Table 1).  Hourly atmospheric forcing 203 

was linearly interpolated to 30 min temporal resolution used in the snow hydrology model. 204 
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 205 

 206 

Figure 3:  Maps of incidence angles along SnowSAR flight paths on February 21, 2017 during SnowEx’17. 207 

 208 

3.3  SnowSAR Backscatter 209 

During SnowEx’17, airborne microwave backscatter measurements were made in Grand Mesa on 210 

21 Feb 2017 at 1 m resolution (Table 1). The SnowSAR instrument is a dual frequency (X and Ku 211 

Band) radar. A total of six flightlines were completed, two short ones on sloped densely forested  212 

terrain and four long lines on the plateau. Here, only the four flightlines on the plateau are used for 213 

analysis (Fig. 2 and Fig. 3). The flights are between 18:00 and 21:00 GMT (noon – 3PM  MST). 214 

SnowSAR data quality control measures included filtering based on aircraft attitude (there were 215 

line segments with turbulence), beam incidence angle/antenna pattern, and signal-to-noise-ratio of 216 

the backscatter coefficients. Processing of the original airborne SAR measurements and quality 217 

control indicate that only the co-pol X-band HH- and VV-pol as well as Ku-band VV-pol 218 

measurements are adequate for retrieval. Geolocation was verified against corner reflector targets 219 

and geographic features and found to be very robust. The SnowSAR data were upscaled to 30 m 220 

and 90 m resolution by simple averaging of all SnowSAR measurements within each pixel.  221 

 222 

3.4 Validation Data 223 

LIDAR Snow Depth – The Airborne Snow Observatory (ASO) LIDAR measurements of snow 224 

depth at 3m resolution across Grand Mesa  are available for SnowEx’17 on February 25,  thus 4 225 

days after the SnowSAR flights (Painter et al., 2018; Table 1). There were no significant snow 226 

storms or strong winds in that period, except for about 3mm of rainfall for less than 1 hour on 227 

February 24. These data are used to examine the distribution of retrieved snow depths, that is 228 

indicative of the spatial heterogeneity of the snowpack, and the relative absolute  differences 229 

between LIDAR measurements and retrieval of snow depth,  that are indicative of local retrieval 230 

errors. The LIDAR data were upscaled to 30 m and 90 m using simple averaging  (e.g., Fig.4a). 231 

There can be large snow depth underestimation errors associated with upscaled LIDAR retrievals 232 

along the edges of forests where the snow depth is underestimated consistent with previous work 233 

(e.g. Deems et al. 2013; Jacobs et al. 2021).  Given the expect measurement uncertainty on the 234 
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order of 10-20 cm in Grand Mesa, which is amplified by microtopography, LIDAR pixels with 235 

snow depth shallower than 20 cm are not considered for evaluation. 236 

Snowpit SWE -  Multiple snowpits were excavated during the SnowEx’17 field campaign across 237 

Grand Mesa (Table 1). Due to the small number of snow pit measurements along the SnowSAR 238 

flightlines on 21 February,  snowpit measurements on 20-24 of February were considered for 239 

evaluation assuming that in the absence of  snowstorms or other weather events the snow pack 240 

does not change significantly during the 4-day period. Differences are expected at local places but 241 

the overall spatial trends should be maintained such as the west-east gradient in snow depth.  The 242 

values of snowpit SWE are estimated using an average of the snow density measurements at 243 

different depths applied to the entire snow depth. Only pits in the non-forested areas were selected 244 

for evaluation (Fig. 4b). 245 

 246 

 247 

Figure 4:   a) Flight footprint of the LIDAR instrument used to measure the snow depth during SnowEx’17. b) Location of snow 248 
pits used to measure SWE 20-24 Feb 2017.  The legend identifies SnowEx’17 Pit IDs. 249 

 250 

4. Retrieval Algorithm 251 

Simplicity and computational efficiency are desirable attributes for an operational algorithm that 252 

produces successful retrievals, here understood as meeting science uncertainty requirements and 253 

latency adequate to meet applications needs defined by NASEM (2018). The retrieval 254 

methodology builds on existing and well evaluated snow hydrology, radiative transfer,  and 255 

physical-statistical models (CB20,CB23, P17, P23) previously reviewed in Section 2.  A list of 256 

forcings and coupling variables and parameters among MSHM, MEMLS and Base-AM is 257 

provided in Table 2.  258 

Averaging is necessary to reduce the signal to noise ratio (SNR) in SnowSAR measurements at 259 

their native resolution (Section 3.3).  Because the highest spatial resolution of available ancillary 260 

data sets is 30 m, the SnowSAR measurements were upscaled to 30 m to eliminate the need for 261 
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interpolation and, or downscaling that introduce further uncertainty.  Following results by 262 

Manickam and Barros (2020), the algorithm was also applied at 90 m resolution consistent with 263 

the first scaling break identified in Sentinel-1 SAR backscatter.   The implication of linear scaling 264 

behavior is that successful retrievals at 90 m resolution can subsequently be statistially downscaled 265 

with confidence, which has significant computational advantages. Further upscaling was not 266 

conducted because the number of pixels becomes very small given the available coverage of 267 

SnowSAR flights. 268 

 269 

Table 2: Input and output parameters from the three models in the SWE physical-statistical retrieval framework. 270 

Model  Input Output Reference 

MSHM 

Rainfall  

Cao and Barros 

(2020) 

Temperature Snow Temperature Profile 

Air Pressure Soil Temperature Profile 

Incoming shortwave radiation Snow Density Profile 

Incoming longwave radiation Snow Depth Layering Profile 

Wind speed Liquid Water Content Profile 

Humidity Snow Correlation Length Profile 

Albedo  

MEMLS 

Snow Temperature Profile  

Proksch et al. 

(2015) 

Soil Temperature Profile  

Snow Density Profile Diffused Reflectivity Profile 

Snow Depth Layering Profile Specular Reflectivity Profile 

Snow Correlation Length Profile Total Backscatter Coefficient 

Cross polarization fraction  

Ground rms height  

Base-AM 

Equivalent Snow Temperature Prior 

Optimized – Snow Layer Depth  

              Snow Density 
Pan et al., (2023) 

Equivalent Soil Temperature Prior 
Equivalent Snow Density Prior 
Equivalent Snow Depth Prior 

Correlation Length 
Cross polarization fraction 

Ground rms height 
Total Backscatter Coefficient Prior 

 271 

Figure 5  illustrates the retrieval workflow consisting of four main steps. Step 1 - Snow hydrology 272 

simulation using MSHM to produce a layered snowpack and volume backscatter simulation using 273 

MEMLS (𝜎𝑣𝑜𝑙
𝑠𝑖𝑚).  Step 2 - Bayesian estimation of  ground parameter priors that govern background 274 

backscatter σbkg using MEMLS assuming a very thin film of snow on the ground (1 mm SD) at the 275 

beginning of the accumulation season and estimation of the σbkg by subtraction of 𝜎𝑣𝑜𝑙
𝑠𝑖𝑚 from 276 

SnowSAR total backscatter measurements 𝜎𝑆𝐴𝑅
𝑡𝑜𝑡 .  Step 3 -  Determination of snowpack priors for 277 

Bayesian SWE retrieval using results Step 1 and Step 2.  Step 4  - Bayesian optimization of 278 

simulated 𝜎𝑆𝐴𝑅
𝑡𝑜𝑡  to derive posterior distributions of SD and ρsnow for the single- and two-layer (1|2) 279 

equivalent  snowpack, and subsequent calculation of retrieved SWE posperior distributions  280 

 281 
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 282 

Figure 5: Workflow of the SWE Physical-Statistical retrieval framework. NWP atmospheric forcings drive MSHM to determine 283 
priors for the Bayesian radiative transfer model (Base-AM) and synthetic backscatter for ground parameters.  SnowSAR backscatter 284 
measurements are assimilated to determine the posterior distribution of the snowpack parameters.   285 

 286 

4.1 Layered Snowpack Simulations (Step 1) 287 

Following the methodology presented in Section 2.1, MSHM was run for a full-year starting from  288 

snow free conditions on September 1st 2016  using downscaled HRRR data as atmospheric forcing 289 

(Section 3.2) and a timestep of 30 mins. On the day of the SnowSAR flights,  the snowpack 290 

physical properties predicted at times corresponding to each of the four flights are used to derive 291 

the 1|2 Layer equivalent snowpack properties used in the retrieval.  The simulated volume 292 

backscatter (𝜎𝑣𝑜𝑙
𝑠𝑖𝑚) was estimated by specifying the cross polarization fraction parameter Q=0.2 293 

following CB20.  This is an empirical coefficient that distributes the diffuse scatering into cross 294 

and like polarization components in MEMLS (Proksch et al. 2014).   295 

In realistic layered snowpacks, stratigraphy (i.e., vertical heterogeneity) is a dominant feature of 296 

the density, temperature, microstructure, and dielectric properties (e.g., emissivity and 297 

reflectivity). The vertical structure of snow microstructure in MSHM is described using a 298 

parameterization of snow correlation length (lex) consistent with MEMLS formulation.  Depending 299 

on the number of layers, this poses an undetermined problem as the number of measurements is 300 

equal to the number of frequencies and the number of polarizations available (typically two or 301 

three). For example, there are only four observations for a dual-frequency measurement with dual 302 

polarization. In contrast, the set of independent parameters per layer includes snow density, layer 303 

thickness, liquid water content, snow grain size or correlation length, temperature, reflectivity, and 304 

transmissivity.  305 

While converting the multi-layer snowpack to a single-layer model is the simpler path to address 306 

the undetermined inverse-propblem, fresh snowfall accumulation and snowpack crusting artifacts 307 
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due to melt-refreeze cycles, as well as hardening by wind action introduce strong density and grain 308 

size differences at the top of the snowpack.  To capture this behavior, we implement and evaluate 309 

the retrieval algorithm for both single and two-layer equivalent snowpacks derived from the 310 

layered snowpack simulated by MSHM. The equivalent  single- or two-layered snowpack 311 

parameters for each pixel are obtained by matching SWE, snow depth (SD) and volume backscatter 312 

(𝜎𝑣𝑜𝑙
𝑠𝑖𝑚) of the simulated multilayer snowpack. 313 

 314 

4.2 Ground and Snowpack Parameter Priors  (Steps 2 and 3) 315 

A first estimate of the σbkg is obtained by subtracting 𝜎𝑣𝑜𝑙
𝑠𝑖𝑚  from SnowSAR X-band HH-pol 316 

𝜎𝑆𝐴𝑅
𝑡𝑜𝑡  measurements following Baghdadi et al. (2011) who found better performance among 317 

backscattering models for HH-pol against TerraSAR-X measurements. In Base-AM, σbkg depends 318 

on the effective effective soil moisture and soil surface roughness.  To optimize these parameters, 319 

σbkg  is used as an “observed” value. To simulate snow-free conditions the snow depth is 320 

constrained to a maximum value of 1 mm in Step 2. The cross polarization fraction Q initially 321 

specified as Q=0.2 is optimized first and separately from other ground parameters in the third step 322 

of the retrieval algorithm (Fig. 5). The posterior distributions of the ground parameters in Step 2 323 

are used along with the 1|2 layer prior distributions and the SnowSAR measurements to estimate 324 

the posterior distributions of snow depth and snow density using the Base-AM framework (Fig. 5) 325 

and both X- and Ku-band VVpol. SWE is subsequently derived from snow depth and snow density.   326 

Single-layer Snowpack - The total snow depth and the averages of multilayered snowpack 327 

parameters are specified as the mean of the prior distribution for retrieval. Table 3 shows the range 328 

and standard deviation of the parameters.  329 

 330 

Table 3: Base-AM model input variance and range for the parameters prepared using MSHM multilayer snowpack parameters.  331 
Alphanumerical subscript in 2-layer snowpack retrievals denotes layer number: 1- bottom layer; 2- top layer; avg- the average of 332 
all MSHM multilayer parameter values in the corresponding single or 2-layer snowpack. DZ is the MSHM snow depth. 333 

Snow 

Parameters 

1 Layer Snowpack 2 Layer Snowpack 

Variance, 

σ2 

Range Variance, σ2 Range for each layer 

Min Max Bottom Top Min Max 

Snow Temp., Ts 

[
O
C]  

0.3×Tsavg 1.3×Ts
min

 0.7×Ts
max

 0.3×Ts
1,avg

 0.3×Ts
2,avg

 1.3×Ts
min

 0.7×Ts
max

 

Snow Density, ρ 

[Kg/m
3
] 

0.3×ρavg 0.8×ρ
min

 1.2×ρ
max

 0.3×ρ
1,avg

 0.3×ρ
2,avg

 0.8×ρ
min

 1.2×ρ
max

 

Snow Depth, DZ 

[m]  
 0.3×DZ 0.5×DZ 1.5×DZ 0.1×DZ

1
 0.2×DZ

2
 0.2×DZ 0.9×DZ 

Correlation 

Length, lex 
0.3×lex,avg lex,min

 lex,max
 0.2 ×lex,1,avg 0.2× lex,2,avg lex,min

 lex,max
 

Soil Temp., Tsoil   

[
O
C] 

0.3  1.3 0.3 1.3  

 334 
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Two-layer Snowpack – The average values of the snowpack physical properties for each layer are 335 

derived from the multilayer snowpack simulated by MSHM.  The key requirement is to determine 336 

the depth of each one of the layers that best captures the snowpack vertical structure.  Figure 6 337 

shows MSHM simulated snowpack density profiles for each of the four SnowSAR flights. The 338 

shape of the profiles reflects the interplay between thermodynamic processes that change snow 339 

microstructure and dominate in the upper snowpack and mechanical consolidation processes that 340 

are dominant in the mid and lower layers. The snow depth point corresponding to the maximum 341 

change in snow density between adjacent layers in the multilayer snowpack is used here to divide 342 

the snowpack in two layers.  Subsequently, the layer-depth weighted average density, snow 343 

temperature, and correlation length of the MSHM multilayer snowpack is calculated for the 344 

corresponding depths of the two-layer equivalent snowpack (Table 3).   345 

 346 

 347 

Figure 6 -  Density profiles simulated by MSHM for all grassland pixels at 30 m resolution from the 4 SnowSAR flight paths. The 348 
density profile of the central pixel for each of the flights is marked in red.  The snowpack layers are numbered from bottom to top 349 
tracking the evolution of simulated snowpack stratigraphy during the accumulation season. Note the significant difference between 350 
the  top 2-3 layers and the deeper snowpack supporting the two-layer snowpack conceptual retrieval model. 351 

 353 

4.3 Bayesian Optimization (Step 4) 354 

Realistic snowpack predictions from MSHM driven by weather forecasts (Step 1) are used to 355 

define the prior distributions of snowpack parameters and constrain Base-AM (Steps 2 and 3) to 356 

infer the posterior distribution of snowpack parameters given the SnowSAR backscatter 357 

measurements (Step 4) as discussed in Section 2.2.  358 

The local mean of the posterior distribution for each parameter is hereafter referred to as the 359 

retrieval result for each pixel.  SD retrievals are evaluated against LIDAR snow depth including  360 

spatial patterns and gradients, and overall statistical structure using histograms.  SWE retrievals 361 

derived from the posterior distributions of snow density and snow depth are evaluated against SWE 362 

measurements at snowpits (Section 3.4).  Original LIDAR measurements were reprojected and 363 

coregistered with the SnowSAR retrievals. A comparative analysis was conducted to examine the 364 

dependence of retrievals on incidence angle and the subgrid scale variability was quantified in 365 

terms of the standard deviation of original LIDAR measurements within the upscaled pixel.   The 366 
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amplitude error metrics are the mean, standard deviation, and mean absolute relative error 367 

(MARE):  368 

𝑀𝐴𝑅𝐸 =
∑ |𝑛

𝑖=1 1 − 𝑅𝑖/𝑂𝑖|

𝑁
 (6) 369 

where O are observations and R are retrievals. The Bhattacharya coefficient (BC) is used to 370 

compare the spatial distributions of snow depth and backscatter.  BC measures the similarity 371 

between two probability distributions p1 and p2 as follows ( Bhattacharya, 1943)  372 

 373 

𝐵𝐶 = ∑ √𝑝1(𝑖)𝑝2(𝑖)
𝑁

𝑖=1
 (7) 374 

Finally, among the 39 snowpits available for evaluation on February 21,  only 15 pits in open areas  375 

(i.e. grasslands) were retained for evaluation and snow pits without SnowSAR measurements 376 

within a radius of 100 m were discarded.  377 

 378 

5. Results and Discussion 379 

5.1. Successful Retrievals 380 

SnowSAR measurements are strongly affected by aircraft operations, viewing geometry that varies 381 

systematically along the flight path resulting in amplitude artifacts amplified by landform and 382 

landcover heterogeneity. Even after separating homogeneous grassland pixels, there is 383 

contamination from multiple bounce artifacts at grassland-forest transitions and adjacent wetlands 384 

that cannot be resolved at 30 or 90 m resolution.  Other errors embedded in the retrieval are 385 

associated with downscaling of HRRR forcings that produce biased snow priors, snow hydrology 386 

model structure, and errors tied to the background backscatter estimation. Combined these errors  387 

compounded can lead to a weak convergence of the Bayesian optimization algorithm resulting in 388 

large backscatter residuals. To account for these errors and meet NASEM (2018) science 389 

requirements, SnowSAR pixels for which the relative residual backscatter (RRB) between Base-390 

AM simulated 𝜎𝑠𝑖𝑚
𝑡𝑜𝑡  and SnowSAR measurements 𝜎𝑆𝐴𝑅

𝑡𝑜𝑡  was greater than 30% were identified as 391 

unsuccessful.  In an operational context, these pixels would be flagged and identified as failed or 392 

highly uncertain retrievals. The successful retrieval fraction after restricting the range of incidence 393 

angles and imposing the RRB < 30% criterion is summarized in Table 4 for the four flights, and 394 

for both 1|2 layer snowpack retrievals at 30 and 90 m resolution.   Except for the later flight path 395 

over the predominantly forested areas in the eastern sector of Grand Mesa (Fig.1), the fraction of 396 

successful retrievals by restricting the incidence angle and RRB varies between 75 and 87%  across 397 

the four SnowSAR flights with a maximum absolute bias of 1.2 dB. Only figures with retrieval 398 

results at 30 m resolution are shown in the main text; retrieval results at 90 m resolution as well as 399 

other supporting analysis can be found in Appendix A. 400 

 401 
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Table 4: Spatial bias between SnowSAR backscatter and converged backscatter from Base-AM for successful retrievals for 402 
grassland pixels at 30 and 90 m spatial resolution over each flight.  Successful retrievals are for pixels with local incidence angles 403 
in the 30o-45o range and relative residual backscatter (RRB) of less than 30% for each of the four flights.  404 

Flight 

Time 

Successful Retrieval 

Fraction 
Bias (Observed - Converged) [dB] 

1 Layer 2 Layer 1 Layer 2 Layer 

30 m  90 m 30 m  90 m 
30 m  90 m 30 m  90 m 

X  Ku X Ku X  Ku X Ku 

18:11:38 0.86 0.87 0.85 0.86 0.92 -0.45 0.96 -0.48 0.94 -0.46 0.97 -0.50 

18:43:20 0.75 0.75 0.75 0.75 1.08 -0.54 0.98 -0.36 1.07 -0.46 0.98 -0.37 

18:59:02 0.78 0.81 0.81 0.81 1.20 -0.78 1.21 -0.79 1.15 -0.73 1.22 -0.83 

20:23:38 0.66 0.69 0.57 0.69 0.51 -0.58 0.70 -0.43 0.62 -0.85 0.72 -0.45 

 405 

5.2. Retrieval  Skill 406 

Figure 7 compares LIDAR snow depth  (Fig. 7a) against colocated SnowSAR retrievals at 30 m 407 

for the SNOWSAR flight at 18:11:38 GMT(GMT=MST+6). The SnowSAR retrievals for high 408 

incidence angles underestimate the LIDAR snow depth (orange and red points). Lemmetyinen et 409 

al. (2022) suggested a nominal incidence angle of 35o-45o for retrievals ensuring proper focusing 410 

and calibration of SnowSAR swaths.  CB23 showed good skill in forward backscatter simulations 411 

for incidence angles as low as 30o.  Overall the retrievals here also show very good performance 412 

for incidence angles between 30o-45o.  Note  however the large residuals for SnowSAR retrievals 413 

with high incidence angles (red and orange points in Fig. 7b) corresponding to LIDAR pixels with 414 

shallow snow depth (below the 1:1 line) and large subgrid-scale variability (orange and red points, 415 

Fig. 7c). Analysis for all flights at both 30 and 90 m resolution can be found in  Appendix A ( 416 

please see Figs. A1 and A2 similar to Fig. 7b; and Figs. A3 and A4 similar to Fig. 7c).  Figures 417 

7d, 7e,  and 7f show the landcover, spatial distribution of subgrid standard deviation (SSTD) and 418 

absolute residual (Retrieved – LIDAR) snow depth for the same flight.  Along the edges of forest, 419 

the SSTD in the upscaled pixels is large due to high heterogeneity that cannot be resolved by the 420 

the LIDAR fusion algorithm for snow depth retrieval (Painter et al. 2016). The red box identifies 421 

an area with complex grassland-forest  boundaries (Fig. 7d) and high subgrid scale variability (Fig. 422 

7e) resulting in poor LIDAR estimates. The edge of wetlands also has comparatively higher 423 

residuals than completely homogeneous grasslands.  This corresponds to the LIDAR pixels with 424 

SSTD > 0.3 m (yellow, orange and red in Fig. 7c).  Therefore, only LIDAR pixels with SSTD  ≤  425 

0.3m  are used for assessment of retrievals. 426 
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 427 

Figure 7: Snow depth measurements using airborne LIDAR on 2/25/17, 4 days after the SnowSAR flights. b) Comparison between 428 
LIDAR snow depth and the 2-layer retrieved snow depth from SnowSAR on 2/21/17 at 18:11:38 GMT. The pixels are color-coded 429 
according to the SnowSAR incidence angle. c) same as (b) with  pixels color-coded  according to the subgrid-scale variability 430 
measured by standard deviation of LIDAR snow depth within the corresponding 30 m pixel. Pixels on the edge of forests and 431 
grasslands have higher subgridscale standard deviations (SSTD). d) Landcover distribution along the flight path; bottom panel – 432 
zoom view of area in red box. e) Spatial distribution of upscaled LIDAR snow depth SSTD at 30m; bottom panel – zoom view of 433 
area in red box. The edges of forests have higher SSTD due to errors in the LIDAR snow depth retrievals at high resolution. f) 434 
Absolute residual between retrievals and LIDAR snow depth; bottom panel – zoom view of area in red box. Residuals equal to 0.5 435 
m and above are grouped in the same category. The red box in parts (d),  (e), and (f) delineates an area with large absolute residuals. 436 
Vegetation-snowpack backscatter interactions at the grassland-forest and grassland-wetland margins not accounted for in the 437 
retrievals. Gray points in the central panel correspond to zero depth LIDAR estimates due to errors in heterogenous landcover.. 438 

Figure 8 shows heatmaps (density maps) to compare successful retrievals against observed X- and 439 

Ku-band VV-pol total backscatter at 30 m resolution. There is good agreement between the two 440 

values for both the bands specially in the -15 to -10 dB range without significant differences 441 

between single and two-layer snowpack retrievals. Note the positive bias in the case of X-band 442 
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simulations compared to observations, whereas Ku-band has a negative bias as quantified in Table 443 

4. Overall, the retrievals at 90 m resolution show better agreement than those at 30 m resolution 444 

due to averaging ( Fig. A5). 445 

 446 

 447 

Figure 8: Heatmaps of SnowSAR mesurements (observed) versus retrievals (simulated) backscatter (σ) at 30 m resolution for X-448 
(𝜎𝑋) and Ku- (𝜎𝐾𝑢) bands: a) single-layer snowpack; and b) 2-layer snowpack. Successful retrievals are for pixels with local 449 
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incidence angles in the 30o- 45o range and relative residual backscatter (RRB) of less than 30% for each of the four flights (see 450 
Table 4).  451 

 452 

Maps of successful  SWE retrievals for the four SnowSAR flight paths are shown in Fig. 9 and 453 

Fig. A6 at 30 m and 90 m resolution, respectively.  The retrievals capture well the west-east 454 

gradient in SWE, and show realistic spatial variability across Grand Mesa. The very low SWE and 455 

shallower snow depths at the easternmost boundary of the flightlines  are underestimates 456 

introduced by upscaling of the SNOWSAR backscatter values where there are significant changes 457 

in topography at the edge of the Plateau (see Fig.2).  458 

 459 

 460 

Figure 9: Spatial distribution of successful SWE retrievals for 1-layer (a) and 2-layer (b) snowpacks in grassland pixels at 30 m 461 
resolution.  Successful retrievals are for pixels with local incidence angles in the 30o- 45o range and relative residual backscatter 462 
(RRB) of less than 30% for each of the four flights (see Table 4).  463 

 464 

Heatmaps of total snow depth priors (MSHM predicted snow depth) against LIDAR snow depth 465 

are shown in Fig. 10 and Figs.  A7 at 30 m and 90 m resolution and can be contrasted with heatmaps 466 

of total snow depth posteriors) against LIDAR snow depth in Figs. 11 and A8 using both single 467 

and two-layer retrievals.  Note the narrow range of the prior snow depths concentrated around 1.5 468 

m and the positive bias relative to LIDAR.  The posteriors show much wider range of variability 469 

and deeper snow consistent with the LIDAR data for both single and two-layer retrievals, albeit 470 

with better agreement for the latter with high counts overlaying the 1:1 line at both spatial 471 
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resolutions.  This behavior is further confirmed by examining the snow depth histograms in Figs. 472 

A9 and A10. The retrievals capture well the range of the LIDAR snow depths for all  flights, and 473 

there is a substantial improvement in the shape of the distributions as revealed  by the heatmaps.   474 

 475 

 476 

Figure 10: Heatmap of LIDAR and MSHM predicted snow depth priors at 30 m resolution using overlapping pixels from the 477 
MSHM and  LIDAR.  Only pixels with incidence angle between 30o -45o, and moderate sub-grid scale variability of LIDAR snow 478 
depth  (< 0.3). 479 

 480 
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Figure 11: Heatmap of LIDAR versus successful snow depth (SD) retrievals at 30 m resolution using overlapping LIDAR and 481 
retrieval pixels.  Successful retrievals are for pixels with local SnowSAR incidence angles in the 30o- 45o range and relative residual 482 
backscatter (RRB) of less than 30% for each of the four flights (see Table 4).  LIDAR SD in  pixels with subgrid scale variability  483 
corresponding to standard deviation of less than 0.3 m for the upscaled  90 m LIDAR pixel are not included.  484 

 485 

Quantitative assessment metrics are presented in Tables 5 and A1 for the comparison between 486 

various snow depth datasets at 30 and 90 m resolutions, respectively. The snow depth MARE  is 487 

higher for the retrievals compared to the priors (MSHM) due to the fact that MARE is an effective 488 

metric capturing distance from the mean. CB20 showed that the MSHM simulated average snow 489 

mass accumulation at the Grand Mesa scale is within 10% of  observations at a monthly time-scale 490 

in February 2017. The BC coefficients The BC coefficients of 0.95 and above at 30 m resolution 491 

indicate significant agreement between the shapes of the distributions at 0.95 or above at 30m 492 

resolution using the two-layer retrievals for the west-east flights, and 0.76 for the fourth flight at 493 

20:23:38 GMT over the forested area.  There is significant improvement relative to MSHM priors 494 

in the statistical similarity of the snow depth retrievals vis-à-vis the LIDAR data for all cases, and 495 

more so for the fourth flight over the forest. For snow depth, 30 m resolution and two-layer 496 

retrievals outperform the 90 m resolution and single-layer retrievals for all flights. This is 497 

explained  in part by landcover classification errors that are smaller at 30 m. Figure A11 shows 498 

that the number of pixels where retrievals produce large mean absolute residuals is very small and 499 

characterize by low confidence in the LIDAR estimates. 500 

 501 

Table 5: Summary of statistics and  error metrics of the 3 snow depth (SD) data sets at 30 m resolution: LIDAR measurements, 502 
MSHM predictions, and successful SnowSAR retrievals for grassland pixels and subgrid-scale standard deviation (σ ) of less than 503 
0.3 m for the upscaled LIDAR pixel. MARE – Mean Absolute Relative Error (Eq. 6); BC – Bhattacharya Coefficient (Eq. 7). Here 504 
mean and standard deviation refer to the spatial distribution, unlike the prior mean and standard deviation used in Base-AM (Table 505 
3). Successful retrievals are for pixels with local incidence angles in the 30o- 45o range and relative residual backscatter (RRB) of 506 
less than 30% for each of the four flights (see Table 4).  507 

Flight 
(GMT) 

N  
Layer 

Spatial SD μ [m] Spatial SD σ [m] MARE SD BC SD 

Retrieved MSHM LIDAR Retrieved MSHM LIDAR Retrieved

-LIDAR 
MSHM-

LIDAR 
Retrieved

-LIDAR 
MSHM-

LIDAR 
18:11:38 

1 
1.39 1.42 1.42 0.32 0.15 0.28 0.19 0.11 0.94 0.67 

18:43:20 1.41 1.38 1.42 0.32 0.21 0.27 0.18 0.11 0.96 0.75 
18:59:02 1.49 1.38 1.44 0.33 0.20 0.27 0.18 0.09 0.94 0.76 
20:23:38 1.66 1.58 1.77 0.36 0.16 0.22 0.21 0.13 0.71 0.25 
18:11:38 

2 
1.38 1.41 1.40 0.30 0.17 0.29 0.14 0.12 0.98 0.67 

18:43:20 1.35 1.38 1.42 0.31 0.20 0.28 0.14 0.11 0.97 0.75 
18:59:02 1.40 1.38 1.44 0.31 0.20 0.27 0.12 0.09 0.95 0.75 
20:23:38 1.89 1.61 1.80 0.39 0.14 0.24 0.17 0.12 0.76 0.23 

 508 

Tables 6 and A2 summarize the average absolute relative errors between snowpits and SWE 509 

retrievals from all flights within 100 m of the snowpits. The results are significantly better for two-510 

layer snowpack retrievals. The mean absolute relative errors at 30 m resolution are 0.22 and 0.13 511 

for 1 layer and 2 layer snowpacks respectively. The mean absolute relative errors at 90 m resolution 512 
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are 0.2 and 0.12 for 1 layer and 2 layer snowpacks respectively. There is a variable number of 513 

pixels used for the calculation of the error metrics for each snow pit, which in the case of 51S is 514 

so small that it suggests the pit is not in the flight path. The large errors for pits 4500, 44E and and 515 

53W are attributed to very heterogeneous landcover including water and forest (4500), and  516 

proximity to roads (53W and 44E). After removing these snowpits in the central area marked in 517 

Fig. A12, the average absolute relative SWE residuals are 5-7% (15-18%) for the two-layer (single-518 

layer) retrieval algorithm.  519 

 520 

Table 6: Evaluation of successful SWE retrievals at 30 m resolution against SWE at SnowEx’17 snow pits and 521 
retrieved snowpacks at 30 m resolution. All N pixels with centroids within 100 m of each snow pit are in the Grasslands 522 
(according to the Landcover dataset at 30 m resolution, see Table 1). SD – snow depth. Italicized rows correspond to 523 
large local MARE (Mean Absolute Relative Error, Eq. 6). 524 

Date x y 
Pit SD 

(m) 
Pit SWE 

(m) 

Retrieved SWE 

(m) 
MARE N 

pixels 

Avg. 

Dist 

(m) 
Pit ID 

1 Lyr 2 Lyr 1 Lyr 2 Lyr 

2/20/2017 -108.184 39.014 1.15 0.368 0.455 0.386 0.236 0.049 28 18 KC1C 

2/20/2017 -108.184 39.014 1.19 0.386 0.457 0.387 0.184 0.003 27 12 KC1E 

2/20/2017 -108.184 39.014 1.18 0.386 0.456 0.387 0.181 0.003 26 15 KC1N 

2/20/2017 -108.184 39.013 1.24 0.414 0.456 0.387 0.101 0.065 27 20 KC1S 

2/20/2017 -108.184 39.014 1.30 0.435 0.455 0.385 0.046 0.115 29 11 KC1W 

2/22/2017 -108.136 39.006 1.32 0.436 0.556 0.484 0.275 0.110 22 8 29E 

2/22/2017 -108.090 39.021 1.65 0.583 0.685 0.596 0.175 0.022 19 17 38E 

2/22/2017 -108.060 39.030 2.10 0.763 0.368 0.449 0.518 0.412 12 16 53W 

2/22/2017 -108.044 39.017 1.68 0.566 0.480 0.505 0.152 0.108 5 51 63E 

2/22/2017 -108.049 39.017 1.49 0.48 0.494 0.513 0.029 0.069 13 29 63W 

2/22/2017 -108.029 39.032 1.66 0.55 0.558 0.581 0.015 0.056 18 15 67N 

2/23/2017 -108.067 39.029 2.13 0.761 0.593 0.504 0.221 0.338 9 23 44E 

2/23/2017 -108.061 39.030 1.59 0.568 0.365 0.408 0.357 0.282 3 75 51S 

2/24/2017 -108.033 39.030 1.80 0.576 0.657 0.573 0.141 0.005 20 10 0 

2/24/2017 -108.033 39.030 1.84 0.598 0.652 0.581 0.090 0.028 21 14 800 

2/24/2017 -108.033 39.030 1.80 0.571 0.650 0.581 0.138 0.018 22 19 1390 

2/24/2017 -108.033 39.030 1.75 0.566 0.654 0.581 0.155 0.027 21 15 2000 

2/24/2017 -108.033 39.030 1.67 0.560 0.654 0.581 0.168 0.037 21 9 2500 

2/24/2017 -108.034 39.030 1.12 0.331 0.660 0.580 0.994 0.752 18 19 4500 

Mean 1.56 0.52 0.54 0.50 0.22 0.13 19.00 20.84  

 525 

Finally, composite spatial maps of successful SWE retrievals from all flights overlain by the 526 

snowpit measurements between 20-24 February are shown in Fig. 12. Because of the different 527 

viewing geometries, retrievals between incident angles 30o-35o for flight path at 18:59:02 in the 528 

composite of overlapping flight paths at 18:43:20 and 18:59:02 GMT were removed. Note the 529 

consistency at 30 m and 90 m resolutions as well as the overall agreement between SWE at 530 

snowpits and SWE retrievals on the flightlines.   531 
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 532 

Figure 12:  Composite spatial distribution of SWE (2-layer retrievals) successfully retrieved at 30m (left) and 90m (right) resolution 533 
for grassland pixels for the four SnowSAR flights. Snow pits (20-24 Feb, Fig. 4, Tables 6) are marked by triangles colored according 534 
to SWE.  SnowEx’17 snow pit locations are marked by triangles and colored according to SWE.  Successful retrievals are for pixels 535 
with local incidence angles in the 30o- 45o range and relative residual backscatter (RRB) of less than 30% for each of the four 536 
flights (see Table 4). As two flights  Gray elevation contours are plotted every 100m. 537 

 538 

6. Conclusion 539 

A Bayesian physical-statistical SWE retrieval framework leveraging prior work (CB20, CB23, 540 

P17, P23, Fig. 5) was applied to airborne X- and Ku-band measurements yielding robust results 541 

from multiple SnowSAR flights over grassland and mixed grassland and forest in Grand Mesa, 542 

Colorado.  Prior distributions of snowpack parameters were obtained from a multilayer snow 543 

hydrology model with atmospheric forcing derived from operational NWP forecasts and analysis 544 

(CB20, CB23).  In order to reconcile the number of independent measurements, physical 545 

constraints, and reduce the number of snowpack parameters, snowpack stratigraphy was mapped 546 

into single-layer and two-layer snowpacks and then Bayesian inference using Base-AM was 547 

applied (P17, P23).  The SnowSAR measurements were averaged to 30 and 90 m resolutions, and 548 

retrievals were conducted independently for every measurement pixel along the flight lines.  549 

Retrievals for measurements with convergence backscatter relative errors less than 30% (±1.2dB) 550 

and for incidence angles in the 30o- 45o range were considered successful over grasslands, 551 

corresponding to 75 -87% of all retrievals depending on the flight.   552 

The retrievals,  specifically the local means of the posterior distributions, were evaluated against 553 

the spatial distribution of LIDAR snow depth estimates up to 2 m and against snowpit SWE 554 

measurements up to 700 mm and snow depth up to 2.13 m.  Since the LIDAR and snowpit 555 

measurements were not concurrent with the SnowSAR flights, the assessment of retrieval skill was 556 

conducted over a period of five days without snowfall or significant day-to-day weather changes.  557 

The two-layer snowpack retrievals perform better overall capturing the observed spatial gradients 558 
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of snow depth, with SWE relative errors ≤ 7% as compared with 18% for single-layer SWE 559 

retrievals, and snow depth absolute retrieval residuals 10-20% depending on landcover 560 

heterogeneity and measurement uncertainty.   The statistical structure of retrieved snow depth is 561 

similar to that estimated by LIDAR, which is indicative of the retrievals ability to capture snow 562 

patterns and scaling behavior to support scientific process studies. For satellite-based monitoring 563 

from space in the context of a future snow mission, time-series of measurements would be 564 

available that should improve the estimates of the priors based on antecedent information.  This is 565 

not possible for one-time observations during field experiments such as SnowEx’17, and thus 566 

improved results would be expected under realistic satellite-based applications.  NWP forecasts 567 

are available worldwide and therefore this retrieval framework can be applied to SAR 568 

measurements anywhere. 569 

The radar model used in this study (MEMLS) does incorporate snow-ground-vegetation scattering 570 

interactions.  Grassland vegetation during the accumulation season is assumed to be submerged 571 

and the impact of vegetation is included in the estimation of the background backscatter (σbkg, Fig. 572 

1).  Because the landcover data are categorical, in addition to the uncertainty of  the data at 30 m 573 

resolution, additional uncertainty is tied to the selection of homogeneous grassland pixels at 90 574 

resolution, which explains some of the unsuccessful retrievals especially along the grassland-575 

forest, shrub and wetland boundaries.  The potential for estimating σbkg independently for each 576 

location as proposed by Cao and Barros (2023b) provides an alternative to simplify the retrieval 577 

workflow and target the Bayesian inference to the snowmass and volume backscatter ( σvol=σtotal- 578 

σbkg).     579 

Airborne measurements are characterized by large changes in viewing geometry across the flight-580 

line and due to  other factors such as variable winds and turbulence depending on weather 581 

conditions, thus pointing to improved skill from satellite platforms. Building on previous mission 582 

concepts (e.g. Rott et al. 2012) and leveraging substantial theory advances and field campaigns in 583 

the last decade, this study demonstrates the utility and effectiveness of X-and Ku-band SAR 584 

technology to remotely monitor snowmass at high spatial resolution and with accuracy  and 585 

uncertainty that meet the requirements expressed in the most recent Earth Science and Applications 586 

from Space Decadal Survey (NASEM, 2018).   587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 
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7. Appendix A 596 

 597 

 598 

 599 

Figure A1:  Same as Fig. 7b with pixels color coded according to the local SnowSAR incidence angle for all four flightlines and 600 
for single-(top row) and two-layer (bottom row) retrievals at 30 m resolution. 601 
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 602 

Figure A2:  Same as Fig. 7b with pixels color coded according to the local SnowSAR incidence angle for all four flightlines and 603 
for single-(top row) and two-layer (bottom row) retrievals at 90 m resolution. 604 

 605 

 606 
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 607 

Figure A3: Comparison between LIDAR snow depth (SD) and successful retrievals for single and two-layer algorithms. The 608 
pixels are color coded according to the subgrid scale variability of the 30 m upscaled  LIDAR pixel.  609 

 610 
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 611 

Figure A4:  Comparison between SnowSAR snow depth and successful retrievals. The pixels are color coded according to the 612 
subgrid scale variability of the 90 m upscaled LIDAR pixel.  613 
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 614 

Figure A5: Heatmaps of SnowSAR backscatter mesurements (observed) versus retrievals  (simulated) backscatter at 90 m 615 
resolution: a) single-layer snowpack; b) 2-layer snowpack for X-(𝜎𝑋) and Ku- (𝜎𝐾𝑢) bands. Successful retrievals are for pixels 616 
with local incidence angles in the 30o- 45o range and relative residual backscatter (RRB) of less than 30% for each of the four 617 
flights (see Table 4).  618 

 619 
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 620 

Figure A6 Spatial distribution of successful SWE retrievals for 1-layer (a) and 2-layer (b) snowpacks in grassland pixels at 90 m 621 
resolution.  Successful retrievals are for pixels with local incidence angles in the 30o- 45o range and relative residual backscatter 622 
(RRB) of less than 30% for each of the four flights (see Table 4).  623 

 624 

 625 

Figure A7: Heatmaps of  LIDAR snow depth and snow depth  predicted by MSHM at the time of SnowSAR flights for 626 
overlapping pixels at 90 m resolution.  627 

 628 



30 
 

 629 

Figure A8: Heatmaps of LIDAR versus successful snow depth (SD) retrievals at 90 m resolution using overlapping LIDAR and 630 
retrieval pixels.  Successful retrievals are for pixels with local SnowSAR incidence angles in the 30o- 45o range and relative residual 631 
backscatter (RRB) of less than 30% for each of the four flights (see Table 4).  LIDAR SD in  pixels with subgrid scale variability  632 
corresponding to standard deviation of less than 0.3 m for the upscaled  90 m LIDAR pixel are not included.  633 

 634 

 635 

 636 
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 637 

Figure A9: Histogram of snow depth (SD)  from LIDAR, MSHM, and successful retrievals at 30 m using 1- and 2- layer 638 
snowpacks. The total number of pixels for each snow depth product is the same.  Successful retrievals are for pixels with local 639 
incidence angles in the 30o- 45o range and relative residual backscatter (RRB) of less than 30% for each of the four flights (see 640 
Table 4).  LIDAR SD in  pixels with subgrid scale variability  corresponding to standard deviation of less than 0.3 m for the 641 
upscaled  90 m LIDAR pixel are not included.  642 

 643 

 644 

Figure A10 - Histogram of snow depth (SD)  from LIDAR, MSHM, and successful retrievals at 90 m using 1- and 2- layer 645 
snowpacks. The total number of pixels for each snow depth product is the same.  Successful retrievals are for pixels with local 646 
incidence angles in the 30o- 45o range and relative residual backscatter (RRB) of less than 30% for each of the four flights (see 647 
Table 4).  LIDAR SD in  pixels with subgrid scale variability  corresponding to standard deviation of less than 0.3 m for the 648 
upscaled  90 m LIDAR pixel are not included. 649 

 650 

 651 
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Table A1 – Same as Table 5 but for resolution of 90 m. 652 

Flight 

(GMT) 

N  

Layer 

Spatial SD μ [m] Spatial SD σ [m] MARE SD BC SD 

Retrieved MSHM LIDAR Retrieved MSHM LIDAR 
Retrieved

-LIDAR 

MSHM-

LIDAR 

Retrieved

-LIDAR 

MSHM-

LIDAR 

18:11:38 

1 

1.41 1.42 1.40 0.33 0.18 0.26 0.19 0.09 0.90 0.78 

18:43:20 1.27 1.39 1.41 0.32 0.19 0.25 0.21 0.08 0.90 0.85 

18:59:02 1.48 1.38 1.42 0.37 0.20 0.25 0.21 0.07 0.90 0.82 

20:23:38 1.68 1.52 1.66 0.38 0.17 0.19 0.24 0.12 0.66 0.50 

18:11:38 

2 

1.41 1.42 1.40 0.35 0.18 0.26 0.15 0.09 0.95 0.77 

18:43:20 1.29 1.39 1.41 0.32 0.19 0.25 0.16 0.08 0.92 0.85 

18:59:02 1.41 1.38 1.42 0.35 0.20 0.25 0.15 0.07 0.92 0.82 

20:23:38 1.67 1.52 1.66 0.45 0.17 0.19 0.22 0.12 0.76 0.50 

 653 

 654 

Figure A11 -  Analysis of  unsuccessful retrievals for pixels with large mean snow depth residuals at  90 m resolution:  a) Map of 655 
LIDAR snow depth highlighting  in deep blue the locations where very shallow snow is attributed to measurement error. b) Note 656 
spatial agreement between shallow snow depth  and very large  residuals. c)There are only a few points at the edges of forests and 657 
shallow snow depths that are flagged not successful.  The gray elevation contours are plotted every 50 m. 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 
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Table A2: Same as Table 7 but for resolution of 90 m. 669 

Date x y 
Pit SD 

(m) 
Pit SWE 

(m) 

Retrieved SWE 

(m) 
Mean Abs Rel 

Error N 

pixels 

Avg. 

Dist 

(m) 
Pit ID 

1 Lyr 2 Lyr 1 Lyr 2 Lyr 

2/20/2017 -108.184 39.014 1.15 0.368 0.473 0.398 0.29 0.08 4 18 KC1C 

2/20/2017 -108.184 39.014 1.19 0.386 0.471 0.397 0.22 0.03 3 12 KC1E 

2/20/2017 -108.184 39.014 1.18 0.386 0.473 0.399 0.22 0.03 2 29 KC1N 

2/20/2017 -108.184 39.013 1.24 0.414 0.474 0.398 0.15 0.04 3 27 KC1S 

2/20/2017 -108.184 39.014 1.3 0.435 0.476 0.399 0.09 0.08 3 47 KC1W 

2/22/2017 -108.136 39.006 1.32 0.436 0.572 0.490 0.31 0.12 2 39 29E 

2/22/2017 -108.060 39.030 2.10 0.763 0.340 0.384 0.55 0.50 1 43 53W 

2/22/2017 -108.044 39.017 1.68 0.566 0.454 0.499 0.20 0.12 1 75 63E 

2/22/2017 -108.049 39.017 1.49 0.480 0.521 0.530 0.09 0.10 1 29 63W 

2/22/2017 -108.029 39.032 1.66 0.550 0.529 0.553 0.04 0.01 4 47 67N 

2/23/2017 -108.067 39.029 2.13 0.761 0.751 0.606 0.01 0.20 1 70 44E 

2/24/2017 -108.033 39.030 1.8 0.576 0.718 0.601 0.25 0.04 3 60 0 

2/24/2017 -108.033 39.030 1.84 0.598 0.717 0.600 0.20 0.00 2 57 800 

2/24/2017 -108.033 39.030 1.80 0.571 0.717 0.600 0.26 0.05 2 55 1390 

2/24/2017 -108.033 39.030 1.75 0.566 0.687 0.592 0.21 0.05 1 54 2000 

2/24/2017 -108.033 39.030 1.67 0.560 0.687 0.592 0.23 0.06 1 54 2500 

2/24/2017 -108.034 39.030 1.12 0.331 0.687 0.592 1.08 0.79 1 62 4500 

2/20/2017 -108.184 39.014 1.15 0.368 0.473 0.398 0.29 0.08 4 18 KC1C 

2/20/2017 -108.184 39.014 1.19 0.386 0.471 0.397 0.22 0.03 3 12 KC1E 

Mean 1.51 0.50 0.56 0.50 0.26 0.13 2.21 42.53  

 670 

 671 

 672 

Figure A12 – Spatial context for snow pits with very large  absolute relative errors (MARE) calculated as the mean of the 673 
relative difference between SWE retrievals within 100 m of the snow pit and the values at the snow pit  Locations with very large  674 
errors (orange to red) are inside the red box marked in top plot. Snowpit 4500 is  a region of complex land cover including 675 
evergreen forest,  a  road and a pond.  Snowpits 53W and 44E are close to each other on the same side of the road in expansive 676 
grassland.  677 
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