
Replies to Reviewers 

 

We thank all the reviewers for their comments. We have also attached the untracked version of 

the manuscript at the end with all the changes. 

 

Reply To Reviewer 1 

We thank the Reviewer for the helpful comments and suggestions.  The Reviewer’s comments are in 

black.  Our replies are in blue. 

 

Snow Water Equivalent (SWE) is a key parameter in hydrological, climatological and meteorological 

applications. New efforts for spaceborne radar-based SWE retrieval algorithms are under development 

and this paper shows the capability of such retrievals using snow-physical model driven by meteo data, 

radiative transfer and Bayesian inference. This paper focuses on the SWE retrieval framework 

leveraging previous work. The paper shows the readiness and capabilities of combining existing models 

and products to produce a SWE retrieval for RADAR data. The paper is well constructed and provides 

great results for SWE retrievals using Ku band radar. The method is repeatable elsewhere and 

estimating the background with X-band is clever. 

 

Thank you. 

Refining and thinning the results section would help clarify the take home message. Most of the figures 

are almost duplicates and I’m not sure I see the benefit in most cases. Or it is not well explained in the 

text. I have specific comments throughout the paper. 

We made a  conscientious effort to eliminate duplicates in the main paper and revised the manuscript 

for clarity. 

 

Specific comments: 

Line 73-75 : This is a key sentence in setting the objective but it's complicated to understand. I suggest 

reformulating. 

Line 73 is Line 80 in the revised manuscript: Sentence was revised and references were added.  

 

Line 76: Do you need all the verb? I feel like propose and evaluate were enough. Previous studies 

already implemented and demonstrated. 

Line 76 is Line 83 in the revised manuscript: Revised. 

 

Line 83: temporal variability relates to temporal resolution of the orbit or revisit time of the satellite. I 

suggest removing or adding high temporal resolution higher. 

Line 83 is Line 89 in the revised manuscript:  Removed the temporal reference as suggested. 

 

Line 86 : “a coupled multi-layer snow hydrology model”? add model 



Line 86 is Line 92 in the revised manuscript:  Revised. 

 

Line 127 and line 130: Should it be y not x for the retrieved variable? 

Line 127 is Line 133 in the revised manuscript:  Point well taken. Section 2.2 was carefully edited for 

clarity.  We start with general indirect measurements D to pose the general problem, and then for a 

specific instrument we replace D by y.  η includes the geophysical variables x as well as the model 

parameters.                  

 

Line 148 and Line 150: do we maximize P(n|y) or P(y|n)? 

Line 148 is Line 154 in the revised manuscript:  To maximize P(η|y) we need to maximize P(y| η) since P 

(η) is a prior probability.  This should be clearer after the editing. 

 

Line 164 : I suggest a bit more detail in the paragraph. Is y the snow depth, SWE or backscatter? Did you 

use the likelihood ratio to iterate in the MCMC like Pan et al? 

 

Line 164 is Line 167 in the revised manuscript:  Yes.  This was added to the text.  

 

Line 246. Wrong figure number. Should be 6. 

 Line 246 is Line 272 in the revised manuscript: Yes.  Thank you.  This was corrected. 

 

Figure 5 : Is this the layer index? What does 15 layers mean? Top or bottom? Height or normalized 

height would be better. Put density on the x-axis. 

Figure 5 is Figure 6 in the revised manuscript: The layering scheme in MSHM is from bottom to top 

following the evolution of the snowpack during the accumulation.  The higher index layer is the top 

layer; the bottom layer is always the first layer.   

We switched the axis in Figure 5 to have density in the x-axis which is a more intuitive way to 

visualize the density profile of the snowpack as suggested by the Reviewer.   The figure caption was 

also improved for clarity and detail.  

 

Line 267: Why this value? Can you explain more this parameter. “This is an empirical factor that …” 

Line 267 is Line 292 in the revised manuscript: Revised as suggested. 

 

Line 271: replace microphysics for microstructure. 

Line 271 is Line 297 in the revised manuscript: Revised as suggested. 

  



Line 272: add the symbol (𝑙𝑒𝑥) that represent the correlation length in MEMLS. 

Line 272 is Line 299 in the revised manuscript: Revised as suggested. 

 

Table 2: Relates to the previous comment. Why use D?. D is the equivalent grain size used in DMRT. 

Replace D for 𝑙𝑒𝑥. 

There was a notation confusion between the snow grainsize and correlation length.  This is fixed now. 

 

Line 298: “for each layers” 

Line 298 is Line 335 in the revised manuscript: Revised as suggested. 

 

Figure 6: The figure could be clearer. Later you refer to steps, but no steps are indicated in the figure. 

Pretty hard to understand even if you know Bayesian SWE retrieval. This could improve the 

understanding of the reader. 

Figure 6, now Figure 5, was completely revised with each step identified.  We hope the workflow is 

clearer now. 

 

Line 317: It is not clear how the background is estimated. Maybe Specified that the volume is modelled 

from MSHM in the text not just in figure 6. Then explain why only using X band. It might not be obvious 

to someone not familiar with the fact that X band is more sensitive to the background than Ku. 

Done.  This is now in Line 316.  We added a reference to justify the choice of HH-pol and revised the 

sentence.  As pointed out in Section 3, SnowSAR Ku HH-pol measurements are not reliable.   

 

Line 358 : “toweak” change “to a weak” 

Line 358 is Line 387 in the revised manuscript: Revised as suggested. 

 

Figure 8 : I don’t' see the point of having 4 columns in the figure and then another figure for Ku. Can 

your aggregate heatmap for all dates and have x and ku in the same figure? They all look the same. I 

think we get the idea that the backscatter converges to the observed. 

We understand the Reviewer’s point. Each heatmap synthesizes independent retrievals over different 

flight paths and thus for different viewing geometries.  Because of the importance of showing the 

robustness of the algorithm, we prefer to keep the results.  We did revise the figure to make it easier 

to read and less crowded.  We hope this is acceptable. 

 

 

Line 471: remove in after between. 



Line 471 is Line 493 in the revised manuscript: Revised as suggested. 

 

Line 475: add a coma after “In all cases”. 

Line 475 is Line 498 in the revised manuscript: Revised as suggested. 

 

Table 6: change title to “ Same as Table 5 but for resolution = 90 m”. 

Done.  Tabel was moved to Appendix as Table A1. 

 

Line 529 – 530: Can you add the mean values stated here in the table as the last row? 

Line 529 is Line 521 in the revised manuscript: Revised as suggested. 

 

Table 5, 6, 7 and 9: Any benefit in having the same table but with different resolutions? We get the idea 

in Table 4 regarding the resolution. Just make the point you want and move on. There is no point in 

having both figure 12 and 13. Just show one. I don’t see any big conclusion regarding the resolution so 

there is no point in adding extra figures and tables. 

The Reviewer’s point is well taken.  Figures and Tables for 90 m resolution were moved to Appendix. 

 

Thank you. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Reply To Reviewer 2 

We thank the Reviewer for the helpful comments and suggestions.  The Reviewer’s comments are in 

black.  Our replies are in blue. 

 

General Comments 

The authors of this manuscript use a Bayesian physical-statistical model to retrieve snow depth using data 

that was acquired during SnowEx’17, including pit data, ASO lidar acquisitions and the X- and Ku-band 

SnowSAR data. The methods presented by the authors are clearly defined, with encouraging results with 

error ranges of about 20cm SWE. The paper is methodologically and analytically sound, but does lack 

context of why certain methods are being employed, and the representation of results in figures need to be 

improved. For instance, in the Introduction it was overall well written to describe the need for remote 

sensing of snow and how SnowEx’17 is an attempt to address this concern.  

The Reviewer’s comment is well taken.  The writing is revised for clarity and detail in Lines 71-81 of the 

Introduction. 

The paper is very detailed in its methods of preparing the data for the model, and the modeling itself. 

What I think is lacking here is the reason that you are completing some of these steps. For instance, in 

section 4.1.1. you discuss in detail how you divide the snowpack with multiple layers into a snowpack 

with 1 or 2 layers, but never state why a 2 layer pack would be useful (that snowpack generally has a 

wind slab and depth hoar layer). The justification for many of the steps in this paper need to have a bit 

better context provided. 

Thank you.  We revised the writing to address these points. In particular, Section 4.1, Lines 250-272 

explicitly address the points raised by the Reviewer.   

Overall the paper is of publication quality in terms of its research, but the presentation could be improved, 

with my general and specific comments provided here. 

Thank you. 

Section 2. Previous Work 

Line 55: “Time-series observations are available presently from tower measurements, albeit at the point 

scale of the tower footprint”. I think I know what study/setup you’re referring to here, but you have not 

referenced the papers that have been published based on them. Also, a sentence that states why you are 

not using a tower approach in this work would be useful. 

Line 55 is Line 57 in the revised manuscript: We added a reference, and a sentence for context reading the 

joint space-time variability of snowpacks. 

Line 86: “demonstrated the utility of a couple multi-layer snow hydrology coupled with a..” – do you 

mean “snow hydrology model coupled…”? 

Line 86 is now Line 91: Revised as suggested. 

 



 

Line 133-134: “the second is the prior of the backscatter… the prior of the snowpack physical…” this 

sentence is a little unclear, please revise. 

Lines 133 -134 are Lines 139-141 in the revised manuscript:  Revised. 

Line 144: “assuming that we have good understanding” grammar issue here “assuming that we have a 

good understanding”. 

Line 144 is Line 150 in the revised manuscript: Done. 

Table 1: I may have missed it, but why are all the datasets being upscaled to 90m? I also noticed this 

discussed in lines 175-176, but there was no justification as to why – please include. 

A justification was added in Section 4.1, lines 259-268 and referred to in Lines 184-185. 

Line 299: “from the multilayer snowpack simulated by MSHM as for the single layer case” I’m not sure 

what you are trying to say here. 

Line 299 is Line 336 in the revised manuscript: Removed redundant “as for the single layer case”. 

Line 366: “restructingthe” – restricting the 

Line 366 is Line 396 in the revised manuscript: Revised. 

Figure 7 – None of the panels have a letter denoting which panel they are. The panels with the red box 

should be made into a new figure that zooms into the distribution of values within the red box – there are 

discussions in the Results section of what’s happening here, but it is difficult for the reader to confirm 

what the text is saying graphically because it is far too small. 

Figure 7 was revised to improve readability.  A zoom of the red box region alone is now provided.  

Figure 8, 9, 10, 11 also has no panel labels. 

Added and reformatted. 

Line 433: “Fig. A7” – where is A7? 

Line 433 is Line 467 in the revised manuscript: Figure A7 is in Appendix following journal guidelines.  

We added an explanation in lines 400-402. 

Line 445: “Fig A8” – where is A8 ? Be specific when referring to the appendix. 

Line 445 is Line 468 in the revised manuscript: We are following journal guidelines indicating that 

figures starting by A indicate Appendix. 

Line 477: “Fig A11” – where? 

See above. 

 

 

Line 534: “including water, forest (4500) and proximity” – what does 4500 refer to? 



Line 534 is Line 517 in the revised manuscript: Revised.  4500 is the reference number of the pit at the 

bottom of Tables 6 and A2. 

Table 7: There is a note in the caption that “shaded rows correspond to large local MARE” – however 

there are no shaded rows in the table. 

Table 7 is Table 6: It should be italicized.  Corrected. 

 

Thank you. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Reply to Editor’s Comments: 

We thank the Editor for the helpful comments and suggestions.  The Reviewer’s comments are in black.  

Our replies are in blue. 

 

Your reference list includes works “in review”. Such works can be cited upon submission if being 

available to the reviewers. They should not be cited in the final, accepted manuscript, unless published, 

accepted for publication, or available as preprint with a DOI. Checking your paper, I noticed that your 

table 4 contains coloured cells. Please note that this will not be possible in the final revised version of the 

paper due to HTML conversion of the paper. When revising the final version, you can use footnotes or 

italic/bold font. For now, the process will continue, but please note that the final version cannot be 

published by using coloured tables. 

 

Response: We have updated the reference and added the doi for the preprint. Additionally we have 

updated the table and removed the shaded areas.  
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BAYESIAN PHYSICAL-STATISTICAL RETRIEVAL OF SWE AND SNOW DEPTH FROM X 1 
AND KU-BAND SAR - DEMONSTRATION USING AIRBORNE SNOWSAR IN SNOWEX’17 2 
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Abstract 10 

A physical-statistical framework to estimate Snow Water Equivalent (SWE) and snow depth from 11 
SAR measurements is presented and applied to four SnowSAR flight-line data sets collected 12 

during the SnowEx’2017 field campaign in Grand Mesa, Colorado, USA. The physical (radar) 13 
model is used to describe the relationship between snowpack conditions and volume backscatter. 14 
The statistical model is a Bayesian inference model that seeks to estimate the joint probability 15 

distribution of volume backscatter measurements, snow density and snow depth, and physical 16 
model parameters.   Prior distributions are derived from multilayer snow hydrology predictions 17 

driven by downscaled numerical weather prediction (NWP) forecasts. To reduce noise to signal 18 
ratio, SnowSAR measurements at 1 m resolution were upscaled by simple averaging to 30 and 90 19 
m resolution. To reduce the number of physical parameters, the multilayer snowpack is 20 

transformed for Bayesian inference into an equivalent single- or two-layer snowpack with the same 21 

snow mass and volume backscatter. Successful retrievals meeting NASEM (2018) science 22 
requirements are defined by absolute convergence backscatter errors ≤ 1.2 dB and local SnowSAR 23 
incidence angles between 30o and 45o for X- and Ku-band VV-pol backscatter measurements and 24 

were achieved for 75% to 87% for all grassland pixels with SWE up to 0.7m and snow depth up 25 
to 2 m. SWE retrievals compare well with snow pit observations showing strong skill in deep snow 26 

with average absolute SWE residuals of 5-7% (15-18%) for  the two-layer (single-layer) retrieval 27 
algorithm. Furthermore, the spatial distributions of snow depth retrievals vis-à-vis LIDAR 28 
estimates have Bhattacharya Coefficients above 94% (90%) for homogeneous grassland pixels at 29 

30 m (90 m resolution), and values up to 76% in mixed forest and grassland areas indicating that 30 
the retrievals closely capture snowpack spatial variability.  Because NWP forecasts are available 31 

everywhere, the proposed approach could be applied to SWE and snow depth retrievals from a 32 
dedicated global snow mission.  33 
  34 
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1. Introduction 35 

The seasonal snowpack plays a critical role in climate and weather variability due to its role in the 36 

surface energy budget on account of its high albedo, and in the surface water budget  as temporary 37 

storage of frozen precipitation in the cold season until it melts in the warm season and becomes 38 

available as runoff. The water stored in the snowpack is measured by the Snow Water Equivalent 39 

(SWE), the depth of liquid water per unit area that would be released if the snowpack were to melt 40 

completely. It is the product of the specific gravity of snow with respect to water (ρsnow/ρw) and 41 

the depth of the snowpack (SD). To map SWE in the cold season is to map snow water resources. 42 

To map onset of melt and snow wetness is to map the timing and geography of snow water 43 

resources availability. Climate variability and change with increasing air temperature, shifts in 44 

atmospheric moisture convergence patterns, and increases in the frequency of extreme events is 45 

already causing significant changes in frequency and patterns and timing of seasonal snow 46 

accumulation and melt with severe implications for water and food security in addition to 47 

cascading economic and ecosystem impacts (Huang and Swain, 2022; Musselman et al., 2021; 48 

Sturm et al., 2010). 49 

The need to capture snowpack heterogeneity and dynamics tied to weather, climate, landcover and 50 

landform variability remains a chief challenge to developing a snow observing system at the spatial 51 
and temporal scales required to answer water cycle science questions and for societal decision-52 

making. The potential for systematic snowpack monitoring in remote regions has long been 53 
investigated, including the integration of remote sensing measurements and physical models (e.g. 54 
(Martinec et al. 1991; Mote et al. 2003; Bateni et al. 2015; Li et al. 2017; Kim et al. 2019; Cao and 55 

Barros, 2023a).  Assimilation of radiance or backscatter is most powerful with a time series of 56 

observations.  Time-series observations are available presently from tower measurements, albeit 57 
at the point scale of the tower footprint (see summary by Tsang et al. 2022), and do not capture 58 
the large joint spatial and temporal variability of snowpacks from local to regional scales 59 

depending on weather and climate, landform, land use and landcover. Frequent spatial 60 
observations are required for this purpose. Airborne observations can be used for mapping but 61 

typically occur once or twice during a winter season and over limited areas.  A dedicated satellite 62 
mission is necessary to acquire time-series of measurements globally.    63 

Presently, advances in radar technology and retrieval algorithms (Tsang et al., 2022), and 64 
especially the  demonstrated capabilities of NewSpace satellite missions (Villano et al. 2020) make 65 
high spatial resolution of Synthetic Aperture Radar (SAR; 10’s m ) Earth observations from space 66 

feasible in contrast to  the challenges faced  in the past (Rott et al. 2012). During the SnowEx’17  67 

field campaign (Kim et al., 2017), a comprehensive data set consisting of airborne dual-frequency 68 

SAR (X- and Ku-band Synthetic Aperture Radar) backscatter measurements using the SnowSAR 69 
instrument (Macedo et al. 2020), the Airborne Snow Observatory (ASO, Painter et al. 2018) and a 70 
plethora of high-quality ground-validation measurements of snowpack properties and ancillary 71 
data (Table 1) offer an unprecedented opportunity to investigate the full potential of SAR toward 72 
developing the next generation of retrieval algorithms. 73 

Due to the highly nonlinear snow physics and the time-varying stratigraphy of snowpacks, 74 
radiance or backscatter measurements depend on the vertical structure of snowpack physical 75 

properties such as snow density, snow temperature, and snow grain size in addition to SWE and 76 
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snow depth. Because the number of observations is smaller than the number of parameters required 77 
to solve the inverse-problem, retrieval of SWE and snow depth is an underdetermined estimation 78 

problem. This challenge can be addressed using a physical-statistical approach for retrieval.  79 
Physical-statistical approaches combine physical process models with a Bayesian statistical 80 
framework to inform how geophysical states and parameters relate to measurements by obeying 81 
fundamental physical constraints (Berliner, 2003;  Lowman and Barros, 2014).  In this manuscript, 82 
we propose, and evaluate a general physical-statistical framework to retrieve SWE from SnowSAR 83 

measurements across a heterogeneous landscape during SnowEx’17. 84 

 85 

2. Previous Work 86 

2.1 Forward Simulation - From SWE to Backscatter 87 

The advantage of SAR technology is the high-spatial resolution of its measurements, which is 88 

necessary to capture the spatial heterogeneity of snowpack physical processes (e.g. Deems et al. 89 

2016; Mendoza et al., 2020; Manickam and Barros, 2020) as demonstrated in forward simulations.  90 

Cao and Barros (2020, 2023a; hereafter CB20 and CB23) demonstrated the utility of a multi-layer 91 

snow hydrology (MSHM) coupled with a radiative transfer model (RTM) forced by high-92 

resolution operational numerical weather prediction (NWP) model forecasts to capture the 93 

seasonal hysteresis behavior of the seasonal snowpack at Grand Mesa and Senator Beck in 94 

Colorado against Sentinel-1 C-band measurements.  95 

The MSHM is a physically driven snow hydrology model that simulates the evolution of snowpack 96 

physical properties including detailed stratigraphy (Kang and Barros, 2012a-b; CB20). During 97 

snowfall events, fresh snow is added to the top layer of the snowpack until a threshold 98 

accumulation is met, and a new layer forms. The RTM used here is MEMLS3a (Microwave 99 

Emission Model of Layered Snowpacks adapted to include backscattering by  Proksch et al., 2015). 100 

MEMLS is a physically driven radiative transfer model which takes snowpack characteristics as 101 

inputs and simulates its microwave emission for a frequency band with  four polarizations – HH, 102 

VV, HV and VH (originally proposed by Wiesmann and Mätzler, 1999). To estimate total 103 

scattering, ground backscatter σbkg must be modeled as well, as described below. .  104 

Figure 1 illustrates the various backscatter mechanisms contributing to total backscatter (σtotal) in 105 

active microwave measurements represented in MEMLS3&a, the RTM: volume backscatter (σvol) 106 

from the multiple interactions of the incoming radar signal within the snowpack, the backscatter 107 

at the snowpack-air interface (σsurf) and at the snowpack-ground interface including interactions 108 

with submerged vegetation and litter (σbkg).  In forested areas, additional backscatter mechanisms 109 

are associated with the multiple bounce pathways among tree canopy, intercepted snow, tree 110 

trunks, and snowpack. Depending on viewing geometry (flight path and incidence angle), σtotal 111 

measurements from areas without trees in regions of mixed landcover can include significant 112 

contribution from trees along the grassland-forest transitions. 113 

 114 
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 115 

Figure 1: Scattering mechanisms for grassland submerged by snow and snowpack over bare soil or rock: (1) Volume Backscatter 116 
σvol; (2) surface backscatter σsurf; (3) background backscatter at the snow-ground interface σbkg; (4) snowpack-ground-canopy-tree 117 
trunk interactions at forested boundaries.  Red arrows (1), (2) and (3) are resolved in the retrieval applications demonstrated here. 118 

 119 

CB23 used the coupled MSHM-MEMLS in forward mode to predict Sentinel-1 C-band volume 120 

backscatter σ
vol

 without calibration or nudging of ground observations without bias and within ± 121 

2.5 dB at  90 m resolution across terrain slopes in the [10o-52o] range for barren land, alpine grass 122 

and shrubs and in forested areas with snow-free canopy at the beginning of spring  in the Senator 123 

Beck Basin in Colorado.  They estimated  σbkg as the average of Sentinel-1 measurements for 124 

snow-free conditions.  Cao and Barros (2023b) modified MEMLS3&a to include double-bounce 125 

effects among snowpack and vegetation (MEMLS-V) and retrieved σbkg from total backscatter 126 

σ
total 

measurements in mixed landcover using simulated annealing.  Their estimates are consistent 127 

with CB23, suggesting  potential to simplify the inverse-problem of estimating snowpack physical 128 

properties from total backscatter measurements in mixed landcover and further simplify the 129 

physical-statistical retrieval framework proposed here, although further evaluation is necessary.  130 

 131 

2.2 Physical-Statistical Retrieval 132 

For retrieval in a Bayesian framework, the probability of the retrieved geophysical variable x (the 133 

inferred posterior distribution) is conditional on the a priori knowledge of the variable x (the prior 134 

distribution),  indirect measurements D, and a physical model M(η) (e.g., the snow radiative 135 

transfer algorithm in this case ) with physical parameters η (including x) and statistical error 136 

parameters ζ.  The joint probability distribution of M, D, η, and ζ can be written as: 137 

𝑃(𝑀, 𝐷, 𝜂, 𝜁) = 𝑃(𝐷|𝑀, 𝜂, 𝜁) × 𝑃(𝑀|𝜂, 𝜁) × 𝑃(𝜂, 𝜁) (1) 138 

The first term to the right-hand side of Eq. (1) is the backscatter data model, the second term is the 139 

prior of the backscatter, and the third term is the prior of the snowpack physical parameters 140 

(including snow depth and snow density, etc) with statistical error parameters. Assuming the 141 
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measurements do not depend on the physical parameters, the model does not depend on the 142 

statistical error parameters, and that the physical parameters and the statistical parameters are 143 

independent,  Eq. (1) can be revised to read 144 

𝑃(𝑀, 𝐷, 𝜂, 𝜁) = 𝑃(𝐷|𝑀, 𝜂) × 𝑃(𝑀|𝜂) × 𝑃(𝜂)  × 𝑃(𝜁) (2)                                        145 

And finally in the context of specific measurements y with known uncertainty described by P(y) 146 

  147 

 148 

𝑃(𝑀, 𝜂, 𝜁| 𝑦) = 𝑃(𝑦|𝑀, 𝜂) × 𝑃(𝑀|𝜂) ×
𝑃(𝜂) ×𝑃(𝜁)

𝑃(𝑦)
 (3) 149 

The physical model M and P(y) are invariant and assuming that we have a good understanding of 150 

the statistical errors, then Eq. (3) can be further simplified as follows 151 

𝑃(𝜂|𝑦)  ∝ 𝑃(𝑦|𝜂) × 𝑃(𝜂) (4)    152 

      153 

In the context of Bayesian inference the goal is to maximize P(η|y), the posterior probability of 154 

physical parameters conditional on measurements informed by the a priori parameter probabilities 155 

P(η). This implies maximizing the second term in Eq.(4), the posterior of the backscatter 156 

conditional on physical parameters η, implies minimizing the difference between measurements y 157 

with known error covariance matrix Σ𝑦 and model predictions M(η). For multiple concurrent 158 

measurements, 𝑃(𝑦|𝜂) can be described by a multivariate normal distribution,  159 

𝑃(𝑦|𝜂) = (2𝜋)(−
𝑁
2

) ∣ Σ𝑦 ∣−
1
2 𝑒𝑥𝑝 [−

1

2
(𝑦 − 𝑀(𝜂))𝑇Σ𝑦

−1(𝑦 − 𝑀(𝜂))] (5) 160 

where N is the number of measurements at a given location and time (e.g. backscatter at different 161 

frequencies as in Durand and Liu, (2012). 162 

Pan et al. (2023, hereafter P23) adapted a  Bayesian retrieval algorithm previously developed to 163 

estimate SWE from passive microwave measurements (Pan et al. 2017, hereafter P17 ) to active 164 

microwave, hereafter referred to as Base-AM. The snow radiative transfer algorithm in Base-AM 165 

is MEMLS, and the semi-empirical Dobson model is used to estimate the soil dielectric constant 166 

as a function of soil moisture and soil texture (Dobson et al. 1985; Hallikainen et al. 1985). A 167 

Monte Carlo Markov Chain (MCMC) iterative algorithm (Metropolis et al. 1953) is used to sample 168 

from P(η|y) starting from initial values and using the likelihood ratio criteria to achieve 169 

convergence.  In this work, realistic snowpack predictions from MSHM-MEMLS are used to 170 

define the prior distributions of parameters and constrain the Bayesian retrievals: y represents the 171 

SnowSAR backscatter measurements and η represents to all model parameters and geophysical 172 

variables including SWE, SD, snow density. 173 

 174 

3. Study Area and Data 175 

3.1 Study Area and Ancillary Data 176 
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The study region is  Grand Mesa, Colorado, a plateau that is 2,000 m above adjacent low-lying 177 

areas and is surrounded by ridges up to 500m  in elevation (as depicted in Fig. 2).  Grand Mesa 178 

has an alpine climate, experiencing snowfall throughout the year except during the months of July 179 

and August.  Landcover is heterogeneous with grasslands in the west and a mix of evergreen and 180 

deciduous forest to the east. Numerous wetlands are widespread across the Mesa, especially in the 181 

transition from grassland to forest. The land cover data were obtained from the National Land Data 182 

Assimilation System (NLDAS). The datasets were upscaled to 90 m using nearest neighbor 183 

interpolation to support retrievals at 90 m resolution (see Section 4). NLDAS is used to determine 184 

landcover type in the snow hydrology model. NALCMS is used to upscale the evaluation data. 185 

Hourly albedo is derived from NLDAS at 12.5 km resolution. A summary of all the datasets used 186 

in this study is available in Table 1. 187 

 188 

Table 1: Summary list of datasets used in the study.  189 

Data Source 

Spatial 

Resolution 

Temporal 

Resolution 
Date 

Range 

Relevant 

Link 
Initial Final Initial Final 

Rainfall 

HRRR 3 km 
30 m, 90 

m 
1 hr 30 min 

9/1/2016 - 

2/25/2017 
https://rapidrefresh.noaa.gov/hrrr/ 

Temperature 

Air Pressure 

Incoming SW 

radiation 

Incoming 

Longwave 

radiation 

Wind speed 

Humidity 

Albedo NLDAS 12.5 km 30 m 1 hr 30 min 
9/1/2016-

2/25/2017 
https://ldas.gsfc.nasa.gov/ 

Backscatter 
SnowSAR – 

SnowEx’17 
1 m 

30 m, 

90 m 
- - 2/21/2017 https://nsidc.org/data/snex17_snowsar/versions/1  

Landcover 
NLCD, 

NALCMS 
30 m 

30 m, 90 

m 
- - - 

https://www.usgs.gov/centers/eros/science/national-

land-cover-database 

http://www.cec.org/north-american-land-change-

monitoring-system/ 

Snow Depth 
LIDAR – 

SnowEx’17 
3 m 

30 m, 

90 m 
- - 2/25/2017 https://nsidc.org/data/aso_3m_sd/versions/1  

SWE 
Snowpit – 

SnowEx’17 
- - - - 

2/20/2017-

2/24/2017 
https://nsidc.org/data/snex17_snowpits/versions/1 

 190 

https://rapidrefresh.noaa.gov/hrrr/
https://ldas.gsfc.nasa.gov/
https://nsidc.org/data/snex17_snowsar/versions/1
https://www.usgs.gov/centers/eros/science/national-land-cover-database
https://www.usgs.gov/centers/eros/science/national-land-cover-database
http://www.cec.org/north-american-land-change-monitoring-system/
http://www.cec.org/north-american-land-change-monitoring-system/
https://nsidc.org/data/aso_3m_sd/versions/1
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 191 

Figure 2: Study area in Grand Mesa, Colorado. a) Location of Grand Mesa in Colorado, with historical Apr 1 SWE average as 192 
base map. b) Paths of 4 SnowSAR SnowEx’17 flights on 21 Feb 2017, with true color image obtained from Landsat on 03/11/2017 193 
as the base map. c) Land cover of the study region. Forest-1 are needle leaf forests; Forest-2 are broadleaf forests. d) Digital 194 
elevation map of the study region. 195 

 196 

3.2 Atmospheric Forcing  197 

Numerical Weather Prediction (NWP) outputs are used as the atmospheric forcing for the snow 198 

hydrology model and to set up boundary conditions. Previously, CB20 and CB23 relied on HRRR 199 

(High-Resolution Rapid Refresh) hourly forecasts at 3 km and downscaled it to 90 m in Grand 200 

Mesa. Here, the same data set was independently downscaled to 30 m as well.  The HRRR dataset 201 

is produced by National Ocean and Atmospheric Agency (NOAA) by hourly assimilation of  202 

observations at 13 km resolution (Benjamin et al., 2016; Table 1).  Hourly atmospheric forcing 203 

was linearly interpolated to 30 min temporal resolution used in the snow hydrology model. 204 
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 205 

 206 

Figure 3:  Maps of incidence angles along SnowSAR flight paths on February 21, 2017 during SnowEx’17. 207 

 208 

3.3  SnowSAR Backscatter 209 

During SnowEx’17, airborne microwave backscatter measurements were made in Grand Mesa on 210 

21 Feb 2017 at 1 m resolution (Table 1). The SnowSAR instrument is a dual frequency (X and Ku 211 

Band) radar. A total of six flightlines were completed, two short ones on sloped densely forested  212 

terrain and four long lines on the plateau. Here, only the four flightlines on the plateau are used for 213 

analysis (Fig. 2 and Fig. 3). The flights are between 18:00 and 21:00 GMT (noon – 3PM  MST). 214 

SnowSAR data quality control measures included filtering based on aircraft attitude (there were 215 

line segments with turbulence), beam incidence angle/antenna pattern, and signal-to-noise-ratio of 216 

the backscatter coefficients. Processing of the original airborne SAR measurements and quality 217 

control indicate that only the co-pol X-band HH- and VV-pol as well as Ku-band VV-pol 218 

measurements are adequate for retrieval. Geolocation was verified against corner reflector targets 219 

and geographic features and found to be very robust. The SnowSAR data were upscaled to 30 m 220 

and 90 m resolution by simple averaging of all SnowSAR measurements within each pixel.  221 

 222 

3.4 Validation Data 223 

LIDAR Snow Depth – The Airborne Snow Observatory (ASO) LIDAR measurements of snow 224 

depth at 3m resolution across Grand Mesa  are available for SnowEx’17 on February 25,  thus 4 225 

days after the SnowSAR flights (Painter et al., 2018; Table 1). There were no significant snow 226 

storms or strong winds in that period, except for about 3mm of rainfall for less than 1 hour on 227 

February 24. These data are used to examine the distribution of retrieved snow depths, that is 228 

indicative of the spatial heterogeneity of the snowpack, and the relative absolute  differences 229 

between LIDAR measurements and retrieval of snow depth,  that are indicative of local retrieval 230 

errors. The LIDAR data were upscaled to 30 m and 90 m using simple averaging  (e.g., Fig.4a). 231 

There can be large snow depth underestimation errors associated with upscaled LIDAR retrievals 232 

along the edges of forests where the snow depth is underestimated consistent with previous work 233 

(e.g. Deems et al. 2013; Jacobs et al. 2021).  Given the expect measurement uncertainty on the 234 



9 
 

order of 10-20 cm in Grand Mesa, which is amplified by microtopography, LIDAR pixels with 235 

snow depth shallower than 20 cm are not considered for evaluation. 236 

Snowpit SWE -  Multiple snowpits were excavated during the SnowEx’17 field campaign across 237 

Grand Mesa (Table 1). Due to the small number of snow pit measurements along the SnowSAR 238 

flightlines on 21 February,  snowpit measurements on 20-24 of February were considered for 239 

evaluation assuming that in the absence of  snowstorms or other weather events the snow pack 240 

does not change significantly during the 4-day period. Differences are expected at local places but 241 

the overall spatial trends should be maintained such as the west-east gradient in snow depth.  The 242 

values of snowpit SWE are estimated using an average of the snow density measurements at 243 

different depths applied to the entire snow depth. Only pits in the non-forested areas were selected 244 

for evaluation (Fig. 4b). 245 

 246 

 247 

Figure 4:   a) Flight footprint of the LIDAR instrument used to measure the snow depth during SnowEx’17. b) Location of snow 248 
pits used to measure SWE 20-24 Feb 2017.  The legend identifies SnowEx’17 Pit IDs. 249 

 250 

4. Retrieval Algorithm 251 

Simplicity and computational efficiency are desirable attributes for an operational algorithm that 252 

produces successful retrievals, here understood as meeting science uncertainty requirements and 253 

latency adequate to meet applications needs defined by NASEM (2018). The retrieval 254 

methodology builds on existing and well evaluated snow hydrology, radiative transfer,  and 255 

physical-statistical models (CB20,CB23, P17, P23) previously reviewed in Section 2.  A list of 256 

forcings and coupling variables and parameters among MSHM, MEMLS and Base-AM is 257 

provided in Table 2.  258 

Averaging is necessary to reduce the signal to noise ratio (SNR) in SnowSAR measurements at 259 

their native resolution (Section 3.3).  Because the highest spatial resolution of available ancillary 260 

data sets is 30 m, the SnowSAR measurements were upscaled to 30 m to eliminate the need for 261 



10 
 

interpolation and, or downscaling that introduce further uncertainty.  Following results by 262 

Manickam and Barros (2020), the algorithm was also applied at 90 m resolution consistent with 263 

the first scaling break identified in Sentinel-1 SAR backscatter.   The implication of linear scaling 264 

behavior is that successful retrievals at 90 m resolution can subsequently be statistially downscaled 265 

with confidence, which has significant computational advantages. Further upscaling was not 266 

conducted because the number of pixels becomes very small given the available coverage of 267 

SnowSAR flights. 268 

 269 

Table 2: Input and output parameters from the three models in the SWE physical-statistical retrieval framework. 270 

Model  Input Output Reference 

MSHM 

Rainfall  

Cao and Barros 

(2020) 

Temperature Snow Temperature Profile 

Air Pressure Soil Temperature Profile 

Incoming shortwave radiation Snow Density Profile 

Incoming longwave radiation Snow Depth Layering Profile 

Wind speed Liquid Water Content Profile 

Humidity Snow Correlation Length Profile 

Albedo  

MEMLS 

Snow Temperature Profile  

Proksch et al. 

(2015) 

Soil Temperature Profile  

Snow Density Profile Diffused Reflectivity Profile 

Snow Depth Layering Profile Specular Reflectivity Profile 

Snow Correlation Length Profile Total Backscatter Coefficient 

Cross polarization fraction  

Ground rms height  

Base-AM 

Equivalent Snow Temperature Prior 

Optimized – Snow Layer Depth  

              Snow Density 
Pan et al., (2023) 

Equivalent Soil Temperature Prior 
Equivalent Snow Density Prior 
Equivalent Snow Depth Prior 

Correlation Length 
Cross polarization fraction 

Ground rms height 
Total Backscatter Coefficient Prior 

 271 

Figure 5  illustrates the retrieval workflow consisting of four main steps. Step 1 - Snow hydrology 272 

simulation using MSHM to produce a layered snowpack and volume backscatter simulation using 273 

MEMLS (𝜎𝑣𝑜𝑙
𝑠𝑖𝑚).  Step 2 - Bayesian estimation of  ground parameter priors that govern background 274 

backscatter σbkg using MEMLS assuming a very thin film of snow on the ground (1 mm SD) at the 275 

beginning of the accumulation season and estimation of the σbkg by subtraction of 𝜎𝑣𝑜𝑙
𝑠𝑖𝑚 from 276 

SnowSAR total backscatter measurements 𝜎𝑆𝐴𝑅
𝑡𝑜𝑡 .  Step 3 -  Determination of snowpack priors for 277 

Bayesian SWE retrieval using results Step 1 and Step 2.  Step 4  - Bayesian optimization of 278 

simulated 𝜎𝑆𝐴𝑅
𝑡𝑜𝑡  to derive posterior distributions of SD and ρsnow for the single- and two-layer (1|2) 279 

equivalent  snowpack, and subsequent calculation of retrieved SWE posperior distributions  280 

 281 
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 282 

Figure 5: Workflow of the SWE Physical-Statistical retrieval framework. NWP atmospheric forcings drive MSHM to determine 283 
priors for the Bayesian radiative transfer model (Base-AM) and synthetic backscatter for ground parameters.  SnowSAR backscatter 284 
measurements are assimilated to determine the posterior distribution of the snowpack parameters.   285 

 286 

4.1 Layered Snowpack Simulations (Step 1) 287 

Following the methodology presented in Section 2.1, MSHM was run for a full-year starting from  288 

snow free conditions on September 1st 2016  using downscaled HRRR data as atmospheric forcing 289 

(Section 3.2) and a timestep of 30 mins. On the day of the SnowSAR flights,  the snowpack 290 

physical properties predicted at times corresponding to each of the four flights are used to derive 291 

the 1|2 Layer equivalent snowpack properties used in the retrieval.  The simulated volume 292 

backscatter (𝜎𝑣𝑜𝑙
𝑠𝑖𝑚) was estimated by specifying the cross polarization fraction parameter Q=0.2 293 

following CB20.  This is an empirical coefficient that distributes the diffuse scatering into cross 294 

and like polarization components in MEMLS (Proksch et al. 2014).   295 

In realistic layered snowpacks, stratigraphy (i.e., vertical heterogeneity) is a dominant feature of 296 

the density, temperature, microstructure, and dielectric properties (e.g., emissivity and 297 

reflectivity). The vertical structure of snow microstructure in MSHM is described using a 298 

parameterization of snow correlation length (lex) consistent with MEMLS formulation.  Depending 299 

on the number of layers, this poses an undetermined problem as the number of measurements is 300 

equal to the number of frequencies and the number of polarizations available (typically two or 301 

three). For example, there are only four observations for a dual-frequency measurement with dual 302 

polarization. In contrast, the set of independent parameters per layer includes snow density, layer 303 

thickness, liquid water content, snow grain size or correlation length, temperature, reflectivity, and 304 

transmissivity.  305 

While converting the multi-layer snowpack to a single-layer model is the simpler path to address 306 

the undetermined inverse-propblem, fresh snowfall accumulation and snowpack crusting artifacts 307 
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due to melt-refreeze cycles, as well as hardening by wind action introduce strong density and grain 308 

size differences at the top of the snowpack.  To capture this behavior, we implement and evaluate 309 

the retrieval algorithm for both single and two-layer equivalent snowpacks derived from the 310 

layered snowpack simulated by MSHM. The equivalent  single- or two-layered snowpack 311 

parameters for each pixel are obtained by matching SWE, snow depth (SD) and volume backscatter 312 

(𝜎𝑣𝑜𝑙
𝑠𝑖𝑚) of the simulated multilayer snowpack. 313 

 314 

4.2 Ground and Snowpack Parameter Priors  (Steps 2 and 3) 315 

A first estimate of the σbkg is obtained by subtracting 𝜎𝑣𝑜𝑙
𝑠𝑖𝑚  from SnowSAR X-band HH-pol 316 

𝜎𝑆𝐴𝑅
𝑡𝑜𝑡  measurements following Baghdadi et al. (2011) who found better performance among 317 

backscattering models for HH-pol against TerraSAR-X measurements. In Base-AM, σbkg depends 318 

on the effective effective soil moisture and soil surface roughness.  To optimize these parameters, 319 

σbkg  is used as an “observed” value. To simulate snow-free conditions the snow depth is 320 

constrained to a maximum value of 1 mm in Step 2. The cross polarization fraction Q initially 321 

specified as Q=0.2 is optimized first and separately from other ground parameters in the third step 322 

of the retrieval algorithm (Fig. 5). The posterior distributions of the ground parameters in Step 2 323 

are used along with the 1|2 layer prior distributions and the SnowSAR measurements to estimate 324 

the posterior distributions of snow depth and snow density using the Base-AM framework (Fig. 5) 325 

and both X- and Ku-band VVpol. SWE is subsequently derived from snow depth and snow density.   326 

Single-layer Snowpack - The total snow depth and the averages of multilayered snowpack 327 

parameters are specified as the mean of the prior distribution for retrieval. Table 3 shows the range 328 

and standard deviation of the parameters.  329 

 330 

Table 3: Base-AM model input variance and range for the parameters prepared using MSHM multilayer snowpack parameters.  331 
Alphanumerical subscript in 2-layer snowpack retrievals denotes layer number: 1- bottom layer; 2- top layer; avg- the average of 332 
all MSHM multilayer parameter values in the corresponding single or 2-layer snowpack. DZ is the MSHM snow depth. 333 

Snow 

Parameters 

1 Layer Snowpack 2 Layer Snowpack 

Variance, 

σ2 

Range Variance, σ2 Range for each layer 

Min Max Bottom Top Min Max 

Snow Temp., Ts 

[
O
C]  

0.3×Tsavg 1.3×Ts
min

 0.7×Ts
max

 0.3×Ts
1,avg

 0.3×Ts
2,avg

 1.3×Ts
min

 0.7×Ts
max

 

Snow Density, ρ 

[Kg/m
3
] 

0.3×ρavg 0.8×ρ
min

 1.2×ρ
max

 0.3×ρ
1,avg

 0.3×ρ
2,avg

 0.8×ρ
min

 1.2×ρ
max

 

Snow Depth, DZ 

[m]  
 0.3×DZ 0.5×DZ 1.5×DZ 0.1×DZ

1
 0.2×DZ

2
 0.2×DZ 0.9×DZ 

Correlation 

Length, lex 
0.3×lex,avg lex,min

 lex,max
 0.2 ×lex,1,avg 0.2× lex,2,avg lex,min

 lex,max
 

Soil Temp., Tsoil   

[
O
C] 

0.3  1.3 0.3 1.3  

 334 
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Two-layer Snowpack – The average values of the snowpack physical properties for each layer are 335 

derived from the multilayer snowpack simulated by MSHM.  The key requirement is to determine 336 

the depth of each one of the layers that best captures the snowpack vertical structure.  Figure 6 337 

shows MSHM simulated snowpack density profiles for each of the four SnowSAR flights. The 338 

shape of the profiles reflects the interplay between thermodynamic processes that change snow 339 

microstructure and dominate in the upper snowpack and mechanical consolidation processes that 340 

are dominant in the mid and lower layers. The snow depth point corresponding to the maximum 341 

change in snow density between adjacent layers in the multilayer snowpack is used here to divide 342 

the snowpack in two layers.  Subsequently, the layer-depth weighted average density, snow 343 

temperature, and correlation length of the MSHM multilayer snowpack is calculated for the 344 

corresponding depths of the two-layer equivalent snowpack (Table 3).   345 

 346 

 347 

Figure 6 -  Density profiles simulated by MSHM for all grassland pixels at 30 m resolution from the 4 SnowSAR flight paths. The 348 
density profile of the central pixel for each of the flights is marked in red.  The snowpack layers are numbered from bottom to top 349 
tracking the evolution of simulated snowpack stratigraphy during the accumulation season. Note the significant difference between 350 
the  top 2-3 layers and the deeper snowpack supporting the two-layer snowpack conceptual retrieval model. 351 

 352 

4.3 Bayesian Optimization (Step 4) 353 

Realistic snowpack predictions from MSHM driven by weather forecasts (Step 1) are used to 354 

define the prior distributions of snowpack parameters and constrain Base-AM (Steps 2 and 3) to 355 

infer the posterior distribution of snowpack parameters given the SnowSAR backscatter 356 

measurements (Step 4) as discussed in Section 2.2.  357 

The local mean of the posterior distribution for each parameter is hereafter referred to as the 358 

retrieval result for each pixel.  SD retrievals are evaluated against LIDAR snow depth including  359 

spatial patterns and gradients, and overall statistical structure using histograms.  SWE retrievals 360 

derived from the posterior distributions of snow density and snow depth are evaluated against SWE 361 

measurements at snowpits (Section 3.4).  Original LIDAR measurements were reprojected and 362 

coregistered with the SnowSAR retrievals. A comparative analysis was conducted to examine the 363 

dependence of retrievals on incidence angle and the subgrid scale variability was quantified in 364 

terms of the standard deviation of original LIDAR measurements within the upscaled pixel.   The 365 



14 
 

amplitude error metrics are the mean, standard deviation, and mean absolute relative error 366 

(MARE):  367 

𝑀𝐴𝑅𝐸 =
∑ |𝑛

𝑖=1 1 − 𝑅𝑖/𝑂𝑖|

𝑁
 (6) 368 

where O are observations and R are retrievals. The Bhattacharya coefficient (BC) is used to 369 

compare the spatial distributions of snow depth and backscatter.  BC measures the similarity 370 

between two probability distributions p1 and p2 as follows ( Bhattacharya, 1943)  371 

 372 

𝐵𝐶 = ∑ √𝑝1(𝑖)𝑝2(𝑖)
𝑁

𝑖=1
 (7) 373 

Finally, among the 39 snowpits available for evaluation on February 21,  only 15 pits in open areas  374 

(i.e. grasslands) were retained for evaluation and snow pits without SnowSAR measurements 375 

within a radius of 100 m were discarded.  376 

 377 

5. Results and Discussion 378 

5.1. Successful Retrievals 379 

SnowSAR measurements are strongly affected by aircraft operations, viewing geometry that varies 380 

systematically along the flight path resulting in amplitude artifacts amplified by landform and 381 

landcover heterogeneity. Even after separating homogeneous grassland pixels, there is 382 

contamination from multiple bounce artifacts at grassland-forest transitions and adjacent wetlands 383 

that cannot be resolved at 30 or 90 m resolution.  Other errors embedded in the retrieval are 384 

associated with downscaling of HRRR forcings that produce biased snow priors, snow hydrology 385 

model structure, and errors tied to the background backscatter estimation. Combined these errors  386 

compounded can lead to a weak convergence of the Bayesian optimization algorithm resulting in 387 

large backscatter residuals. To account for these errors and meet NASEM (2018) science 388 

requirements, SnowSAR pixels for which the relative residual backscatter (RRB) between Base-389 

AM simulated 𝜎𝑠𝑖𝑚
𝑡𝑜𝑡  and SnowSAR measurements 𝜎𝑆𝐴𝑅

𝑡𝑜𝑡  was greater than 30% were identified as 390 

unsuccessful.  In an operational context, these pixels would be flagged and identified as failed or 391 

highly uncertain retrievals. The successful retrieval fraction after restricting the range of incidence 392 

angles and imposing the RRB < 30% criterion is summarized in Table 4 for the four flights, and 393 

for both 1|2 layer snowpack retrievals at 30 and 90 m resolution.   Except for the later flight path 394 

over the predominantly forested areas in the eastern sector of Grand Mesa (Fig.1), the fraction of 395 

successful retrievals by restricting the incidence angle and RRB varies between 75 and 87%  across 396 

the four SnowSAR flights with a maximum absolute bias of 1.2 dB. Only figures with retrieval 397 

results at 30 m resolution are shown in the main text; retrieval results at 90 m resolution as well as 398 

other supporting analysis can be found in Appendix A. 399 

 400 
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Table 4: Spatial bias between SnowSAR backscatter and converged backscatter from Base-AM for successful retrievals for 401 
grassland pixels at 30 and 90 m spatial resolution over each flight.  Successful retrievals are for pixels with local incidence angles 402 
in the 30o-45o range and relative residual backscatter (RRB) of less than 30% for each of the four flights.  403 

 404 

Flight 

Time 

Successful Retrieval 

Fraction 
Bias (Observed - Converged) [dB] 

1 Layer 2 Layer 1 Layer 2 Layer 

30 m  90 m 30 m  90 m 
30 m  90 m 30 m  90 m 

X  Ku X Ku X  Ku X Ku 

18:11:38 0.86 0.87 0.85 0.86 0.92 -0.45 0.96 -0.48 0.94 -0.46 0.97 -0.50 

18:43:20 0.75 0.75 0.75 0.75 1.08 -0.54 0.98 -0.36 1.07 -0.46 0.98 -0.37 

18:59:02 0.78 0.81 0.81 0.81 1.20 -0.78 1.21 -0.79 1.15 -0.73 1.22 -0.83 

20:23:38 0.66 0.69 0.57 0.69 0.51 -0.58 0.70 -0.43 0.62 -0.85 0.72 -0.45 

 405 

5.2. Retrieval  Skill 406 

Figure 7 compares LIDAR snow depth  (Fig. 7a) against colocated SnowSAR retrievals at 30 m 407 

for the SNOWSAR flight at 18:11:38 GMT(GMT=MST+6). The SnowSAR retrievals for high 408 

incidence angles underestimate the LIDAR snow depth (orange and red points). Lemmetyinen et 409 

al. (2022) suggested a nominal incidence angle of 35o-45o for retrievals ensuring proper focusing 410 

and calibration of SnowSAR swaths.  CB23 showed good skill in forward backscatter simulations 411 

for incidence angles as low as 30o.  Overall the retrievals here also show very good performance 412 

for incidence angles between 30o-45o.  Note  however the large residuals for SnowSAR retrievals 413 

with high incidence angles (red and orange points in Fig. 7b) corresponding to LIDAR pixels with 414 

shallow snow depth (below the 1:1 line) and large subgrid-scale variability (orange and red points, 415 

Fig. 7c). Analysis for all flights at both 30 and 90 m resolution can be found in  Appendix A ( 416 

please see Figs. A1 and A2 similar to Fig. 7b; and Figs. A3 and A4 similar to Fig. 7c).  Figures 417 

7d, 7e,  and 7f show the landcover, spatial distribution of subgrid standard deviation (SSTD) and 418 

absolute residual (Retrieved – LIDAR) snow depth for the same flight.  Along the edges of forest, 419 

the SSTD in the upscaled pixels is large due to high heterogeneity that cannot be resolved by the 420 

the LIDAR fusion algorithm for snow depth retrieval (Painter et al. 2016). The red box identifies 421 

an area with complex grassland-forest  boundaries (Fig. 7d) and high subgrid scale variability (Fig. 422 

7e) resulting in poor LIDAR estimates. The edge of wetlands also has comparatively higher 423 

residuals than completely homogeneous grasslands.  This corresponds to the LIDAR pixels with 424 

SSTD > 0.3 m (yellow, orange and red in Fig. 7c).  Therefore, only LIDAR pixels with SSTD  ≤  425 

0.3m  are used for assessment of retrievals. 426 

 427 
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 428 

Figure 7: Snow depth measurements using airborne LIDAR on 2/25/17, 4 days after the SnowSAR flights. b) Comparison between 429 
LIDAR snow depth and the 2-layer retrieved snow depth from SnowSAR on 2/21/17 at 18:11:38 GMT. The pixels are color-coded 430 
according to the SnowSAR incidence angle. c) same as (b) with  pixels color-coded  according to the subgrid-scale variability 431 
measured by standard deviation of LIDAR snow depth within the corresponding 30 m pixel. Pixels on the edge of forests and 432 
grasslands have higher subgridscale standard deviations (SSTD). d) Landcover distribution along the flight path; bottom panel – 433 
zoom view of area in red box. e) Spatial distribution of upscaled LIDAR snow depth SSTD at 30m; bottom panel – zoom view of 434 
area in red box. The edges of forests have higher SSTD due to errors in the LIDAR snow depth retrievals at high resolution. f) 435 
Absolute residual between retrievals and LIDAR snow depth; bottom panel – zoom view of area in red box. Residuals equal to 0.5 436 
m and above are grouped in the same category. The red box in parts (d),  (e), and (f) delineates an area with large absolute residuals. 437 
Vegetation-snowpack backscatter interactions at the grassland-forest and grassland-wetland margins not accounted for in the 438 
retrievals. Gray points in the central panel correspond to zero depth LIDAR estimates due to errors in heterogenous landcover.. 439 

Figure 8 shows heatmaps (density maps) to compare successful retrievals against observed X- and 440 

Ku-band VV-pol total backscatter at 30 m resolution. There is good agreement between the two 441 

values for both the bands specially in the -15 to -10 dB range without significant differences 442 

between single and two-layer snowpack retrievals. Note the positive bias in the case of X-band 443 
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simulations compared to observations, whereas Ku-band has a negative bias as quantified in Table 444 

4. Overall, the retrievals at 90 m resolution show better agreement than those at 30 m resolution 445 

due to averaging ( Fig. A5). 446 

 447 

 448 

Figure 8: Heatmaps of SnowSAR mesurements (observed) versus retrievals (simulated) backscatter (σ) at 30 m resolution for X-449 
(𝜎𝑋) and Ku- (𝜎𝐾𝑢) bands: a) single-layer snowpack; and b) 2-layer snowpack. Successful retrievals are for pixels with local 450 
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incidence angles in the 30o- 45o range and relative residual backscatter (RRB) of less than 30% for each of the four flights (see 451 
Table 4).  452 

 453 

Maps of successful  SWE retrievals for the four SnowSAR flight paths are shown in Fig. 9 and 454 

Fig. A6 at 30 m and 90 m resolution, respectively.  The retrievals capture well the west-east 455 

gradient in SWE, and show realistic spatial variability across Grand Mesa. The very low SWE and 456 

shallower snow depths at the easternmost boundary of the flightlines  are underestimates 457 

introduced by upscaling of the SNOWSAR backscatter values where there are significant changes 458 

in topography at the edge of the Plateau (see Fig.2).  459 

 460 

 461 

Figure 9: Spatial distribution of successful SWE retrievals for 1-layer (a) and 2-layer (b) snowpacks in grassland pixels at 30 m 462 
resolution.  Successful retrievals are for pixels with local incidence angles in the 30o- 45o range and relative residual backscatter 463 
(RRB) of less than 30% for each of the four flights (see Table 4).  464 

 465 

Heatmaps of total snow depth priors (MSHM predicted snow depth) against LIDAR snow depth 466 

are shown in Fig. 10 and Figs.  A7 at 30 m and 90 m resolution and can be contrasted with heatmaps 467 

of total snow depth posteriors) against LIDAR snow depth in Figs. 11 and A8 using both single 468 

and two-layer retrievals.  Note the narrow range of the prior snow depths concentrated around 1.5 469 

m and the positive bias relative to LIDAR.  The posteriors show much wider range of variability 470 

and deeper snow consistent with the LIDAR data for both single and two-layer retrievals, albeit 471 

with better agreement for the latter with high counts overlaying the 1:1 line at both spatial 472 
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resolutions.  This behavior is further confirmed by examining the snow depth histograms in Figs. 473 

A9 and A10. The retrievals capture well the range of the LIDAR snow depths for all  flights, and 474 

there is a substantial improvement in the shape of the distributions as revealed  by the heatmaps.   475 

 476 

 477 

Figure 10: Heatmap of LIDAR and MSHM predicted snow depth priors at 30 m resolution using overlapping pixels from the 478 
MSHM and  LIDAR.  Only pixels with incidence angle between 30o -45o, and moderate sub-grid scale variability of LIDAR snow 479 
depth  (< 0.3). 480 

 481 
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Figure 11: Heatmap of LIDAR versus successful snow depth (SD) retrievals at 30 m resolution using overlapping LIDAR and 482 
retrieval pixels.  Successful retrievals are for pixels with local SnowSAR incidence angles in the 30o- 45o range and relative residual 483 
backscatter (RRB) of less than 30% for each of the four flights (see Table 4).  LIDAR SD in  pixels with subgrid scale variability  484 
corresponding to standard deviation of less than 0.3 m for the upscaled  90 m LIDAR pixel are not included.  485 

 486 

Quantitative assessment metrics are presented in Tables 5 and A1 for the comparison between 487 

various snow depth datasets at 30 and 90 m resolutions, respectively. The snow depth MARE  is 488 

higher for the retrievals compared to the priors (MSHM) due to the fact that MARE is an effective 489 

metric capturing distance from the mean. CB20 showed that the MSHM simulated average snow 490 

mass accumulation at the Grand Mesa scale is within 10% of  observations at a monthly time-scale 491 

in February 2017. The BC coefficients The BC coefficients of 0.95 and above at 30 m resolution 492 

indicate significant agreement between the shapes of the distributions at 0.95 or above at 30m 493 

resolution using the two-layer retrievals for the west-east flights, and 0.76 for the fourth flight at 494 

20:23:38 GMT over the forested area.  There is significant improvement relative to MSHM priors 495 

in the statistical similarity of the snow depth retrievals vis-à-vis the LIDAR data for all cases, and 496 

more so for the fourth flight over the forest. For snow depth, 30 m resolution and two-layer 497 

retrievals outperform the 90 m resolution and single-layer retrievals for all flights. This is 498 

explained  in part by landcover classification errors that are smaller at 30 m. Figure A11 shows 499 

that the number of pixels where retrievals produce large mean absolute residuals is very small and 500 

characterize by low confidence in the LIDAR estimates. 501 

 502 

Table 5: Summary of statistics and  error metrics of the 3 snow depth (SD) data sets at 30 m resolution: LIDAR measurements, 503 
MSHM predictions, and successful SnowSAR retrievals for grassland pixels and subgrid-scale standard deviation (σ ) of less than 504 
0.3 m for the upscaled LIDAR pixel. MARE – Mean Absolute Relative Error (Eq. 6); BC – Bhattacharya Coefficient (Eq. 7). Here 505 
mean and standard deviation refer to the spatial distribution, unlike the prior mean and standard deviation used in Base-AM (Table 506 
3). Successful retrievals are for pixels with local incidence angles in the 30o- 45o range and relative residual backscatter (RRB) of 507 
less than 30% for each of the four flights (see Table 4).  508 

Flight 
(GMT) 

N  
Layer 

Spatial SD μ [m] Spatial SD σ [m] MARE SD BC SD 

Retrieved MSHM LIDAR Retrieved MSHM LIDAR Retrieved

-LIDAR 
MSHM-

LIDAR 
Retrieved

-LIDAR 
MSHM-

LIDAR 
18:11:38 

1 
1.39 1.42 1.42 0.32 0.15 0.28 0.19 0.11 0.94 0.67 

18:43:20 1.41 1.38 1.42 0.32 0.21 0.27 0.18 0.11 0.96 0.75 
18:59:02 1.49 1.38 1.44 0.33 0.20 0.27 0.18 0.09 0.94 0.76 
20:23:38 1.66 1.58 1.77 0.36 0.16 0.22 0.21 0.13 0.71 0.25 
18:11:38 

2 
1.38 1.41 1.40 0.30 0.17 0.29 0.14 0.12 0.98 0.67 

18:43:20 1.35 1.38 1.42 0.31 0.20 0.28 0.14 0.11 0.97 0.75 
18:59:02 1.40 1.38 1.44 0.31 0.20 0.27 0.12 0.09 0.95 0.75 
20:23:38 1.89 1.61 1.80 0.39 0.14 0.24 0.17 0.12 0.76 0.23 

 509 

Tables 6 and A2 summarize the average absolute relative errors between snowpits and SWE 510 

retrievals from all flights within 100 m of the snowpits. The results are significantly better for two-511 

layer snowpack retrievals. The mean absolute relative errors at 30 m resolution are 0.22 and 0.13 512 

for 1 layer and 2 layer snowpacks respectively. The mean absolute relative errors at 90 m resolution 513 
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are 0.2 and 0.12 for 1 layer and 2 layer snowpacks respectively. There is a variable number of 514 

pixels used for the calculation of the error metrics for each snow pit, which in the case of 51S is 515 

so small that it suggests the pit is not in the flight path. The large errors for pits 4500, 44E and and 516 

53W are attributed to very heterogeneous landcover including water and forest (4500), and  517 

proximity to roads (53W and 44E). After removing these snowpits in the central area marked in 518 

Fig. A12, the average absolute relative SWE residuals are 5-7% (15-18%) for the two-layer (single-519 

layer) retrieval algorithm.  520 

 521 

Table 6: Evaluation of successful SWE retrievals at 30 m resolution against SWE at SnowEx’17 snow pits and 522 
retrieved snowpacks at 30 m resolution. All N pixels with centroids within 100 m of each snow pit are in the Grasslands 523 
(according to the Landcover dataset at 30 m resolution, see Table 1). SD – snow depth. Italicized rows correspond to 524 
large local MARE (Mean Absolute Relative Error, Eq. 6). 525 

Date x y 
Pit SD 

(m) 
Pit SWE 

(m) 

Retrieved SWE 

(m) 
MARE N 

pixels 

Avg. 

Dist 

(m) 
Pit ID 

1 Lyr 2 Lyr 1 Lyr 2 Lyr 

2/20/2017 -108.184 39.014 1.15 0.368 0.455 0.386 0.236 0.049 28 18 KC1C 

2/20/2017 -108.184 39.014 1.19 0.386 0.457 0.387 0.184 0.003 27 12 KC1E 

2/20/2017 -108.184 39.014 1.18 0.386 0.456 0.387 0.181 0.003 26 15 KC1N 

2/20/2017 -108.184 39.013 1.24 0.414 0.456 0.387 0.101 0.065 27 20 KC1S 

2/20/2017 -108.184 39.014 1.30 0.435 0.455 0.385 0.046 0.115 29 11 KC1W 

2/22/2017 -108.136 39.006 1.32 0.436 0.556 0.484 0.275 0.110 22 8 29E 

2/22/2017 -108.090 39.021 1.65 0.583 0.685 0.596 0.175 0.022 19 17 38E 

2/22/2017 -108.060 39.030 2.10 0.763 0.368 0.449 0.518 0.412 12 16 53W 

2/22/2017 -108.044 39.017 1.68 0.566 0.480 0.505 0.152 0.108 5 51 63E 

2/22/2017 -108.049 39.017 1.49 0.48 0.494 0.513 0.029 0.069 13 29 63W 

2/22/2017 -108.029 39.032 1.66 0.55 0.558 0.581 0.015 0.056 18 15 67N 

2/23/2017 -108.067 39.029 2.13 0.761 0.593 0.504 0.221 0.338 9 23 44E 

2/23/2017 -108.061 39.030 1.59 0.568 0.365 0.408 0.357 0.282 3 75 51S 

2/24/2017 -108.033 39.030 1.80 0.576 0.657 0.573 0.141 0.005 20 10 0 

2/24/2017 -108.033 39.030 1.84 0.598 0.652 0.581 0.090 0.028 21 14 800 

2/24/2017 -108.033 39.030 1.80 0.571 0.650 0.581 0.138 0.018 22 19 1390 

2/24/2017 -108.033 39.030 1.75 0.566 0.654 0.581 0.155 0.027 21 15 2000 

2/24/2017 -108.033 39.030 1.67 0.560 0.654 0.581 0.168 0.037 21 9 2500 

2/24/2017 -108.034 39.030 1.12 0.331 0.660 0.580 0.994 0.752 18 19 4500 

Mean 1.56 0.52 0.54 0.50 0.22 0.13 19.00 20.84  

 526 

Finally, composite spatial maps of successful SWE retrievals from all flights overlain by the 527 

snowpit measurements between 20-24 February are shown in Fig. 12. Because of the different 528 

viewing geometries, retrievals between incident angles 30o-35o for flight path at 18:59:02 in the 529 

composite of overlapping flight paths at 18:43:20 and 18:59:02 GMT were removed. Note the 530 

consistency at 30 m and 90 m resolutions as well as the overall agreement between SWE at 531 

snowpits and SWE retrievals on the flightlines.   532 
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 533 

Figure 12:  Composite spatial distribution of SWE (2-layer retrievals) successfully retrieved at 30m (left) and 90m (right) resolution 534 
for grassland pixels for the four SnowSAR flights. Snow pits (20-24 Feb, Fig. 4, Tables 6) are marked by triangles colored according 535 
to SWE.  SnowEx’17 snow pit locations are marked by triangles and colored according to SWE.  Successful retrievals are for pixels 536 
with local incidence angles in the 30o- 45o range and relative residual backscatter (RRB) of less than 30% for each of the four 537 
flights (see Table 4). As two flights  Gray elevation contours are plotted every 100m. 538 

 539 

6. Conclusion 540 

A Bayesian physical-statistical SWE retrieval framework leveraging prior work (CB20, CB23, 541 

P17, P23, Fig. 5) was applied to airborne X- and Ku-band measurements yielding robust results 542 

from multiple SnowSAR flights over grassland and mixed grassland and forest in Grand Mesa, 543 

Colorado.  Prior distributions of snowpack parameters were obtained from a multilayer snow 544 

hydrology model with atmospheric forcing derived from operational NWP forecasts and analysis 545 

(CB20, CB23).  In order to reconcile the number of independent measurements, physical 546 

constraints, and reduce the number of snowpack parameters, snowpack stratigraphy was mapped 547 

into single-layer and two-layer snowpacks and then Bayesian inference using Base-AM was 548 

applied (P17, P23).  The SnowSAR measurements were averaged to 30 and 90 m resolutions, and 549 

retrievals were conducted independently for every measurement pixel along the flight lines.  550 

Retrievals for measurements with convergence backscatter relative errors less than 30% (±1.2dB) 551 

and for incidence angles in the 30o- 45o range were considered successful over grasslands, 552 

corresponding to 75 -87% of all retrievals depending on the flight.   553 

The retrievals,  specifically the local means of the posterior distributions, were evaluated against 554 

the spatial distribution of LIDAR snow depth estimates up to 2 m and against snowpit SWE 555 

measurements up to 700 mm and snow depth up to 2.13 m.  Since the LIDAR and snowpit 556 

measurements were not concurrent with the SnowSAR flights, the assessment of retrieval skill was 557 

conducted over a period of five days without snowfall or significant day-to-day weather changes.  558 

The two-layer snowpack retrievals perform better overall capturing the observed spatial gradients 559 
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of snow depth, with SWE relative errors ≤ 7% as compared with 18% for single-layer SWE 560 

retrievals, and snow depth absolute retrieval residuals 10-20% depending on landcover 561 

heterogeneity and measurement uncertainty.   The statistical structure of retrieved snow depth is 562 

similar to that estimated by LIDAR, which is indicative of the retrievals ability to capture snow 563 

patterns and scaling behavior to support scientific process studies. For satellite-based monitoring 564 

from space in the context of a future snow mission, time-series of measurements would be 565 

available that should improve the estimates of the priors based on antecedent information.  This is 566 

not possible for one-time observations during field experiments such as SnowEx’17, and thus 567 

improved results would be expected under realistic satellite-based applications.  NWP forecasts 568 

are available worldwide and therefore this retrieval framework can be applied to SAR 569 

measurements anywhere. 570 

The radar model used in this study (MEMLS) does incorporate snow-ground-vegetation scattering 571 

interactions.  Grassland vegetation during the accumulation season is assumed to be submerged 572 

and the impact of vegetation is included in the estimation of the background backscatter (σbkg, Fig. 573 

1).  Because the landcover data are categorical, in addition to the uncertainty of  the data at 30 m 574 

resolution, additional uncertainty is tied to the selection of homogeneous grassland pixels at 90 575 

resolution, which explains some of the unsuccessful retrievals especially along the grassland-576 

forest, shrub and wetland boundaries.  The potential for estimating σbkg independently for each 577 

location as proposed by Cao and Barros (2023b) provides an alternative to simplify the retrieval 578 

workflow and target the Bayesian inference to the snowmass and volume backscatter ( σvol=σtotal- 579 

σbkg).     580 

Airborne measurements are characterized by large changes in viewing geometry across the flight-581 

line and due to  other factors such as variable winds and turbulence depending on weather 582 

conditions, thus pointing to improved skill from satellite platforms. Building on previous mission 583 

concepts (e.g. Rott et al. 2012) and leveraging substantial theory advances and field campaigns in 584 

the last decade, this study demonstrates the utility and effectiveness of X-and Ku-band SAR 585 

technology to remotely monitor snowmass at high spatial resolution and with accuracy  and 586 

uncertainty that meet the requirements expressed in the most recent Earth Science and Applications 587 

from Space Decadal Survey (NASEM, 2018).   588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 

 596 
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7. Appendix A 597 

 598 

 599 

 600 

Figure A1:  Same as Fig. 7b with pixels color coded according to the local SnowSAR incidence angle for all four flightlines and 601 
for single-(top row) and two-layer (bottom row) retrievals at 30 m resolution. 602 
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 603 

Figure A2:  Same as Fig. 7b with pixels color coded according to the local SnowSAR incidence angle for all four flightlines and 604 
for single-(top row) and two-layer (bottom row) retrievals at 90 m resolution. 605 

 606 

 607 
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 608 

Figure A3: Comparison between LIDAR snow depth (SD) and successful retrievals for single and two-layer algorithms. The 609 
pixels are color coded according to the subgrid scale variability of the 30 m upscaled  LIDAR pixel.  610 

 611 
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 612 

Figure A4:  Comparison between SnowSAR snow depth and successful retrievals. The pixels are color coded according to the 613 
subgrid scale variability of the 90 m upscaled LIDAR pixel.  614 
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 615 

Figure A5: Heatmaps of SnowSAR backscatter mesurements (observed) versus retrievals  (simulated) backscatter at 90 m 616 
resolution: a) single-layer snowpack; b) 2-layer snowpack for X-(𝜎𝑋) and Ku- (𝜎𝐾𝑢) bands. Successful retrievals are for pixels 617 
with local incidence angles in the 30o- 45o range and relative residual backscatter (RRB) of less than 30% for each of the four 618 
flights (see Table 4).  619 

 620 
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 621 

Figure A6 Spatial distribution of successful SWE retrievals for 1-layer (a) and 2-layer (b) snowpacks in grassland pixels at 90 m 622 
resolution.  Successful retrievals are for pixels with local incidence angles in the 30o- 45o range and relative residual backscatter 623 
(RRB) of less than 30% for each of the four flights (see Table 4).  624 

 625 

 626 

Figure A7: Heatmaps of  LIDAR snow depth and snow depth  predicted by MSHM at the time of SnowSAR flights for 627 
overlapping pixels at 90 m resolution.  628 

 629 
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 630 

Figure A8: Heatmaps of LIDAR versus successful snow depth (SD) retrievals at 90 m resolution using overlapping LIDAR and 631 
retrieval pixels.  Successful retrievals are for pixels with local SnowSAR incidence angles in the 30o- 45o range and relative residual 632 
backscatter (RRB) of less than 30% for each of the four flights (see Table 4).  LIDAR SD in  pixels with subgrid scale variability  633 
corresponding to standard deviation of less than 0.3 m for the upscaled  90 m LIDAR pixel are not included.  634 

 635 

 636 

 637 
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 638 

Figure A9: Histogram of snow depth (SD)  from LIDAR, MSHM, and successful retrievals at 30 m using 1- and 2- layer 639 
snowpacks. The total number of pixels for each snow depth product is the same.  Successful retrievals are for pixels with local 640 
incidence angles in the 30o- 45o range and relative residual backscatter (RRB) of less than 30% for each of the four flights (see 641 
Table 4).  LIDAR SD in  pixels with subgrid scale variability  corresponding to standard deviation of less than 0.3 m for the 642 
upscaled  90 m LIDAR pixel are not included.  643 

 644 

 645 

Figure A10 - Histogram of snow depth (SD)  from LIDAR, MSHM, and successful retrievals at 90 m using 1- and 2- layer 646 
snowpacks. The total number of pixels for each snow depth product is the same.  Successful retrievals are for pixels with local 647 
incidence angles in the 30o- 45o range and relative residual backscatter (RRB) of less than 30% for each of the four flights (see 648 
Table 4).  LIDAR SD in  pixels with subgrid scale variability  corresponding to standard deviation of less than 0.3 m for the 649 
upscaled  90 m LIDAR pixel are not included. 650 

 651 

 652 
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Table A1 – Same as Table 5 but for resolution of 90 m. 653 

Flight 

(GMT) 

N  

Layer 

Spatial SD μ [m] Spatial SD σ [m] MARE SD BC SD 

Retrieved MSHM LIDAR Retrieved MSHM LIDAR 
Retrieved

-LIDAR 

MSHM-

LIDAR 

Retrieved

-LIDAR 

MSHM-

LIDAR 

18:11:38 

1 

1.41 1.42 1.40 0.33 0.18 0.26 0.19 0.09 0.90 0.78 

18:43:20 1.27 1.39 1.41 0.32 0.19 0.25 0.21 0.08 0.90 0.85 

18:59:02 1.48 1.38 1.42 0.37 0.20 0.25 0.21 0.07 0.90 0.82 

20:23:38 1.68 1.52 1.66 0.38 0.17 0.19 0.24 0.12 0.66 0.50 

18:11:38 

2 

1.41 1.42 1.40 0.35 0.18 0.26 0.15 0.09 0.95 0.77 

18:43:20 1.29 1.39 1.41 0.32 0.19 0.25 0.16 0.08 0.92 0.85 

18:59:02 1.41 1.38 1.42 0.35 0.20 0.25 0.15 0.07 0.92 0.82 

20:23:38 1.67 1.52 1.66 0.45 0.17 0.19 0.22 0.12 0.76 0.50 

 654 

 655 

Figure A11 -  Analysis of  unsuccessful retrievals for pixels with large mean snow depth residuals at  90 m resolution:  a) Map of 656 
LIDAR snow depth highlighting  in deep blue the locations where very shallow snow is attributed to measurement error. b) Note 657 
spatial agreement between shallow snow depth  and very large  residuals. c)There are only a few points at the edges of forests and 658 
shallow snow depths that are flagged not successful.  The gray elevation contours are plotted every 50 m. 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 
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Table A2: Same as Table 7 but for resolution of 90 m. 670 

Date x y 
Pit SD 

(m) 
Pit SWE 

(m) 

Retrieved SWE 

(m) 
Mean Abs Rel 

Error N 

pixels 

Avg. 

Dist 

(m) 
Pit ID 

1 Lyr 2 Lyr 1 Lyr 2 Lyr 

2/20/2017 -108.184 39.014 1.15 0.368 0.473 0.398 0.29 0.08 4 18 KC1C 

2/20/2017 -108.184 39.014 1.19 0.386 0.471 0.397 0.22 0.03 3 12 KC1E 

2/20/2017 -108.184 39.014 1.18 0.386 0.473 0.399 0.22 0.03 2 29 KC1N 

2/20/2017 -108.184 39.013 1.24 0.414 0.474 0.398 0.15 0.04 3 27 KC1S 

2/20/2017 -108.184 39.014 1.3 0.435 0.476 0.399 0.09 0.08 3 47 KC1W 

2/22/2017 -108.136 39.006 1.32 0.436 0.572 0.490 0.31 0.12 2 39 29E 

2/22/2017 -108.060 39.030 2.10 0.763 0.340 0.384 0.55 0.50 1 43 53W 

2/22/2017 -108.044 39.017 1.68 0.566 0.454 0.499 0.20 0.12 1 75 63E 

2/22/2017 -108.049 39.017 1.49 0.480 0.521 0.530 0.09 0.10 1 29 63W 

2/22/2017 -108.029 39.032 1.66 0.550 0.529 0.553 0.04 0.01 4 47 67N 

2/23/2017 -108.067 39.029 2.13 0.761 0.751 0.606 0.01 0.20 1 70 44E 

2/24/2017 -108.033 39.030 1.8 0.576 0.718 0.601 0.25 0.04 3 60 0 

2/24/2017 -108.033 39.030 1.84 0.598 0.717 0.600 0.20 0.00 2 57 800 

2/24/2017 -108.033 39.030 1.80 0.571 0.717 0.600 0.26 0.05 2 55 1390 

2/24/2017 -108.033 39.030 1.75 0.566 0.687 0.592 0.21 0.05 1 54 2000 

2/24/2017 -108.033 39.030 1.67 0.560 0.687 0.592 0.23 0.06 1 54 2500 

2/24/2017 -108.034 39.030 1.12 0.331 0.687 0.592 1.08 0.79 1 62 4500 

2/20/2017 -108.184 39.014 1.15 0.368 0.473 0.398 0.29 0.08 4 18 KC1C 

2/20/2017 -108.184 39.014 1.19 0.386 0.471 0.397 0.22 0.03 3 12 KC1E 

Mean 1.51 0.50 0.56 0.50 0.26 0.13 2.21 42.53  

 671 

 672 

 673 

Figure A12 – Spatial context for snow pits with very large  absolute relative errors (MARE) calculated as the mean of the 674 
relative difference between SWE retrievals within 100 m of the snow pit and the values at the snow pit  Locations with very large  675 
errors (orange to red) are inside the red box marked in top plot. Snowpit 4500 is  a region of complex land cover including 676 
evergreen forest,  a  road and a pond.  Snowpits 53W and 44E are close to each other on the same side of the road in expansive 677 
grassland.  678 
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