Preprints
https://doi.org/10.5194/egusphere-2023-1931
https://doi.org/10.5194/egusphere-2023-1931
18 Sep 2023
 | 18 Sep 2023

Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall

Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley

Abstract. Communities downstream from burned steeplands face increases in debris-flow hazards due to fire effects on soil and vegetation. Rapid postfire hazard assessments have traditionally focused on quantifying spatial variations in debris-flow likelihood and volume in response to design rainstorms. However, a methodology that provides estimates of debris-flow inundation downstream from burned areas based on forecast rainfall would provide decision-makers with information that directly addresses the potential for downstream impacts. We introduce a framework that integrates a 24-hour lead-time ensemble precipitation forecast with debris-flow likelihood, volume, and runout models to produce probabilistic maps of debris-flow inundation. We applied this framework to simulate debris-flow inundation associated with the 9 January 2018 debris-flow event in Montecito, California, USA. Sensitivity analyses indicate that reducing uncertainty in postfire debris-flow volume prediction will have the largest impact on reducing inundation outcome uncertainty. The study results are an initial step toward an operational hazard assessment product that includes debris-flow inundation.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

15 Jul 2024
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024,https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Fire can dramatically increase the risk of debris flows to downstream communities with little...
Share