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Supplement 

 

Figure S1: Volume samples used in the forecast simulation were drawn from log-uniform distributions, shown here for Montecito Creek 
with Weather Research and Forecast (WRF) ensemble members (Skamarock et al., 2021) sorted by increasing peak I15. The emergency 
assessment volume (EAV) model produced a prediction of debris-flow volume from each ensemble member’s prediction of peak 15-5 
minute rainfall intensity (I15), from which a log-uniform distribution centered on the EAV prediction was defined with a range of support 
10x above and below. 
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Figure S2: This map demonstrates the quantities used in construction of the calibration curve, a component of the reliability diagram 10 
(Section 3.6). The areas with blue or yellow color show all grid cells with a forecast inundation probability between 10 and 20%. The 
yellow color indicates that debris-flow inundation was actually observed in that grid cell. This data are used to generate the second-to-
left-most point in the WRF ensemble forecast reliability diagram (Fig. 4a), where the mean simulated probability of inundation across 
all cells is 14.2% and the observed relative frequency is 29.1%. Ticks along the boundaries of map give coordinates in NAD 1983 UTM 
zone 11N. 15 
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Figure S3: Binary maps of area inundated created by thresholding simulated debris-flow (d. f.) inundation probability (P) at different 
values. Inundated area increases as the probability threshold is decreased from (a) 84% to (b) 50% to (c) 16%. Similarity indices for 
each of the binary inundation maps are -0.95, -0.51, and -0.02, respectively.Ticks along the boundaries of each map give coordinates in 20 
NAD 1983 UTM zone 11N. 
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Figure S4:  The Markov Chain Monte Carlo (MCMC) calibrated posterior distribution was tested on the Montecito Creek Basin. (a) 
The two-dimensional and one-dimensional histograms of flow-mobility parameters sampled from the MCMC calibrated joint posterior 
distribution. The top subplot shows the histogram of χ samples, and the right subplot shows the histogram of τy samples (generated with 25 
the corner Python package; Foreman-Mackey, 2016); (b) probabilistic map of debris-flow inundation on Montecito Creek with n=10,000 
samples drawn from the MCMC posterior; (c) reliability curve of the inundation map; (d) inundation binary classified with a threshold 
probability of 50% (similarity index -0.047). Ticks along the boundaries of (b) and (d) give coordinates in NAD 1983 UTM zone 11N.  
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Figure S5: PAWN sensitivity indices (Pianosi and Wagener, 2018) with confidence intervals from bootstrapping (n=50 iterations). Circles 30 
show the mean of the 50 median sensitivity index values, and vertical lines show the two-sided 95% confidence interval. The horizontal 
red line and shaded area show the mean and 95% confidence interval of the dummy sensitivity index, respectively.  
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Figure S6:  Accounting for the input volume uncertainty is essential to capturing low-probability inundation scenarios. This three-panel 35 
figure shows the normalized histograms of simulated inundated area when considering (left) only the simulations whose sampled volume 
is within 80-120% of predicted volume, (center) only simulations with volume within 50-200% of the predicted volume, and (right) all 
simulations. Vertical red lines show the observed inundated area, and the text insets show the coefficient of variation (CV) of the volume 
samples. An increase in the volume CV drives increased variability in the simulated inundation output, as the tails of the inundated area 
distribution are only resolved with the order-of-magnitude envelope around the predicted volumes (right). 40 
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Figure S7: Inundation probability maps resulting from simulation scenarios A and B; (a) scenario A, constant measured input debris-
flow volumes (Kean et al., 2019); (b) scenario B, constant input debris-flow volumes predicted with the EAV model from observed I15 
values. I15 values at each initiation point were computed with inverse distance weighting of the observed rainfall rates at the KTYD and 45 
Doulton Tunnel rain gauges (78 and 105 mm/hr, respectively; Kean et al., 2019). Ticks along the boundaries of each map give coordinates 
in NAD 1983 UTM zone 11N. 
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Figure S8: Similarity index of Progressive Debris-Flow routing and inundation model (ProDF) (Gorr et al., 2022) simulations on a 
discretized grid over the flow mobility parameters. This response surface was created from simulations on the Oak, San Ysidro, Buena 50 
Vista, and Romero Creek drainages, and it was used in the objective function of the MCMC calibration process. 
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Figure S9: Inundation maps used by experts (see Text S1) to determine the similarity index contour level of half degraded performance. 
In each plot, green = True Positives, blue = False Negatives, and red = False Positives. 55 
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Figure S10: Location of the flow mobility samples that produce the maps used in the expert assessment of half degraded performance 
(Fig. S9). Contours and colors map the similarity index of the response surface displayed in Fig. S8. 
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Text S1: Obtaining and testing the posterior parameter distribution 60 

Markov-Chain Monte Carlo (MCMC) sampling is useful for taking samples from generic distributions that do not have a closed-

form representation (MacKay, 2003). In our case, we use the affine invariant MCMC ensemble method of Goodman and Weare 

(2010) implemented in the open-source emcee Python package (Foreman-Mackey et al., 2013) to sample the posterior distribution 

over the two flow mobility parameters in Progressive Debris-Flow routing and inundation model (ProDF). We then sub-sampled 

from the set of MCMC posterior samples (n=18,496) for all simulations used by ProDF in the debris-flow inundation forecast 65 

model and, in the test, performed on Montecito Creek. Rather than running ProDF for every parameter pair sampled by the MCMC 

walkers, we used linear interpolation on a statistical surrogate model because we had a large number of ProDF model samples and 

the objective function surface was smooth. 

The input volumes at each of the training basin initiation points (Oak, San Ysidro, Buena Vista, and Romero; Fig. 1) were the 

observed volume from Kean et al. (2019, their Table 5). Following Gorr et al. (2022), we used the similarity index (SI; Heiser et 70 

al., 2017) to evaluate model performance for different pairings of the flow mobility parameters, which we pre-computed from 

ProDF simulations on a 90 by 90 discretization of χ - τy space (Fig. S8). The surrogate model was fit to this response surface. 

However, we faced a challenge in transforming the SI into a log-likelihood function for use by the MCMC sampler because the SI 

does not have the form or properties of a traditional weighted least squares objective function. We addressed this issue by positing 

a log-likelihood function, 𝐹𝐹(𝜒𝜒, 𝜏𝜏𝑦𝑦), in which the traditional weighted least squares objective function is replaced by the adjusted 75 

similarity index, (1 − 𝑇𝑇𝑇𝑇) (Barnhart et al., 2021): 

𝐹𝐹(𝜒𝜒, 𝜏𝜏𝑦𝑦)  =  −0.5 ∗  [(𝑁𝑁𝐷𝐷 + 𝑁𝑁𝑃𝑃𝑃𝑃) ∗𝑙𝑙𝑙𝑙 (2𝜋𝜋) + 𝑓𝑓 ∗ (1 − 𝑇𝑇𝑇𝑇)] 

𝜒𝜒, 𝜏𝜏𝑦𝑦 = the ProDF flow mobility parameters 
𝑁𝑁𝐷𝐷 = Number of data (3) 
𝑁𝑁𝑃𝑃𝑃𝑃 = Number of priors (0) 80 
1 − 𝑇𝑇𝑇𝑇 = 0.5 ∗ (1 − 𝑇𝑇𝑆𝑆) = 𝑔𝑔(𝜒𝜒, 𝜏𝜏𝑦𝑦), the SI transformed so 0=worst and 1=best 
𝑓𝑓 = factor that scales the objective function according to our expert consensus 

We determined a value for 𝑓𝑓 by identifying SI values with half degraded performance. We posit that the flow mobility parameters 

that produce the SI of half degraded performance have half the relative likelihood of those that produce the best-performing SI 

values. That is, we sought the factor such that: 85 

𝑒𝑒𝐹𝐹(𝜒𝜒,𝜏𝜏𝑦𝑦)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝑒𝑒𝐹𝐹(𝜒𝜒,𝜏𝜏𝑦𝑦)ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 2 

We determined the SI of half degraded performance through expert elicitation. All co-authors and two other individuals (one with 

a Ph.D. in mechanical engineering and another with a MS in statistics) independently determined the value of SI from binary 

inundation maps computed from simulations along SI contours (Fig. S9 and Fig. S10). All six participants determined the same SI 

range (less than -0.06 and more than -0.11). This corresponds to a factor between 18 and 26, and so we used a factor of 20. 90 

We tested the MCMC calibrated poster distribution with simulations on the Montecito Creek Basin (Fig. S4). The input debris-

flow volume for Montecito Creek was apportioned among the two initiation points according to the pre-event predicted volume 

for a design storm with 15-minute duration rainfall intensity of 24 mm/hr (Kean et al., 2019, their Table 1). Flow mobility 

parameters were sampled from the posterior distribution and used in ProDF simulations (n=10,000). The output depth maps were 

converted to inundation binary maps using a threshold depth of 0.1 m; the binary maps were averaged together with equal weights 95 
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to produce a probabilistic inundation map; and this map was classified using a threshold probability level of 50% for the purpose 

of computing the similarity index performance metric. 

The test of the calibrated flow mobility parameters at Montecito Creek yielded a similarity index of -0.047, similar to the optimal 

values reported in Gorr et al. (2022) and Barnhart et al. (2021).  The reliability diagram showed a conditional bias in the forecast 

probabilities, under-forecasting the lower values and slightly over-forecasting the higher values (Fig. S4). The calibrated posterior 100 

distribution of the ProDF flow mobility parameters strongly resembled the pattern of model performance documented in Gorr et 

al. (2022). 
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