
1 

 

Probabilistic assessment of postfire debris-flow inundation in response 

to forecast rainfall 

Alexander B. Prescott1, Luke A. McGuire1, Kwang-Sung Jun2, Katherine R. Barnhart3, Nina S. Oakley4 

1Department of Geosciences, The University of Arizona, Tucson, AZ, USA 
2Department of Computer Science, The University of Arizona, Tucson, AZ, USA 5 
3U.S. Geological Survey, Denver, CO, USA 
4California Geological Survey Burned Watershed Geohazards Program, Sacramento, CA, USA 

Correspondence to: Alexander B. Prescott (alexprescott@arizona.edu) 

Abstract. Communities downstream from burned steeplands face increases in debris-flow hazards due to fire effects on soil and 

vegetation. Rapid postfire hazard assessments have traditionally focused on quantifying spatial variations in debris-flow likelihood 10 

and volume in response to design rainstorms. However, a methodology that provides estimates of debris-flow inundation 

downstream from burned areas based on forecast rainfall would provide decision-makers with information that directly addresses 

the potential for downstream impacts. We introduce a framework that integrates a 24-hour lead-time ensemble precipitation 

forecast with debris-flow likelihood, volume, and runout models to produce probabilistic maps of debris-flow inundation. We 

applied this framework to simulate debris-flow inundation associated with the 9 January 2018 debris-flow event in Montecito, 15 

California, USA. Approximately 94% of the observed inundated area was forecast to have an inundation probability greater than 

1%, demonstrating that the observed extent of inundation was generally captured within the range of outcomes predicted by the 

model. In general, however, the model under-forecasts the inundation area, which we attribute primarily to under-forecasting of 

the peak fifteen-minute rainfall intensity, I15, by the atmospheric model ensemble. Peak I15 is a key control on debris-flow likelihood 

and volume. Under-forecasting of I15 therefore led to lower than observed flow volumes, which translated into under-forecasting 20 

of the inundation area. In contrast, numerical experiments of debris-flow inundation using observed debris-flow volumes 

demonstrated that the model is reliable and sharp. Sensitivity analyses indicate that debris-flow volume and two parameters 

associated with debris-flow mobility exert significant influence on inundation predictions. However, reducing uncertainty in 

postfire debris-flow volume predictions will have the largest impact on reducing inundation outcome uncertainty. This study 

represents a firste study results are an initial step toward an operational near-real time hazard assessment product that includes 25 

probabilistic estimates of debris-flow inundation and provides guidance for future improvements to this and similar model 

frameworks by identifying key sources of uncertainty. 

1 Introduction 

Debris flows threaten life and property in mountainous areas worldwide (Dowling and Santi, 2014). In the first few years following 

fire, debris-flow hazards are greater relative to nearby unburned areas due to reductions in soil infiltration capacity (Ebel, 2020; 30 

Larsen et al., 2009; McGuire and Youberg, 2020), decreased vegetation cover (Cerdà and Doerr, 2005; Hoch et al., 2021; Stoof et 

al., 2012), increases in sediment availability (Nyman et al., 2013), and reduced thresholds for sediment entrainment (Moody et al., 

2005). Postfire debris flows typically initiate when short-duration, high-intensity rainfall generates runoff that rapidly entrains 

sediment from hillslopes and channels (DeGraff et al., 2015; Gabet and Bookter, 2008; Kean et al., 2011; McGuire et al., 2017). 

Fire-related debris flows pose hazards globally, including in Europe (Conedera et al., 2003; Diakakis et al., 2023; Esposito et al., 35 

2023; García-Ruiz et al., 2013; Lourenço et al., 2012), Asia (Jin et al., 2022; Lee et al., 2022; Touge et al., 2023), western North 
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America (e.g., Jordan, 2015; Jordan and Covert, 2009; Kean et al., 2019), and Australia (Nyman et al., 2011). Due to the potential 

for widespread (i.e., within hundreds of different watersheds) increases in debris-flow susceptibility following fire, it is critical to 

rapidly identify downstream areas most threatened by debris-flow runout and to quantify the uncertainty associated with their 

identification. 40 

Empirical models that assess debris-flow likelihood and volume at the drainage basin scale have been developed for the western 

United States in the 1-2 years immediately following wildfire (Gartner et al., 2014; Staley et al., 2017). These models can be used 

to produce rapid hazard assessments in response to design rainstorms with spatially uniform intensity (e.g., Staley et al., 2016). 

Past studies demonstrate that, in addition to factors related to topography and soil burn severity, rainfall intensity over a 15-minute 

duration (I15) controls the likelihood of debris-flow initiation within a basin (Staley et al., 2017) as well as debris-flow volume 45 

(Gartner et al., 2014). Forecasts of debris-flow volume are highly uncertain, especially when applied in settings not represented 

within their training datasets (Gorr et al., 2023; Wall et al., 2023), and may exceed a factor of 10 (Gartner et al., 2014). Debris-

flow likelihood and volume both increase with I15, which indicates that variations in rainfall intensity, even over small spatial (i.e., 

a low-order basin) and temporal (15-minute) scales, will play an important role in determining the likelihood and spatial extent of 

debris-flow impacts. Assessing the downstream impact of debris flows, however, requires information about their runout and 50 

inundation extent.  

Rapid postfire hazard assessments (e.g., Staley et al., 2016) do not currently provide information about downstream impacts, 

although recent debris-flow events (Kean et al., 2019) and surveys of the postfire hazards emergency management community a 

user needs assessment highlight the need for such a product (Barnhart et al., 2023; Gourley et al., 2020). The probability that a 

downstream area will be impacted by a debris flow depends, in part, on the likelihood of a debris flow initiating in a basin upstream, 55 

the size (volume) of the debris flow, and the movement of the flow as driven by topography and flow dynamics. Several debris-

flow inundation models have been applied to simulate a recent series of postfire debris flows following the 2017 Thomas Fire in 

southern California (Barnhart et al., 2021; Gibson et al., 2022; Gorr et al., 2022). The models used in these studies vary in their 

representation of debris-flow physics, from those that account for multiphase flow dynamics and pore-pressure feedbacks (George 

and Iverson, 2014; Iverson and George, 2014) to those that use a semi-empirical approach to route flow across the landscape (Gorr 60 

et al., 2022). All the inundation models require debris-flow volume as an input, although some models require an inflow hydrograph 

(Barnhart et al., 2021), whereas others require volume be specified as a single number at each initiation point representing the total 

volume mobilized (Gorr et al., 2022). The model proposed by Gorr et al. (2022), the Progressive Debris-Flow routing and 

inundation model (ProDF), performed similarly to other inundation models but required less run time for equivalent simulations. 

This makes it a promising tool for evaluating runout for a large number of forecast precipitation scenarios in an operational setting 65 

rapid hazard assessment framework. 

Existing debris-flow likelihood, volume, and runout models therefore provide the necessary components to create a framework for 

postfire hazard assessments that includes probabilistic estimates of inundation area in response to a forecast or design rainstorm, 

but such a framework has yet to be developed and explored. Probabilistic frameworks for predicting debris-flow runout have been 

explored in unburned settings, although runout models have not been directly linked with others designed to predict debris-flow 70 

likelihood and volume (Aaron et al., 2022; Sun et al., 2021). As a result, fundamental questions remain regarding the propagation 

of uncertainty through various model components (i.e., from rainfall to flow volume to runout) as well as the benefits and 

limitations of such an approach at forecast lead times (≥ 24 hours) needed for decision-making (e.g., evacuation, allocating 

resources).  
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A postfire debris-flow inundation hazard assessment should reflect uncertainty in forecast inundated area (Barnhart et al., 2023), 75 

and past work identifies at least three ways through which substantial uncertainty is likely to arise: (1) forecast peak I15 needed as 

input for debris-flow likelihood and volume models (Oakley et al., 2023); (2) simulated debris-flow volume given a peak I15 

(Gartner et al., 2014); and (3) flow mobility parameters needed to drive a debris-flow runout model (Aaron et al., 2019). 

Precipitation forecasts in the weeks to hours ahead of an event include considerable uncertainty regarding short-duration and high-

intensity rainfall rates (Oakley et al., 2023). Assuming a perfect rainfall forecast, debris-flow volume models have order-of-80 

magnitude uncertainty around a given prediction (Gartner et al., 2014). Lastly, debris-flow runout model parameters that influence 

flow mobility require calibration, a process subject to observation biases, model assumptions, and subjective user decisions (Aaron 

et al., 2019). Runout model parameter uncertainty can be considerable, particularly in areas without data from prior events to 

calibrate against (Zeng et al., 2023), resulting in poor predictive performance of debris-flow runout (e.g., Gorr et al., 2023). Because 

prior studies have found that debris-flow runout is sensitive to flow volume (e.g., Barnhart et al., 2021; Gorr et al., 2022), and 85 

given that uncertainty in rainfall intensity propagates forward into debris-flow volume predictions, we propose a framework for 

generating probabilistic debris-flow inundation maps that links atmospheric modeling with debris-flow models. 

The main objectives of this work were to (1) develop an integrative atmosphere-debris-flow model framework to generate a 

spatially distributed forecast of inundation probability, (2) apply the proposed framework to assess debris-flow inundation 

downstream from burned basins using an atmospheric model ensemble designed to mimic a 24-hour lead time forecast, and (3) 90 

quantify the relative importance of key input parameters using global sensitivity analyses. A probabilistic inundation map is the 

final product of our model framework. In practice, this product is one that could be used to improve situational awareness for 

decision-makers. This study is a first step toward the development of a near-real time operational framework for probabilistic 

assessments of debris-flow inundation downstream from recently burned areas and provide guidance for future work aimed at 

further quantifying and reducing uncertainty. 95 

2 Study area 

We focused our study on a portion of the 2017 Thomas Fire near the community of Montecito, California, USA, that was impacted 

by postfire debris flows in January 2018, causing 23 fatalities and substantial economic losses (Kean et al., 2019; Lancaster et al., 

2021) (Fig. 1). The Thomas Fire burned more than 1100 km2, including a series of steep basins in the Santa Ynez Mountains 

upstream from Montecito. The fire ignited in December 2017 and was not yet contained when a weak atmospheric river with an 100 

embedded narrow cold frontal rainband (NCFR) impacted the area on 9 January 2018 (Oakley et al., 2018). As the NCFR 

propagated over the burned basins upstream from Montecito, it produced rainfall with peak I15 between 78 mm /h-1 and 105 mm/ 

h-1 (Kean et al., 2019).  Runoff entrained sediment from burned hillslopes and channels (Alessio et al., 2021; Kean et al., 2019; 

Morell et al., 2021), producing debris flows that traveled several kilometers down the alluvial fan (Lancaster et al., 2021). We 

focused on six of these debris-flow-producing basins where more than approximately 63790,000 m3 of sediment was mobilized 105 

and debris-flow inundation extent (more than 2,600,000 m2) was mapped shortly following the event (Kean et al., 2019). Debris 

flows in the Montecito Creek Basin were sourced from two upstream burned basins, while the remaining four creeks had a single 

upstream source. All simulations were run using topography from a 5-meter resolution digital elevation model derived from 

airborne lidar collected before the event (Fig. 1). 
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3 Methods 110 

3.1. Overview of model framework 

We coupled rainfall output from an atmospheric model ensemble with debris-flow likelihood, volume, and runout models to 

generate a probabilistic forecast of postfire debris-flow inundation downstream from the six debris-flow producing basins (Fig. 2). 

We used a 100-member atmospheric model ensemble representing a 24-hour lead-time forecast of the 9 January 2018 precipitation 

event (Oakley et al., 2023). For each ensemble member, we computed basin-averaged values of peak 15-minute rainfall intensity 115 

(I15) and used this as input into debris-flow likelihood (Staley et al., 2017) and volume (Gartner et al., 2014) models to predict (1) 

whether each basin would produce a debris flow as well as (2) the volume of sediment a debris flow, if initiated, would mobilize. 

We then used the ProDF debris-flow runout model (Gorr et al., 2022) to estimate downstream inundation extent and peak flow 

depths. In this step, we incorporated uncertainty in debris-flow volume for a given I15 as well as uncertainty in ProDF flow- mobility 

parameter values into the forecast by utilizing Monte Carlo sampling methods. Finally, we produced a map of spatially variable 120 

forecast probabilities of inundation by averaging the inundated area results from each ProDF simulation. 

3.2. Atmospheric model ensemble design 

The 24-hour lead time, 100-member ensemble rainfall forecast for the 9 January 2018 event (Oakley et al., 2023) was generated 

usingWe used the Weather Research and Forecast (WRF) atmospheric model Version 4.3 (Skamarock et al., 2021) to generate a 

24-hour lead time, 100-member ensemble rainfall forecast for the 9 January 2018 event (Oakley et al., 2023). The ensemble 125 

produced a distribution of precipitation rates that reflects forecast uncertainty (Fig. 1c). Output consisted of spatially variable 

rainfall depths in 5-minute intervals with 1-km horizontal resolution across the study area. We spatially averaged rainfall intensities 

over each of the six basins (ranging from 0.45 to 8.94 km2; Kean et al., 2019) and used a 15-minute moving window to calculate 

the peak I15 for each basin for every ensemble member. In this way, variability in the timing, location, and spatial structure of 

forecast precipitation translates into variability in the I15 subsequently used to predict debris-flow likelihood, volume, and runout. 130 

3.3. Debris-flow likelihood and volume models 

We used empirical models for postfire debris-flow likelihood (Staley et al., 2017) and volume (Gartner et al., 2014) to determine 

if a basin would produce a debris flow and how large it would be. The Staley et al. (2017) M1 model determines debris-flow 

likelihood, whereas the Gartner et al. (2014) emergency assessment volume (EAV) model predicts debris-flow volume. These 

models use basin-averaged metrics related to topography, soil properties, soil burn severity, and peak I15 as input. In this study, all 135 

input parameters for the M1 and EAV models were fixed for each basin with the exception of I15. 

Using the basin-averaged I15 from each WRF ensemble member, we computed debris-flow likelihood for each of the six basins 

using the M1 model. If debris-flow likelihood was less than 0.5, we assumed that a debris flow would not initiate. If likelihood 

was greater than 0.5, we assumed a debris flow would initiate and determined its volume using the EAV model. We defined a log-

uniform distribution centered on the EAV-predicted volume with an order-of-magnitude envelope above and below the predicted 140 

volume (Fig. S1). This range of support is consistent with the prediction uncertainty of the EAV model, as well as similar models 

(Gartner et al., 2014). For a given ProDF simulation, we drew input volumes from these distributions by sampling from a log-

uniform random variable over the range [0.1, 10.0] and multiplying the six EAV-predicted volumes (one for each of the six basins) 

by this scalar. 
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3.4 Debris-flow inundation model 145 

We used ProDF to simulate debris-flow runout and inundation (Gorr et al., 2022). The model requires two flow mobility parameters 

and input debris-flow volumes at user-defined flow starting points, from which flow is iteratively routed downstream. The two 

flow mobility parameters, χ [s-1 m-0.5] and τy [Pa], control the flow depth and the minimal basal shear stress that permits flow 

motion, respectively. 

It is common to calibrate models by choosing a single set of “best” parameters based on some objective function optimization tied 150 

to an observation dataset and to then use this optimal parameter set in forward model applications (e.g., Pirulli, 2010). A limitation 

of this methodology is that it precludes exploration of a wider range of equifinal possible parameter sets, and different observation 

datasets may lead to different choices about which parameters are optimal. Instead, we used a statistical inference procedure similar 

to that of Aaron et al. (2019) to define a joint posterior distribution over the flow mobility parameters that uses the similarity index 

(Gorr et al., 2022; Heiser et al., 2017) as the objective of the maximum likelihood estimator function for nonlinear systems (Hill 155 

and Tiedeman, 2007). The similarity index varies from -1negative one to 1one, with 1one indicating a perfect match between the 

simulated and observed area inundated. We generated samples from this distribution using the emcee Python implementation 

(Foreman-Mackey et al., 2013) of the Markov Chain Monte Carlo (MCMC) affine invariant ensemble sampler (Goodman and 

Weare, 2010). This method is advantageous as we were able to sample uniformly from the MCMC output to gather flow mobility 

parameters for ProDF simulations. We calibrated the posterior distribution to the Oak, San Ysidro, Buena Vista, and Romero Creek 160 

Basins and reserved Montecito Creek to test the calibrated distribution. Additional details on the ProDF calibration are given in 

Supporting Text S1. 

3.5. Inundation forecast 

We generated a forecast of inundation probability by averaging together many individual ProDF simulations that were run with 

input parameters drawn repeatedly and independently from the calibrated distributions (Fig. 2). We ran 50 simulations for every 165 

WRF ensemble member’s prediction of peak I15 (i.e., a total of 5,000 ProDF simulations). Debris-flow volumes for all six initiation 

pointsbasins were drawn from the log-uniform distributions defined in Section 3.3, and the flow mobility parameters (χ, τy) were 

drawn from the calibrated joint posterior distribution defined in Section 3.4. Every simulation produced a map of peak debris-flow 

depth. Depth maps from all simulations were converted to binary maps of inundation presence using a threshold depth of 10 cm 

(e.g., Gorr et al., 2022). Averaging the binary inundation maps together with equal weights produced a map with values between 170 

0zero and 1one representing the fraction of simulations that inundated each grid cell, which we interpret as an inundation 

probability. 

To investigate the role of input debris-flow volume on the joint distribution of forecasts and observations (described further in 

Section 3.6), we also generated probabilistic inundation maps for two additional scenarios, referred to as scenarios A and B. In 

scenario A, we use observed debris-flow volumes as input for all simulations. In this scenario, we minimize uncertainty in debris-175 

flow volume, so we expect model performance to improve relative to the forecast. In scenario B, we assigned a debris-flow volume 

to each basin using the EAV prediction with the observed peak I15 as the input (Kean et al., 2019). This scenario also does not 

utilize any data from the atmospheric model ensemble. The peak I15 at each debris-flow initiation point was computed with inverse 

distance weighting of the observed rainfall rates at the KTYD and Doulton Tunnel (DT) rain gauges (78 and 105 mm/ hr-1, 

respectively; Kean et al., 2019) (Fig. 1c). Evaluating model performance when debris-flow volume (scenario A) or rainfall 180 
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(scenario B) are known is useful for identifying the source of any observed over or underestimation of inundated area in the 

forecast. 

3.6 Comparing simulated and observed inundation 

Debris-flow inundation model results are commonly assessed one simulation at a time by optimizing an objective function of the 

mapped debris-flow deposits and simulated inundation zones (e.g., Barnhart et al., 2021; Gibson et al., 2022; Gorr et al., 2022). 185 

Probabilistic forecasts cannot be directly evaluated with a similar binary classification and optimization procedure. Instead, we 

classified grid cells as inundated or not using a threshold probability 𝑝𝑡 to explore the extent to which the observation was contained 

within the range of inundation scenarios represented by the ensemble forecast. If a given cell’s forecast probability of inundation 

𝑝 satisfied 𝑝 ≥ 𝑝𝑡, it was classified as inundated, and otherwise it was not. For values of 𝑝𝑡 between 0zero and 1one (discretized 

every 0.01), we classified each cell in the domain and then computed the similarity index. 190 

Probabilistic forecasts can also be evaluated using a distributions-oriented approach. A distributions-oriented approach considers 

the entire joint distribution of forecasts and observations, 𝑓(𝑝, 𝐼), where 𝑓 is the joint probability density function and 𝐼 is the 

observed binary inundation outcome (i.e., 𝐼 = 1 if a debris flow actually occurred in the grid cell, else 𝐼 = 0). The joint distribution 

contains all the relevant information about the forecasts and observations needed for a complete verification of a forecast model 

(Wilks, 2019). It can be factored in two ways into conditional and marginal probabilities that are more practical for analysis, one 195 

of which is the calibration-refinement factorization (Murphy and Winkler, 1987): 

𝑓(𝑝, 𝐼) = 𝑓(𝐼 | 𝑝)𝑓(𝑝),            (1) 

This factorization allows inspection of two desirable properties of probabilistic forecasts: (i) they should be reliable in that the 

forecast event actually happens with a frequency close to the forecast probability, 𝑓(𝐼 = 1 | 𝑝 ) ≅ 𝑝 (e.g., a forecast probability of 

30% comes true ~30% of the time); and (ii) the distribution of forecast probabilities 𝑓(𝑝) should be dispersed toward the extreme 200 

values of 0zero and 1one, indicating that the model has confidence in its own predictions (Gneiting et al., 2007; Murphy, 1993). 

The property of (i) is referred to as calibration (i.e., reliability) and the property of (ii) is referred to as refinement (i.e., sharpness), 

and a general goal with probabilistic forecast models is for them to be as sharp as possible without sacrificing calibration (Gneiting 

et al., 2007; Wilks, 2019). We borrowed distributions-oriented methodologies developed in the weather modeling community over 

the last several decades (e.g., Bröcker and Smith, 2007; DeGroot and Fienberg, 1983; Gneiting et al., 2007; Murphy, 1993; Murphy 205 

and Winkler, 1987) to graphically assess the calibration-refinement factorization. Specifically, we used the reliability diagram 

(Bröcker and Smith, 2007; Wilks, 2019) to separately visualize the calibration and the refinement of the forecast model. 

The first component of a reliability diagram is the calibration curve, a function of the conditional distribution 𝑓(𝐼 | 𝑝) that provides 

a visual assessment of the fit between the distribution of forecast probabilities and the observed zones of inundation (Bröcker and 

Smith, 2007; Gneiting et al., 2007). Quantities on the x-axis answer the question, “what is the mean probability of inundation, �̅�𝑘, 210 

of all grid cells in the kth bin?” On the y-axis is the frequency of observed inundation conditioned on the binned forecast 

probabilities, also referred to as the observed relative frequency, which provides an estimate of the calibration distribution: 𝑦𝑘 ≈

 𝑓(𝐼 = 1 |𝑝) (Murphy and Winkler, 1987). These answer the question, “given a forecast probability of 𝑝, how often is it correct?” 

With a perfect probabilistic forecast, the bin-averaged probabilities will exactly match the observed relative frequencies, 𝑦𝑘 = 𝑝𝑘, 

and points will fall along the one-to-one line in the calibration curve (Bröcker and Smith, 2007). In reality, sampling variability 215 

causes deviations from the one-to-one line even for a perfectly reliable model (Wilks, 2019). Points that fall above the one-to-one 
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line indicate that the model is under-predicting the observed extent of inundation, referred to as under-forecasting, while points 

below the line indicate over-forecasting. The (�̅�𝑘, 𝑦𝑘) are computed as: 

�̅�𝑘 =
1

|𝜔𝑘|
∑ 𝑝𝜔𝑘⊂Ω  ,            (2) 

𝑦𝑘 =
1

|𝜔𝑘|
∑ 𝐼𝜔𝑘⊂Ω ,            (3) 220 

where Ω is the set of all grid cells in the spatial modeling domain, 𝜔𝑘 is the subset of Ω that satisfies 𝑝 ∈ 𝐵𝑘, 𝐵𝑘 is the kth bin 

interval, and |𝜔𝑘| is the number of model grid cells in 𝜔𝑘. In all cases, we used bin widths of 10 percentage points. Figure S2 

provides a visual demonstration of 𝜔𝑘 and the computation of 𝑦𝑘. Forecast reliability was assessed with the mean residual, a 

measure of bias, and the residual sum of squares, a measure of accuracy, between the (�̅�𝑘, 𝑦𝑘). 

The second component of a reliability diagram shows the refinement distribution of the forecasts, answering the question, “how 225 

often is each probability of inundation predicted by the forecast model?” This plot shows the histogram of 𝑓(𝑝) using the same 

bins as used in constructing the calibration curve. A sharp forecast will predict probabilities close to 0zero or 1one most of the time 

and will therefore have the highest counts near the boundaries of the histogram. We used the standard deviation of forecast 

probabilities, 𝜎𝑝, as a measure of forecast sharpness because a larger standard deviation indicates greater dispersion toward the 

extreme values (Bradley et al., 2019). 230 

3.7 Sensitivity analyses 

We performed two analyses to explore the sensitivity of inundated area to each of the three ProDF input parameters (debris-flow 

volume, χ, and τy). The goals of these sensitivity analyses were to apportion uncertainty in the model output amongst the three 

parameters and to rank them in terms of relative importance for determining inundated area (Razavi and Gupta, 2015; Saltelli et 

al., 2008). We used inundated area as a summary of model output because it serves as a simple proxy for downstream impacts. We 235 

used the SALib Python package (Herman and Usher, 2017; Iwanaga et al., 2022) to implement the PAWN global sensitivity 

analysis method (Pianosi and Wagener, 2018). The method returns a sensitivity index between 0zero and 1one for each input 

parameter, with higher indices indicating greater influence on model output.  

First, we performed a domain-aggregated sensitivity analysis. To distinguish a significant sensitivity value from one that is due 

solely to approximation error of the PAWN method, we included a dummy parameter of random numbers in the analysis. 240 

Bootstrapping (n=50) was used to compute 95% confidence intervals about the median sensitivity index of each parameter. 

Parameters whose 95% confidence interval exceeded that of the dummy parameter were considered significant (Pianosi and 

Wagener, 2018). 

Second, we computed spatially distributed sensitivity indices in every grid cell where simulated inundation occurred on a cell-by-

cell basis. The sensitivity response variable was taken to be the local binary inundation value, 𝐼, from each ProDF simulation. This 245 

analysis allowed us to compare the relative importance of debris-flow volume, χ, and τy as a function of location, revealing patterns 

of model sensitivity over the length of the debris-flow runout paths. 
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4 Results 

The forecast probability of debris-flow inundation is shown in Fig. 3. Areas that had a non-zero probability of inundation generally 

encompassed overlapped with 99% of the areas of with observed debris-flow inundation, and the region of probabilities exceeding 250 

1% overlapped with 94% of the observed area inundated (Fig. 3a), indicating that the observation was contained within the range 

of outcomes represented by the ensemble. However, estimates of area inundated and visual examination of the inundation maps 

created with different probability thresholds (e.g., 84%, 50%, 16%) indicate that inundation extent was under-forecast (Fig. 4). 

The highest forecast probabilities are restricted to the main channels of the Montecito, San Ysidro, and Buena Vista Creek Basins. 

This can be seen by examining the binary inundation map created using a threshold probability of 84% (i.e., 𝑝 ≥ 0.84), which 255 

resulted in a total inundated area of just 63,000 m2 and a poor similarity index of -0.95 (Fig. 4a). The inundation map created using 

a threshold probability of 50% also substantially underestimated the extent of the observed inundation, resulting in an inundated 

area of 760,000 m2 and a similarity index of -0.51 (Fig. 4b). Using a threshold probability of 16% resulted in a binary inundation 

map that compared best with observations, inundating 3,070,000 m2 and producing a similarity index of -0.02 (Fig. 4c). A threshold 

probability of 16% (i.e., 𝑝 ≥ 0.16) resulted in a binary inundation map that compared best with observations (similarity index of 260 

-0.02; Fig. S3c). For comparison, validation of the flow mobility parameter posterior distribution on Montecito Creek resulted in 

a similarity index of -0.047 (Fig. S34d).  

The calibration component of the reliability diagram shows that the forecast average probabilities were small relative to the 

observed relative frequencies, which similarly indicatesing that the forecast tended to underestimate the observed extent of 

inundation (Fig. 4a3b). For example, areas that had a forecast inundation probability of approximately 25%, 50%, and 75% were 265 

observed to be inundated at rates of roughly 40%, 75%, and 90%, respectively (Fig. 3b). The mean residual between the binned 

forecast probabilities and the observed frequencies was -15.9%, with a residual sum of squares of 0.31 (Table 1). The histogram 

of forecast probabilities indicates a lack of forecast sharpness because the probabilities are clustered near zero0 and monotonically 

decrease in frequency toward one1 (Fig. 3c4b). Approximately 84% of forecast probabilities were between 0-10% and only 0.1% 

were between 90%-100%. While the debris-flow volumes (summed across all six basins) ranged from 0 m3 to over 5,500,000 m3 270 

in the ensemble forecast, the median value was 198,000 m3, only 29% of the debris-flow volume observed in the 2018 event.  

In contrast, analysis of the probabilistic inundation map obtained from scenario A, where when debris-flow volume was set to the 

observed value for each basin (Scenario A), analysis of the probabilistic inundation map shows forecast probabilities that weare 

well-calibrated to the observed frequencies and that are sharp (Fig. 5a-b4c-d). The mean residual was 0.1% and the residual sum 

of squares was 0.05, demonstrating a lack of bias and improved reliability (Table 1). The forecast generated from Scenario A was 275 

sharp in that the greatest frequency of forecast probabilities were those near zero and one. This was evident visually (Fig. 5b) and 

statistically, as the standard deviation of inundation probabilities in Scenario A (0.22) was greater than that of the WRF ensemble 

forecast (0.14), indicating more dispersal toward the extreme values (Table 1). The improvement in sharpness was largely due to 

a 25-fold increase in the area predicted to have a probability of inundation between 90%-100% relative to the ensemble forecast, 

as approximately 2.5% of Scenario A inundation probabilities were between 90%-100%. 280 

Scenario B, where EAV we used predictions of debris-flow volume based on the observed peak I15 were used, resulted in an over-

forecast of inundation extent map of inundation that over-forecasted the observed inundation (Fig. 4e5c-d). Forecast probabilities 

were generally too high relative to the observed frequencies of inundation. as demonstrated by a mean residual of 10.7% in the 

reliability diagram (Fig. 5d; Table 1). The debris-flow volume summed across all six basins totaled 1,114,000 m3, or 164% of the 

observed debris-flow volume. 285 
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The global sensitivity analysis revealed that the runout model was significantly sensitive to all three parameters (debris-flow 

volume, χ, τy) with volume being the most influential (Fig. S5Table 2). The median PAWN sensitivity indices associated with 

volume, χ, τy, and the dummy variable were 0.38, 0.10, 0.09, and 0.05, respectively. Additionally, maps depicting spatially 

distributed sensitivity indices indicate that the relative importance of the input parameters varied in both the downstream and 

across-stream directions (Fig. 65). This implies that any of the three parameters may be most influential in determining whether 290 

an area will be inundated depending on location. The χ parameter had greatest influence at higher elevations in overbank areas 

removed from the primary channel, with latitudinally-binned averages that are nearly twice as high near the fan apex when 

compared to those near the ocean (Fig. 6a). whereas t The τy parameter and debris-flow volume showed the opposite pattern, with 

greater importance at lower latitudes near the distal portion of the fan close to the ocean (Fig. 6b-c), although the flow volumehad 

greatest influence toward the distal portion of the fan. Flow volume also exerted a strong control on inundation throughout the 295 

model domain. Any of the three parameters may be most influential in determining whether an area will be inundated depending 

on location (Fig. 6d). 

5 Discussion 

Our study results indicate that reducing uncertainty in debris-flow volume predictions will have a substantial effect on reducing 

uncertainty associated with inundation. Even in the region for which it was developed, the prediction uncertainty associated with 300 

the EAV model is greater thancan exceed an order of magnitude (Gartner et al., 2014; Barnhart et al., 2021), with greater 

uncertainties likely when models are applied in landscapes that differ from where they were trained (e.g., Gorr et al., 2023; Rengers 

et al., 2023). In the absence of sufficient data to train local or regional postfire debris-flow volume models, it may be possible to 

apply a correction factor to an existing model that was trained elsewhere (e.g., Rengers et al., 2023). In addition, variations in 

forecast storm structure can result in highly variable precipitation intensity, duration, timing, and spatial distribution (Fig. 1c) 305 

(Oakley et al., 2023), driving further uncertainty in debris-flow volume prediction through the forecast peak -I15. This uncertainty 

propagates from rainfall into a wide range of inundation outcomes (Fig. S46). Improved prediction of postfire debris-flow volume, 

whether through improved forecasts of I15 or improved volume models, would reduce the uncertainty associated with the inundation 

probabilities and result in a narrower range of inundation outcomes. However, the modular structure of the framework presented 

here makes it straightforward for the debris-flow likelihood and volume models to be replaced with updated or region-specific 310 

alternatives as they become available (e.g., Diakakis et al., 2023; Nyman et al., 2015; Santi and Morandi, 2013; Staley et al., 2013; 

Wall et al., 2023). 

Calibration of the flow mobility parameters created a posterior distribution with a range of support over χ-τy space (Fig. S34a). 

Capturing the effect of this spectrum of possible flow behaviors was important because the debris-flow properties that we expect 

to influence the flow mobility parameters (e.g., grain size distribution, sediment concentration) are unknown before an event. 315 

Furthermore, it is common for debris-flow properties to change as flows move downslope (Iverson, 1997, 2003). ProDF uses 

constant values for χ and τy across the simulation domain, limiting debris-flow behavior to a single characteristic type. The forecast 

model, however, enabled the representation of multiple flow rheologies in the probabilistic prediction of inundation by sampling 

flow mobility parameters from the calibrated posterior distribution. At sites without past events to aid in calibration, we would 

expect greater uncertainty in any estimate of a posterior parameter distribution. Gorr et al. (2023) found that the best fit calibrated 320 

value of yield strength for a small debris flow in northern Arizona was more than three times greater relative to that calibrated for 

the Montecito debris flows in southern California. Poor constraints on yield strength in forward modeling applications could result 

in greater uncertainty in predictions of inundation, particularly in terms of total downstream travel distance since the yield strength 
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plays an important role in determining when the modeled flow comes to rest (Fig. 6b). Still, the greater importance of debris-flow 

volume in determining inundated area indicates that placing better constraints on debris-flow volume, including variations resulting 325 

from entrainment or deposition along the travel path, warrants prioritization over constraints on flow mobility parameters (Fig. 65, 

Fig. S5, and Fig. S46; Table 2). 

Analysis of the forecast inundation probabilities using the reliability curve showed that the model tended to under-forecast the 

observed frequencies of inundation (Fig. 3b4a). For example, in areas with a forecast inundation probability of 40-50%, the 

frequency of observed inundation was nearly 6approximately 70%. In other words, the model simulated inundation less often than 330 

observed. We attribute this bias, at least in part, to the extreme nature of the 2018 precipitation rainfall event and the challenges of 

representing this event at a 24-hour lead time in the atmospheric model. We expect that the large spread in peak I15 in the WRF 

atmospheric model forecast and the uncertainties associated with it are not unique to our study area or the modeled rainstorm and 

should be considered in future applications of this and similar probabilistic debris-flow inundation model frameworks. 

Uncertainties in mesoscale precipitation forecasts of short duration, high intensity rainfall (e.g., peak I15) are well documented even 335 

at lead times shorter than 24 hours (Cannon et al., 2020; English et al., 2021). The observed peak I15 values lie in the tail of the 

atmospheric model ensemble spread (Fig. 1c) (Kean et al., 2019; Oakley et al., 2023);: thus, most I15 values in the ensemble are 

lower than observed. This leads to lower ensemble predictions of debris-flow volume and likelihood with the EAV and M1 models 

and therefore less inundation than would be expected given the observed I15. This may also explain why the best match of simulated 

inundation to the observed deposits occurs at a threshold probability level of 16% while threshold probabilities of 50% and 84% 340 

resulted in substantial underestimates of area inundated (Fig. 3 and Fig. 4S3c).  

 

Our interpretation that the ensemble distribution of predicted I15 led to under-forecasting is supported by the reliability diagrams 

associated with forecast scenarios A and B, which were run using observed debris-flow volumes and observed I15rainfall intensities, 

respectively (Fig. 4 and Fig. S75). The calibration curves from these two scenarios indicate high sensitivity of the calibration to 345 

the input debris-flow volumes. When using the observed I15 to compute debris-flow volume (Scenario B), volumes were larger 

than what wasthe observed (Fig. S1). were used, as was generally the case in scenario B,  As a result, the model over-forecasted 

inundation and the calibration curve dropped below the diagonal one-to-one line (Fig. 4e5d). While the sum of predicted volumes 

from Scenario B was 164% of the total observed volume, this amount of error is within the range of what is expected. The EAV 

model predicts the natural logarithm of volume with a standard error of 1.04 (Gartner et al., 2014), which translates to a 95% 350 

probability that the observed volume will be between 13% and 770% of the modeled value (Barnhart et al., 2023). This degree of 

uncertainty highlights the potential gains of improving models for postfire debris-flow volume. When the observed volumes were 

used (i.e., scenario A), the calibration curve is close to the diagonal, and the refinement distribution shows that extreme values 

were most commonly forecast (Fig. 5b). This indicates that the calibrated forecast model is both reliable and sharp when the 

volumes are well-constrained (Fig. 4c-d). However, in the forecast model where debris-flow volume was a function of the peak I15 355 

derived from the atmospheric model ensemble, the ultimate effects of having a lower-than-observed peak I15 in many atmospheric 

model ensemble members was likely at least partially offset by the EAV model’s bias to overpredict debris-flow volumes (Barnhart 

et al., 2021; Kean et al., 2019). 

The methods presented here take a step toward operational near-real time assessments of postfire debris-flow hazards associated 

with an incoming rainstorm. Considering that decision quality improves when probabilistic information is presented appropriately 360 

in weather forecasts (Ripberger et al., 2022), the types of maps generated by the model framework presented here This information 

could be used to support decisions regarding evacuations, staging of equipment and emergency personnel, and debris-flow 
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mitigation efforts. Additional assessments of the integrated modeling approach presented here in different geographic and climatic 

settings would help generalize findings and develop guidelines for constraining flow mobility parameters in areas where there are 

no historical observations that can be used to calibrate the runout model, ProDF. Computing resource constraints present a 365 

challenge for future studies and operational real world use because the probabilistic forecast of debris-flow inundation and the 

atmospheric ensemble forecast both require many core-hours of computing time. Approaches to reduce computation times include 

optimizing aspects of the simulation for the task at hand (e.g., number of ensemble members, horizontal grid spacing; Oakley et 

al., 2023), running debris-flow runout simulations massively in parallel, and limiting the spatial extent of modeling efforts. 

The framework proposed here could also be applied in a pre-fire context to assess postfire hazards. In this case, the rainfall intensity 370 

input could be determined from local climatological data and soil burn severity characteristics could be simulated (e.g., Kean and 

Staley, 2021; Staley et al., 2018; Wells et al., 2023). Pre-fire assessments of postfire hazards provide valuable insight into areas of 

greatest concern that could assist with community planning, emergency management, and debris-flow hazard mitigation (McCoy 

et al., 2016; Tillery et al., 2014). 

6 Conclusions 375 

We created a computational framework for probabilistic predictions of rainfall induced debris-flow inundation downstream of 

burned basins that integrates an ensemble forecast of rainfall with existing models for postfire debris-flow likelihood, volume, and 

runout. We applied this methodology by using a 24-hour, 100-member atmospheric model ensemble forecast of rainfall intensity 

associated with a destructive debris-flow event that followed the 2017 Thomas Fire. Approximately 99% of the observed 

inundation area was contained within a region where the simulated probability of inundation was greater than zero. In general, 380 

however, we found that the model under-forecasted the area inundated. We attribute the under-forecasting of inundation extent to 

the fact that the observed peak 15-minute rainfall rates were in the upper tail of the atmospheric model ensemble distribution of 

forecast rainfall rates. 

A sensitivity analysis indicated that debris-flow volume had the greatest influence on the simulated area inundated, while the two 

flow mobility parameters had a lesser but still significant influence. When debris-flow volumes were well-constrained, the 385 

probabilistic model predictions were sharp and well-calibrated to the observed area inundated. A spatially distributed sensitivity 

analysis showed that the importance of flow volume and the flow-mobility parameters varied across the model domain in 

systematic ways, and it showed that each parameter may be the most important locally depending on location within the landscape. 

Future efforts to constrain flow mobility parameters in a range of postfire settings would assist with reducing uncertainty in debris-

flow runout model predictions, but the greatest gains in model performance are likely to result from improving estimates of debris-390 

flow volume. Application of the proposed framework to other sites with different topographical and climatological properties 

would help assess the generalizability of findings related to parameter sensitivity. While we focus on an application using forecast 

rainfall, the proposed framework could also be used to assess postfire debris-flow hazards in response to design rainstorms before 

a fire starts. 

Probabilistic debris-flow inundation maps may support emergency management and hazard mitigation efforts in advance of 395 

forecasted storms over burned areas. To explore the feasibility of producing such maps, we integrated output from a 24-hour lead-

time atmospheric model ensemble, empirical models for postfire debris-flow likelihood and volume, and a computationally 

efficient debris-flow runout model to produce a spatially distributed probabilistic forecast of debris-flow inundation. The 
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inundation forecast reproduced the observed inundated area reasonably well at a relatively low probability threshold (16%), which 

likely reflects the extreme nature of the observed rainfall rates relative to those in the atmospheric model ensemble. The reliability 400 

of the forecast strongly depends on the distribution of input debris-flow volumes, and a sensitivity analysis of the forecast 

inundation to the model input parameters indicates that reducing the uncertainty of debris-flow volume predictions would 

substantially reduce the uncertainty in the forecasted inundated area. The modeling framework is generic in that each component 

may be replaced with improved or region-specific alternatives as they become available. This work takes initial steps toward an 

operational debris-flow hazard assessment framework and may help identify targeted opportunities for model improvements that 405 

would be most beneficial. 

 

Data availability. The model code, input data, and output data used in this study are available in a Zenodo online archive under 
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Figures 

 

Figure 1: (a) Site map of the 9 January 2018 Montecito debris-flow event. Burned basins drain into (M) Montecito, (O) Oak, (SY) San 635 
Ysidro, (BV) Buena Vista, and (R) Romero Creeks (note that 2 burned basins drain into Montecito Creek); (b) Site location in context 

of the USA; (c) histogram of peak I15 extracted from the atmospheric model ensemble. Dashed lines show observations at the KTYD and 

Doulton Tunnel (DT) rain gauges. Ticks along the boundaries of (a) give coordinates in NAD 1983 UTM zone 11N. In this figure and in 

all following maps, the base map was sourced from ESRI and the U.S. Department of Agriculture Farm Services Agency, the hillshade 

layer was generated from the 10-m resolution National Elevation Dataset (U.S. Geological Survey, 2020), and the soil burn severity layer 640 
was sourced from U.S. Forest Service (2020). 
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Figure 2: Schematic of the probabilistic debris-flow inundation forecast model. 

  645 
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Figure 3: Results from the debris-flow inundation simulation driven with the 100-member WRF ensemble predictions of peak I15. (a) 

This Mmap shows the of forecast probabilities of debris-flow inundation, P(d-f inundation), (d-f) inundation probabilities (P) ≥in all 

model cells with probability greater than or equal to 1%. with  dDashed lines showing the extent of observed debris-flow deposits. . 

TTicks along the map boundaries of map give coordinates in NAD 1983 UTM zone 11N. (b & c) The two-part reliability diagram shows 650 
the calibration-refinement factorization of the joint distribution of forecasts and observations (described in Section 3.6). In the 

calibration curve (b), a perfectly calibrated model will lie along the 1:1 line, and points above (below) the diagonal indicate that the model 

is under-forecasting (over-forecasting) the observed frequency of inundation. The histogram in (c) demonstrates the refinement 

distribution of the forecast probabilities. A sharp forecast will have the highest count of probabilities toward the extreme values of 0 and 

1. 655 
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Figure 4: Binary maps of area inundated created by thresholding the forecast probabilities of debris-flow inundation, P(d-f inundation), 

at (a) 84%, (b) 50%, and (c) 16%. A grid cell is marked as inundated when the local forecast probability exceeds the threshold value. 

Inundated area increases as the probability threshold decreases, producing similarity indices of -0.95, -0.51, and -0.02, respectively. Ticks 660 
along the boundaries of each map give coordinates in 20 NAD 1983 UTM zone 11N.  



24 

 



25 

 

 

 

Figure 5: Inundation probability maps and two-part reliability diagrams resulting from the constant-volume simulation scenarios A and 665 
B; see Fig. 3 caption for panel descriptions. (a-b) Scenario A used the measured input debris-flow volumes for each drainage basin (Kean 

et al., 2019). (c-d) Scenario B used input debris-flow volumes predicted with the EAV model using I15 values interpolated to each ProDF 

starting point from observations at the KTYD and Doulton Tunnel rain gauges (78 and 105 mm h-1, respectively; Kean et al., 2019). 

Ticks along the boundaries of each map give coordinates in NAD 1983 UTM zone 11N. 

Figure 4: Two-part reliability diagrams showing the calibration-refinement factorization of the joint distribution of forecasts and 670 
observations (Section 3.6) from three separate inundation simulations: (a and b) the WRF ensemble forecast, producing the forecast 

inundation map in Fig. 3; (c and d) scenario A, simulated using the constant observed volumes (Kean et al., 2019), (e and f) scenario B, 

simulated using the constant EAV predicted volumes computed using observed peak I15 (Kean et al., 2019). The top row shows the 

calibration curve of the conditional distribution. A perfectly calibrated probabilistic model will lie along the 1:1 line, and points above 

(below) the diagonal indicate that the model is under-forecasting (over-forecasting) the observed frequency of inundation. The 675 
histograms in the bottom row show the refinement distribution of the forecast probabilities. A forecast that is sharp will have the highest 

density of probabilities toward the extreme values of 0 or 1. 
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 680 

Figure 65: Spatially distributed PAWN sensitivity indices for forecast inundation against the model parameters (a) χ; (b) τy; and (c) 

debris-flow volume; and (d) the parameter that resulted in the maximum sensitivity index in each grid cell. The vertical plots on the 

right of panels (a) through (c) show the longitudinally-averaged sensitivity index as a function of binned latitude, demonstrating how 

parameter importance varies with distance from the upstream basin outlets. Depending on location in the simulation domain, each of 

the input model parameters may be the most influential. Ticks along the boundaries of each map give coordinates in NAD 1983 UTM 685 
zone 11N. 

  



27 

 

Tables 

 WRF ensemble forecast Scenario A Scenario B 

Bias, �̅�𝒌 − 𝒚𝒌
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  -15.9% 0.1% 10.7% 

Accuracy, ∑(�̅�𝒌 − 𝒚𝒌)𝟐 0.31 0.05 0.18 

Sharpness, 𝝈𝒑 0.14 0.22 0.25 

 

Table 1: Summary metrics of the reliability diagram for each debris-flow inundation simulation. See Section 3.6 for definitions. 690 

 

Parameter 

Median PAWN sensitivity index 

(2.5th – 97.5th percentile values) 

χ 0.098 (0.082 – 0.111) 

τy 0.094 (0.080 – 0.113) 

debris-flow volume 0.382 (0.360 – 0.403) 

dummy 0.049 (0.040 – 0.059) 

 

Table 2: PAWN sensitivity indices (Pianosi and Wagener, 2018) with 95% confidence intervals from bootstrapping (n=50 iterations). 


