08 Sep 2023
 | 08 Sep 2023
Status: this preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).

Quantifying uncertainty in simulations of the West African Monsoon with the use of surrogate models

Matthias Fischer, Peter Knippertz, Roderick van der Linden, Alexander Lemburg, Gregor Pante, Carsten Proppe, and John H. Marsham

Abstract. Simulating the West African monsoon (WAM) system using numerical weather and climate models suffers from large uncertainties, which are difficult to assess due to non-linear interactions between different components of the WAM. Here we present a fundamentally new approach to the problem by approximating the behavior of a numerical model – here the ICON (Icosahedral Nonhydrostatic) model – through a statistical surrogate model based on universal kriging, a general form of Gaussian process regression, which allows a comprehensive global sensitivity analysis. The main steps of our analysis are: (i) Identify the most important uncertain model parameters and their probability density functions, for which we employ a new strategy dealing with non-uniformity in the kriging process. (ii) Define Quantities of Interest (QoI) that represent general meteorological fields such as temperature, pressure, cloud cover and precipitation as well as the prominent WAM features Tropical Easterly Jet, African Easterly Jet, Saharan heat low (SHL) and Intertropical Discontinuity. (iii) Apply a sampling strategy with regard to the kriging method to identify model parameter combinations which are used for numerical modeling experiments. (iv) Conduct ICON model runs for identified model parameter combinations over a nested limited-area domain from 28° W to 34° E and from 10° S to 34° N. The simulations are run for August in four different years (2016 to 2019) to capture the peak northward penetration of rainfall into West Africa, and QoIs are computed based on the mean response over the whole month in all years. (v) Quantify sensitivity of QoIs to uncertain model parameters in an integrated and a local analysis. Results show that simple isolated relationships between single model parameters and WAM QoIs rarely exist. Changing individual parameters affects multiple QoIs simultaneously, reflecting the physical links between them and the complexity of the WAM system. The entrainment rate in the convection scheme and the terminal fall velocity of ice particles show the greatest effects on the QoIs. Larger values of these two parameters reduce cloud cover and precipitation, and intensify the SHL. The entrainment rate rather affects 2 m temperature, 2 m dew point temperature and causes latitudinal shifts, whereas the terminal fall velocity of ice mostly affects cloud cover. Furthermore, the parameter that controls the evaporative soil surface has a major effect on 2 m temperature, 2 m dew point temperature and cloud cover. The results highlight the usefulness of surrogate models for the analysis of model uncertainty and open up new opportunities to better constrain model parameters through a comparison of the model output with selected observations.

Matthias Fischer et al.

Status: open (until 10 Nov 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Matthias Fischer et al.

Matthias Fischer et al.


Total article views: 116 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
85 27 4 116 2 3
  • HTML: 85
  • PDF: 27
  • XML: 4
  • Total: 116
  • BibTeX: 2
  • EndNote: 3
Views and downloads (calculated since 08 Sep 2023)
Cumulative views and downloads (calculated since 08 Sep 2023)

Viewed (geographical distribution)

Total article views: 112 (including HTML, PDF, and XML) Thereof 112 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 03 Oct 2023
Short summary
Simulating the West African monsoon (WAM) system suffers from large uncertainties. Using surrogate models, the influence of relevant model parameters on several characteristics of the WAM, including jet streams, is investigated. The entrainment rate and the terminal fall velocity of ice show the strongest effects, mainly on cloud cover and precipitation. These parameters should be specified more accurately to reduce the uncertainties in WAM simulations further.