Preprints
https://doi.org/10.5194/egusphere-2023-1898
https://doi.org/10.5194/egusphere-2023-1898
06 Oct 2023
 | 06 Oct 2023

High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation

Anna Pazola, Richard G. Taylor, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, and Ibrahim Baba Goni

Abstract. Groundwater recharge is a key hydrogeological variable that informs the renewability of groundwater resources. Long-term average (LTA) groundwater recharge provides a measure of replenishment under the prevailing climatic and landuse conditions and is therefore of considerable interest in assessing the sustainability of groundwater withdrawals globally. This study builds on the modelling results of MacDonald et al. (2021) who produced the first LTA groundwater recharge map across Africa using a linear mixed model (LMM) rooted in 134 ground-based studies. Here, continent-wide predictions of groundwater recharge were generated using Random Forest (RF) regression employing five variables (precipitation, potential evapotranspiration, soil moisture, NDVI and aridity index) at a higher spatial resolution (0.1° resolution) to explore whether an improved model might be achieved through machine learning. Through the development of a series of RF models, we confirm that a RF model is able to generate maps of higher spatial variability than LMM; the performance of final RF models in terms of the goodness of fit (R2 = 0.83, 0.88 with residual kriging) is comparable to the LMM (R2 = 0.86). The higher spatial scale of the predictor data (0.1°) in RF models better preserves small-scale variability from predictor data, than the values provided via interpolated LMM; these may provide useful in testing global-to-local scale models. The RF model remains, nevertheless, constrained by its representation of focused recharge and by the limited range of recharge studies in tropical Africa, especially in the areas of high precipitation. This confers substantial uncertainty in model estimates.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

05 Jul 2024
High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation
Anna Pazola, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, Ibrahim Baba Goni, and Richard G. Taylor
Hydrol. Earth Syst. Sci., 28, 2949–2967, https://doi.org/10.5194/hess-28-2949-2024,https://doi.org/10.5194/hess-28-2949-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This study advances groundwater research using a high-resolution Random Forest model, revealing...
Share