
RESPONSES TO REVIEWER 1: 

 

The authors use an RF approach to generate spatial long-term average groundwater 
recharge for Africa based on 134 recharge values from the literature and compare their 
results with the field observations and a previous publication using an LMM (linear mixing 
model). The results are generated and compared for two spatial resolutions. The RF 
approach is very similar to LMM but offers a higher spatial variability than LMM and therefore 
also shows small-scale trends. 

 

Even though the approach is generally ok, the manuscript is very well written and the 
workflow and code(s) is available through github (which I really appreciate), I still have some 
critical points that should be considered and discussed in detail in a revised version. 

I'm somewhat unsure about the better spatial resolution of the results. Just because the 
resolution is better doesn't mean the results are more reliable. There is a very large 
uncertainty due to the few observations and their distribution but the maps suggest a much 
better and more robust result and this is dangerous. What would be the next step with the 
results or what can the better spatial resolution be used for? If the data is extracted directly 
from the maps (for water budget calculations, for example) this can lead to very distorted 
results, as the simulated recharge values are very uncertain for many areas. I believe the 
whole uncertain should be better discussed and the maps must better highlight the 
uncertainties (maybe with transparent colors, see my comment below) 

 

R1 => We thank Reviewer 1 for their positive comments on our manuscript and note 
their concerns over the possible inference that high-resolution predictions are more 
robust. We do not claim that higher resolution data are more robust yet understand 
that this potentially could be implied, especially given comparison with predictions of 
the linear mixed model that were considerably smoothed out. We address the issue of 
uncertainty by constructing prediction intervals for each grid cell using Quantile 
Random Forest (Meinshausen, 2006; Fox et al. 2020).  Although RF provides 
information on the conditional mean of the output variable, QRF instead provides 
information on the conditional distribution function of the response. By providing the 
prediction intervals, the reader and potential user are informed of the underlying 
prediction uncertainty. 

 

Current global hydrological models typically operate at 0.5° spatial resolution, and 
large-scale prediction maps like MacDonald et al. (2021) have similarly been produced 
at this resolution. There is, nevertheless, an on-going trend toward hyper-resolution 
models (e.g. 0.1°) at continental to global scales. There is thus a need for robust 
approaches to the development of empirically derived datasets at higher spatial 
resolutions to test large-scale recharge models and support recharge mapping. 

 



I wonder why, for example, seasonality in precipitation is not present in the climatic input 
data. In some regions, precipitation only falls in a few months and therefore the processes 
for recharge are significantly different for conditions when precipitation is distributed 
throughout the year. Yes, LMM or RF show a good fit /regression, but certain parameters 
may compensate for the missing input. Also, of course, the relative importance does not 
show the importance of seasonality but only because this has not been tested in the RF 
(although it was in the previous work using LMM, but this is not transferable directly to the 
RF approach).  

 

R2 => Seasonality in precipitation dominates the hydrology of all modelled areas on 
continental Africa whether in the equatorial humid tropics, tropical drylands or sub-
tropical locations. This analysis estimates recharge at annual timescales and thus 
does not specifically capture seasonal variability in precipitation. We thank Reviewer 
1 for bringing to our attention the fact that the number of wet days is not mentioned in 
the manuscript. It was originally considered as an input variable but it was not 
selected for the final model due to its weak influence. This point is included in the 
revised paper (e.g. Tables S1 and S4 in the Supplementary Material). The data source 
for the number of wet days is Harris et al. (2020), which was used in the LMM study by 
MacDonald et al. (2021). After rerunning the analysis, we confirm that the number of 
wet days was not included in the final models due to its weak explanatory power. It 
showed a strong correlation with NDVI and its inclusion in the predictor set did not 
improve the model fit in terms of R2 for training and testing datasets respectively: (1) 
model with # of wet days 0.93/0.79; and (2) model without # of wet days 0.93/0.81. 

 

 

Similar for depth to groundwater table (or call it unsaturated zone thickness) which is 
important for recharge processes, rate and timing. How important is this input for the RF 
algorithm and for the process description. I also wonder why distance to rivers is not 
included as an (raster)input, perhaps paired with discharge rates. This would help to better 
capture the important process of groundwater-surface water interaction and bank filtration, 
which many of the authors know better than I do. 

 

R3 => The observational dataset on groundwater recharge, compiled by MacDonald et 
al. (2021) only includes diffuse recharge points. Focussed recharge is an important 
recharge regime, especially in drylands (Cuthbert et al., 2019), with strong seasonality 
in precipitation but is not specifically reported in the dataset. Consequently, we did 
not include predictors related to surface water-groundwater interactions as the 
objective of our analysis was to compare directly the RF model to another data-driven 
model (LMM) by MacDonald et al. (2021). There are other possible explanatory factors 
that we could have been considered besides the groundwater table depth such as soil 
structure and vegetation but this would render differences between the RF and LM 
models when our aim was to compare these modelling methods. 

 

Of course there is a large uncertainty in the precipitation data sets and in the timing of 
recharge, but wouldn't it be possible to minimize these uncertainties and also the scaling 



(regression is dominated by the high recharge values) significantly by using the recharge / 
precipitation ratio and obtain more robust results? It would be nice if this can be discussed 
and tested more. 

 

R4 => We welcome this suggestion from Reviewer 1 to minimize uncertainties 
associated with precipitation datasets using a recharge/precipitation ratio (i.e. the 
proportion of precipitation that is converted to recharge). However, given the 
established non-linear (power law) relationship between recharge and precipitation 
(see LMM – MacDonald et al. (2021) and RF models), we see no computational 
advantages to employing such an approach. 

 

 

 

 

 

How does the spatially uneven distribution of the observations affect the results? Wouldn't it 
make more sense to show only the more robust areas and show the very uncertain ones 
transparently? Since not all climatic conditions have been covered, would clustering be 
useful to minimize the spatial discrepancy and influence? 

 

R5 => We demonstrated that some data points have impact on recharge predictions in 
different regions (e.g. inclusion of zero-recharge points located in Sahara amplifies 
the predicted high-recharge values in the humid regions). Therefore, such simple 
uncertainty indicator could be misleading as well. We cannot exclude that the 
opposite can be true too, namely inclusion of more high-recharge observation might 
have an impact on predictions in more arid regions. We also showed that the model is 
biased towards dry regions, as historically these areas were of interest for 
groundwater studies. Data scarcity in humid regions leads to high residual in 
predicted vs observed values. In the revised manuscript, we use Quantile Random 
Forest to construct prediction intervals and based on the results and provide maps 
visualising the prediction uncertainty. 

 

Is the correlation of the aridity index with precipitation and ET not a problem for parameter 
estimation and generally with all estimation methods? Aridity is based on P and ET, and I 
wonder what is the advantage of using all three parameters? Looking at the SI, precipitation 
and aridity are the most important parameters, and I wonder what the results would look like 
if only aridity was used. When I see table S4, I wonder why the results look almost the same 
for training and test, even if only P us used. 

 



R6 => Correlation of precipitation, ET (evapotranspiration) and AI (Aridity Index) is not 
an issue for the algorithm itself but it’s true that these variables might altogether 
represent redundant input. From the point of view of the model, any of these 
correlated features can be used as the predictor, with no concrete preference of one 
over the others. We decided to keep all these variables as, when used together, the fit 
of the model was marginally improved. 

 

Regarding the data in Table S4, please see our rationale above. Precipitation explains 
most of the variability in GW recharge, better than Aridity Index. We checked model 
performance with aridity alone and the model fit in this case wasn’t as good as with 
precipitation as the only input. There is a small improvement in the model fit when all 
three variables P + PET + AI are used, compared with P alone or P + PET. 

 

Predictor set – R2 train (log) – R2 test (log) 

 
Precip - 0.90 - 0.74 

Aridity - 0.90 - 0.61 

 

I'm not an expert on RF, but aren't the results validated using the ROC curve and sensitivity, 
specificity and accuracy rather than just the regression? That would be more informative 
about the model results and robustness instead of using only a regression, or? 

 

R7 => All these concepts are reserved for classification problems. The model 

performance in a classification problem is assessed through a confusion matrix from 

which accuracy, sensitivity, and specificity are obtained from. For regression 

problems, different metrics are computed such as mean square error or coefficient of 

determination, which can show how accurately predicted values match known values; 

they were used in this study. 

Line 451: Also process based models require careful input selection and quantification of 
uncertainties in the input dataset. 

  

R8 => We agree.  



RESPONSES TO REVIEWER 2: 

 
Pazola et al. (2023) provide an interesting machine learning and residual interpolation for 

groundwater recharge mapping at the continental scale of Africa.  

The authors have used machine-learning called random forest model to estimate 

groundwater recharge across Africa. In addition, their models explore the potential factors 

affecting groundwater potential.  

The paper is interesting and within the scope of the EGUsphere journal. In general, machine 

learning is well-placed in EGUsphere. The authors have done very diligent work by 

summarizing many publications applying machine learning and linear mixed models. The 

manuscript can be interesting to the scientific community working on machine learning 

applied in hydrology. The manuscript is very well written and we thank the authors for adding 

the codes, however at the present state; I would not recommend it for publication because 

certain comments need to be addressed again. 

R9 => We thank reviewer 2 for their positive comments above and are of the view that 

the responses and revisions to the manuscript now warrant publication of the paper 

in a revised form. 

General Comments  

The introduction is well. It should be worked out why this study with machine learning is 

necessary, knowing that machine learning is a “Blackbox model” and what its benefit is with 

other methods such as fuzzy logic, the frequency ratio, weight of evidence, or multi-criteria 

decision analysis (MCDA). The overfitting problem is one of the drawbacks that affect the 

accuracy of models in machine learning. Why did decide to choose the Random Forest 

compared to LLM models? It would be interesting if you compare machine-learning models 

and physics-based models to estimate groundwater recharge.  

 

R10 => We worked with a relatively small dataset (134 points in total) and a set of 

explanatory variables that are correlated with each other. These were the most 

important factors that influenced the algorithm choice. There are multiple algorithms 

that could be applied to this problem (e.g. support vector machine, Gaussian process 

regression, random forest, gradient boosting decision tree, XGBoost, symbolic 

regression) and we chose RF as it was previously successfully applied to large-scale 

groundwater studies (Podgorski and Berg, 2020) and to studies with datasets of a 

similar size (Pham et al. 2022). RF is robust to overfitting, as the final prediction is an 

average of predictions from multiple decision trees, each trained with a different 

subset of data. In addition to RF, we applied residual kriging to explicitly account for 

variability in LTA recharge observations around the fitted values. We note that there 

are published studies applying machine learning with MCDA in hydrology, but it is 

unclear how it could be applicable to this regression problem. Weight of evidence 

could be an interesting addition to assess feature importance; this is examined in this 

work using other methods. Frequency ratio and fuzzy logic could introduce additional 

value to our analysis their inclusion is beyond the scope of the current analysis. 

 

Comparing ML models with physical models would likely be a valuable exercise but it 

constitutes a separate study beyond the scope of the current analysis as would 

comparisons from a set of different algorithms (listed above). 

 



Can you explain why the choice of the period of modelling 1981-2010? Because the input 

data in Table S1 has multiple Periods.  

R11 => The choice of the modelling period is dictated by the original input data, 

namely determinations of mean annual recharge from a variety of methods covering 

the period of 1981 to 2010. We used secondary publicly available data and we have 

not produced any data on our own. CGIAR-CSI data (Aridity, PET) are only available 

for 1970-2000. It is not possible to get average values from that dataset for 1981-2010. 

CGIAR-CSI is widely used and is representing long term climatic average. We decided 

that it can be representative for the period our analysis. Land cover is a categorical 

variable. The revised manuscript uses a different dataset (Historical Land-Cover 

Change and Land-Use Conversions Global Dataset - NOAA dataset) with a mode value 

for 1981-2010. When revising the input sources, we noticed an error in Table S1. 

Landcover data was not used to create models that generated maps at 0.5° and 0.1° 

spatial resolutions. Also, the number of wet days is missing (Harris et al. 2020), as it 

was used in the variable selection process. Table S4 is updated accordingly. 

 
Did you limit the validation of the random forest model with cross-validation? Alternatively, do 

you have the intention to integrate the external validation by compiling local raw data? 

R12 => An external validation is preferable, but the analysis is rooted in limited 

historical data compiled from local raw data from different regions. 

 

The authors need to highlight deep the uncertainty in GIS data resampling. According to the 

authors what was the influence of the data resampling (0.5° spatial resolution and 0.1° 

spatial resolution) in the different models (LLM and RF models)?  

 

R13 => Most predictive factors were available at a higher resolution than 0.5° or 0.1° 

so each input raster was upscaled using bilinear (continuous data) or mode 

(categorical data) resampling methods to an appropriate resolution (0.5° or 0.1°). 

Bilinear interpolation is a good standard technique but loss of ultra small-scale 

details is inevitable. The revised manuscript contains a note of uncertainty in GIS data 

resampling. 

 
We know that RF is robust against the multicollinearity of features. Did you try to test the 

multicollinearity of predictive factors? If not, please can you use the variance inflation factor 

(VIF) and tolerance (TOL) indices as are customarily used to estimate the multicollinearity of 

all predictive factors in machine learning modelling? For example, we think that Precipitation 

and ET are not a problem for parameter estimation because Aridity is based on P and ET. 

Can you give more explanations?  

R14 => By design random forest should not be affected by correlated features. We 

focused on prediction, not on interpretability. A detailed analysis of feature 

importance was outside of the scope of this analysis but could be extended using 

these suggestions. 

Can you explain to us the difference between the final variables in your random forest model 

compared to the variables selected in the study of Moeck et al. (2020)? A global-scale 

dataset of direct natural groundwater recharge rates: A review of variables, processes and 

relationships. https://doi.org/10.1016/j.scitotenv.2020.137042. Please cite this reference in 

your study.  



 

R15 => Moeck et al. (2020) point out that recharge estimates based solely on climatic 

variables can be misleading and that vegetation and soil structure have an 

explanatory power too. It’s a reasonable assumption and this could be addressed in a 

separate study that looks more carefully into variable importance and focus on 

interpretability of machine learning models. 

In our study, variables were selected for the model to match the data used previously 

in the Linear Mixed Model by MacDonald et al. (2021); most of the data are the same 

datasets. The MacDonald data set underwent a more thorough and transparent QA to 

give a curated dataset using techniques only appropriate to the African environment. 

Interestingly although local factors in soil and geology are important in controlling 

local recharge as shown by the residuals in the model, they do not improve large 

scale continental model - as discussed in MacDonald et al. 2021. In the follow up 

paper from the Moeck 2020 paper, only climatic factors are used for global modelling 

(Berghuijs et al. 2022, https://doi.org/10.1029/2022GL099010) 

We add these points to the discussion section in the revised manuscript, citing Moeck 

et al. (2020) and Berghuijs et al. (2022). 

What is the effect of training dataset sample size on the performance/quality during the 

implementation of the RF model?  

R16 => It has a marginal effect. 

train/test ratio 70% to 30% 

Mean R2 train (log): 0.94 

Mean R2 test (log): 0.63 

Mean out-of-bag error: 0.63 

 
train/test ratio 75% to 25% 

Mean R2 train (log): 0.94 

Mean R2 test (log): 0.60 

Mean out-of-bag error: 0.65 

 
train/test ratio 80% to 20% 

Mean R2 train (log): 0.94 

Mean R2 test (log): 0.61 

Mean out-of-bag error: 0.65 

 

Did you try to make a sensitivity analysis of the effect of each factor (explanatory variables) 

on the groundwater recharge map, i.e., when you decide to eliminate one or more factors?  

R17 => We relied on built-in feature importances of RF algorithm and investigated 

changes to R2 metric when gradually adding factors to identify which factors have 

very little or no explanatory power. 

We know that the various GIS layers come with different spatial resolutions. Why did you 

choose to develop the final map at 0.1° spatial resolution? Can you explain the choice of this 

type of resolution?  

R18 => It’s the highest possible resolution that we could obtain raster data for the 

FLDAS soil moisture dataset (McNally et al. 2018) (at the time of the study). Global 

hydrological models typically work at 0.5° spatial resolution, and large-scale 

prediction maps (e.g. MacDonald et al., 2021) are produced at that resolution too. We 



sought to demonstrate that data-driven modelling can create prediction maps at a 

higher resolution, given input data of good quality. We are aware that there is a high 

uncertainty in the predictions and do not claim that a higher resolution is better (see 

R1); prediction maps at a higher resolution can, however, be obtained from a similar 

effort as lower resolution maps. 

 

Do you have performed/checked quality of GeoTIFF datasets before the modelling?  

R19 => Yes, we checked missing values and values range. 

In the discussion, the authors must address the uncertainty in the GIS explanatory dataset 

used to estimate groundwater recharge (deficiencies of data quality; biased and absent data, 

sample sizes, missing covariates, etc.).  

R20 => We recognise that considerable uncertainty will exist in gridded datasets (their 

representativity over 100 km2 to 2500 km2) used to estimate recharge. We opted for 

high-quality, published, and peer-reviewed datasets, and their origins are outlined in 

Table S1.  

Is it possible to improve the performance of the random forest model developed in your 

study? Which additional predicting variable (s) (even if such information is scarce) could be 

added to improve the results?  

R21 => We employed the most appropriate gridded datasets available based on the 

necessity of inclusion. It may be possible that better, detailed representation of 

vegetation and soil structure variables may improve results but this constitutes a 

separate study beyond the aims of this one. 

Why you did not test the continental scale model at the country level/scale by using the best 

variables retained in your final model? In others words, Can you validate your machine 

learning model at the local scale? 

 

R22 => We welcome the suggestion of conducting basin-level analyses, in an area 

with dense observational network but are unaware of the availability of datasets 

currently permitting such an analysis. 

 
Minor comments 

R23 => All following suggestions were considered and implemented, unless stated 

otherwise. 

 

Abstract section:  

Line 10: Put semicolon “;” between 0.83 and 0.88  

  

Page 2:  

Line 23, replace ~ by the word approximatively.  

Line 28. Add, “s” in the word “contributes”.  

Page 3:  



Line 76. Add the article “a” in this sentence “A recent study by Huang et al. (2019) employed 

a multi-layer perception network”…………  

Line 88. In this sentence, “In the field of groundwater modelling. The RF technique has… 

please check the dot between modelling and The RF. 3  

 

Page 4.  

Line 92. It may be interesting to show the equivalent of the spatial resolution like 0.5° in 

terms of distance (km) for more appreciation. 

Line 107. Add the term ‘the two” before “different models.  

Line 108. We think that this paragraph “Section 2 summarises the study area and the spatial 

characteristics of its groundwater resources, and outlines the data sources and the model 

development process. Section 3 presents the results of the modelling experiments. Section 4 

discusses these results in the wider context and critically evaluates the developed model” is 

not very important here and can be removed and keep just the sentence starting by “this 

study is accompanied by a Supporting Material that provides extensive information on the 

predictors used and additional analyses that extend the investigation presented in this paper.  

We respectfully decline this stylistic request to remove this paragraph since these 

sentences helpfully map out the order and logic of the manuscript. 

Page 5. The study area section is not clearly presented. For example when the authors say 

that: “These provide a basis for the division of the continent into 8 climatic regions, most of 

which experience high interannual rainfall seasonality”. We need to present clearly with a 

little section these 8 climatic regions. Please improve this section. 

Page 6.  

Make sure all your Figures are correctly inserted. Because, for example, the map of Figure 1 

cuts the sentence in Line 151. 

Line 160. Add “The” before number of wet days.  

Page 7. Line 169. Just say: To create the groundwater recharge map…  

Page 12 and Page 13. Add some reference to justify your finding in semi-arid and arid 

context results such as Burkina Faso, Ethiopia, etc. Please Line 327 to Line 356.  

Page 12. Insert the Table 1. Optimal random forest hyperparameters found through random 

search with cross-validation for different random forest model variants used in this study at 

the end of this sentence: “ The model underestimates these samples (136 obs/38 pred, 221 

obs/64 pred, 266,…”  

Page 16. Again, a map of Figure 3 divides the sentence in Line 380. Need to be arranged.  

Technical correction  

Page 6. Line 160. Please put a space between 300 and meter. 
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LIST OF ALL RELEVANT CHANGES 

• Added prediction intervals constructed with Quantile Regression Forest 

• Acknowledged uncertainty in input data and data processing 

• Improved Fig. 1 – added scale and North arrow 

• Changed the data source of land cover data (mode value of a time series data from 

Meiyappan and Jain (2012) for 1981-2010) and acknowledged the new source in text  

• Added the explanation for the selected set of predictors, cite Moeck et al. 2020  

• Added references to justify our findings (Line 333 - 344) 


