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1. Workflow

Figure S1 illustrates the steps undertaken to derive groundwater recharge estimates using a data-driven method and

compare them with the modelling results obtained from a linear mixed model by MacDonald et al. (2021). Most steps

are sequential, with their outputs feeding the subsequent actions.

Figure S1. Flow diagram showing the steps performed in this analysis to achieve research goals.



2. Details on input data

Table S1. Summary of gridded datasets used in this study. Each input raster was upscaled using bilinear (continuous data) or mode (categorical

data) resampling methods to an appropriate resolution (0.5° x 0.5° or 0.1° x 0.1°) before being applied in the random forest model. Long-term

averages for the indicated time period were extracted from time series datasets.



Figure S2. Spatial distribution of groundwater recharge predictors across Africa used in the initial predictor importance analysis: (a)

precipitation (mm/year), (b) evapotranspiration (mm), (c) aridity index, (d) elevation (m), (e) soil moisture (m3/m3), (f) NDVI, (g) landcover, (h)

soil group (graphic source: Soil Atlas of Africa, Jones et al. (2013)), (i) aquifer group (graphic source: MacDonald et al. (2012)). See Table S1 for

details on data sources.

Figure S3. Distribution of observed groundwater recharge in the sample set of 127 observations in the original (linear) scale (a) and in the log

scale (b), transformed by applying the common logarithm.



3. Linear Mixed Model (LMM)

A LMMwas developed at 0.1° to allow for a comprehensive comparison of models at both spatial resolutions of 0.5° and 0.1°. To

keep the LMM at 0.1° consistent with the model at 0.5° developed by MacDonald et al. 2021, the predictor importance analysis

was omitted and only one covariate – precipitation - is used as the input to the statistical model. The optimal parameters of the

fixed and random effects are listed in Table S2.

Table S2: Optimal LMM parameters for fixed and random effects at 0.1°.

The fixed effects model is represented by the following equation:

and the random effects are the independently and identically distributed error c0 and a spatially correlated Gaussian random field

modelled with Matern correlation function. For more details, refer to Supplementary Material of MacDonald et al. 2021.

4. Residual kriging for Random Forest

Kriging-type interpolation of residuals is also applied on top of the prediction results from the RF model to explicitly account for

spatial variability in LTA recharge observations around the fitted values, under the assumption that the LTA recharge observations

are likely to be similar for all unsampled sites in the proximity to the sampled sites. Contrary to the LMM residuals that were

kriged as a part of E-BLUP procedure for LMM, RF residuals exhibit low spatial dependence and low semivariance. As a result, the

effect of residual kriging on the final prediction values was localised.

Table S3: Ordinary Kriging parameters for kriging-type interpolation of random forest residuals at 0.5° and 0.1°. Spherical model was used as

the variogram model, that was fitted to unprojected residuals, using great-circle distances, returning km as units.



5. Additional analysis: random forest

5.1. Variable importance

Random forest regressor works as a black-box model since its internal decision trees cannot be examined individually and no

regression coefficients are calculated by the model. However, it generates information on variable importance that can be

compared to other regression techniques. It is an important feature when working with high dimensional data since the variable

selection can be a time-consuming, error-prone, and subjective task. The generation method depends on the implementation of

the random forest regressor. In the Python implementation used in this study, the importance of a variable is expressed in terms

of the Gini importance and it measures the decrease in the impurity of the split in an internal node for that feature. It is

computed as the normalised total reduction in the variance brought by that variable.

The variable importance experiment utilised 100 random forest models grown using all explanatory variables listed in Table S1.

Prior to inspecting the variable importance, the predictive performance of the models was checked to ensure their predictive

power was satisfactory. The R2 values of training and testing sets ranged between 0.93-0.95 and 0.42-0.81 respectively. The oob

score oscillated between 0.58-0.70. Then, the feature importance information was averaged over all models. Based on the RMSE

performance metric, the best model was selected out of the ensemble and its variable importance was compared with the

obtained mean. The mean of the built-in impurity-based feature importances over all models revealed that precipitation, soil

moisture, aridity index and NDVI have the most explanatory power, as illustrated in Figure S5.

Figure S5. Relative feature importance obtained using the random forest-specific score of the total reduction in the variance brought by a

variable (a), and using a model agnostic permutation importance of features based on training dataset (b) and testing dataset (c). Results

generated using Python implementation of RandomForestRegressor and permutation_importance method from scikit-learn version 0.24.2.

Although this method can deliver valuable information at no extra computational cost, impurity-based importances exhibit a bias

towards variables of high cardinality. Furthermore, they do not reflect the ability of a variable to make generalised predictions

with respect to the testing set, as they are based on training set statistics (Parr et al. (2018). Thus, an additional permutation

importance analysis was carried out. The permutation feature importance is expressed as the decline in a model score when a

single input variable is randomly shuffled. This breaks the input-output relationship and allows an assessment of how much the

target value depends on the particular feature. The chosen method permutation_importance from the sklearn library was

applied to a single fitted random forest model and the features were shuffled 30 times. As illustrated in Figure S5, it was

confirmed that the aforementioned variables have the highest explanatory power but their ranking might vary between the

individual models due to the random factor. This large variance suggests that the top variables are highly correlated as the

substitution of one variable through another does not considerably affect the model performance. Permutation importance

analysis applied to the testing set did not indicate any significant differences in the ranking of the variable importance.

However, in the case of highly correlated predictor variables, both impurity-based feature importance and permutation

importance can lead to incorrect conclusions as they can falsely classify one variable as truly important, while it might hold

predictive value mainly because of the correlation with another essential variable. Although multicollinearity of variables does

not affect the predictive power of the model, an additional iterative importance analysis based on the adjusted R2 metric was



carried out to identify the real influence of variables on the model. First, the variable clusters were identified using hierarchical

clustering based on the Spearman rank-order correlations. The Spearman rank-order correlation coefficient is a non-parametric

measure of the strength and direction of the relationship between two variables. Hierarchical clustering procedure groups highly

collinear variables based on Spearman rank-order correlations under a given threshold. Its results are illustrated in Figure S6.

When applied to the predictors set, it identified two strong clusters of correlated variables: (1) precipitation, soil moisture, aridity

and NDVI, (2) potential evapotranspiration and landcover.

Figure S6. Spearman rank-order correlation heatmap (a) and corresponding hierarchical clustering (b) for detecting highly correlated variables.

Given the threshold=1, two variable clusters are identified: (1) precipitation, soil moisture, aridity and NDVI, and (2) potential

evapotranspiration and landcover.

This analysis built a basis for a further iterative variable importance investigation using random forest. Due to the random

character of the growing process, multiple random forest models were built with a fixed random state parameter and using the

same training and testing datasets to allow comparability of individual models and attribute any changes in model performance

to the explanatory power of selected variables. Adjusted R2 was used as a performance metric to decide whether a given variable

should be kept in the model. Iterative variable selection was performed as follows: the first model was built with the strongest

predictor - precipitation - only. Next, one variable from each cluster was picked and used to grow a new model together with

other variables already recognised as important. Finally, the remaining correlated variables were added to the predictor set one

at a time to check whether any additional performance increase could be observed. The detailed results are presented in Table

S1.



Table S4. Sequence of random forest models for LTA groundwater recharge with corresponding adjusted R2 performance metrics under a

varying set of independent variables. Variables are added iteratively and are kept in the predictor set if they lead to a performance

improvement.

In summary, five variables contributed to a performance increase, with precipitation and potential evapotranspiration having

a dominant influence on model performance. Aridity index, NDVI and soil moisture, all correlated with precipitation, had a

marginal positive impact on the model whereas elevation, aquifer group, soil group and landcover did not benefit the model.

The results of the variable importance analysis confirmed that precipitation explains a large part of variance in the modelled LTA

groundwater recharge, both directly and indirectly through the correlated variables. The inclusion of other meteorological and

vegetation variables such as PET, aridity index, NDVI and soil moisture led to an improvement in the model fit, though often only

a minor one, which is partially contrary to the findings of MacDonald et al. (2021), who did not find any statistically significant

improvement in the recharge modelling from adding additional explanatory factors to the linear mixed model. It might suggest

that the random forest model has a better ability to capture the underlying non-linear relationships between the explanatory

factors and the target variable. In general, the findings of this study are consistent with broader research, in particular with

Mohan et al. (2018), who lists the aforementioned variables as the most influential for groundwater recharge. Interestingly,

subsurface factors had a marginal power in explaining variance in the target variable. It does not imply that the soil and aquifer

group variables do not play any role in the groundwater recharge but rather that these particular parameters were not as

relevant for the model as the climatic and vegetation factors. However, by employing a limited range of hydrogeological variables

and thus implicitly assuming the homogeneity of subsurface properties, the random forest model might have missed important

factors and consequently oversimplify the relationship between climate and groundwater recharge, which is a known issue in

GHMs (De Vries and Simmers (2002); Hartmann et al. (2017)). High residual values for the data points located in the Gulf of

Guinea and in DR Congo suggest that the model is not able to create a link between the current set of predictors and a few very

high recharge observations. The incorporation of yet unidentified factors representing subsurface heterogeneity could possibly

improve the prediction accuracy of the model for these points and effectively allow to incorporate focused recharge that is

crucial to accurately assess the renewability of groundwater resources in the semi-arid regions but would require a significant

amount of data engineering.

5.2. Precipitation sensitivity analysis

As the major influence of precipitation data on the dependent variable might lead to some variability in model output depending

on the precipitation dataset, two other long-term rainfall datasets are employed in the precipitation sensitivity analysis to

compare the modelled recharge under varying precipitation signal and quantify the corresponding output uncertainty. These

precipitation datasets are derived from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) version 2 at a

spatial resolution of 0.05°, and Global Precipitation Climatology Centre (GPCC) Full Data Monthly Product version 2020 at a

spatial resolution of 0.5°. CHIRPS data is produced by combining models of terrain-induced precipitation enhancement with

interpolated ground-based station data and gridded satellite-based precipitation estimates from NASA and NOAA (Funk et al.

(2015)). This blended approach overcomes issues of the lack of rain-gauge stations in rural regions and the satellite bias due to

complex terrain leading to underestimating extreme rainfall events. The GPCC data is obtained from quality-controlled



observations collected from in-situ gauge stations (Schneider et al. (2011)). Compared to CRU TS dataset, GPCC uses substantially

more observing stations.

The following settings were identified for the precipitation sensitivity analysis, each altering one of the rainfall-derived features

of the input data:

- CRU precipitation + FLDAS soil moisture,

- CHIRPS precipitation,

- GPCC precipitation,

- CRU precipitation + GLDAS soil moisture.

Figure S7. Comparison of the distribution of precipitation (a) and soil moisture (b) variables derived from different sources in the groundwater

recharge sample set.

Figure S7 illustrates the distribution of each variable in the groundwater recharge dataset, excluding zero-recharge samples.

There are some minor differences in the distribution of rainfall across different sources, notably in the semi-arid (400-600

mm/year) and in the sub-humid (600-1000 mm/year) areas. The soil moisture variables can be compared directly after the

conversion of units, as the FLDAS product expresses soil moisture content on a volume basis (m3/m3), whereas the GLDAS derived

values are measured on a weight basis (kg/m2). The conversion is performed by dividing the values expressed on a weight basis

by the assumed density of the water in the soil (1000 kg/m3) and the thickness of the layer (10 cm).

To examine the influence of different precipitation datasets on the model performance and to allow an unbiased comparison of

the individual precipitation data, a set of 4 models for each option was created in 100 iterations, amounting to 400 models in

total, with a fixed random state (training/testing data selection, randomness of model building) in each iteration. In this analysis,

the hyperparameters of each ensemble were not tuned to examine the direct impact of input dataset on the recharge

predictions. The mean R2 values and out-of-bag scores of the ensembles of 100 random forest models for each variant of the

input dataset are summarised in Table S5 and indicate that there are minor differences in the performance of the model under

varying input precipitation.



Table S5. Mean performance of an ensemble of 100 random forest models for each input data variant. The metrics are calculated based on

output data in the log-scale.

Input data R2 train R2 test

CRU +FLDAS 0.95 0.61

CHIRPS 0.86 0.61

GPCC 0.95 0.66

CRU +GLDAS 0.94 0.60

However, as illustrated in Figures S8 and S9, there are some significant spatial differences in the predicted recharge between the

original model output based on CRU precipitation and FLDAS soil moisture, and the model based on GPCC precipitation. In some

areas of Central Africa, the recharge might differ by up to 150 mm/year. Notably, high relative differences are present in the Sahel

belt, where the base model estimates oscillate between 1-2 mm/year, whereas the GPCC-based model predictions reach up to 7

mm/year. Notably, lower recharge rates are projected in the Maghreb by the latter model. The comparison of the base model

values and the GLDAS based model identifies yet other areas of recharge prediction discrepancy. In East Africa, in Kenya and

Tanzania, the increase in recharge may reach up to 130% when compared to the base model values. Although still very high,

recharge values in the most humid areas of West Africa, the Gulf of Guinea and Madagascar, as well as in the heart of Africa, vary

by as much as 100-200 mm/year. Most of these regions are areas with no direct recharge observations, hence a high variability.

Interestingly, CHIRPS and CRU precipitation datasets did not result in any significant spatial recharge differences.



Figure S8. Comparison of modelled groundwater recharge using different precipitation and soil moisture datasets at a spatial resolution of 0.5°:

(a) CRU precipitation + FLDAS soil moisture; (b) CHIRPS precipitation + FLDAS soil moisture; (c) CRU precipitation + GLDAS soil moisture; (d)

GPCC precipitation + FLDAS soil moisture.



Figure S9. Absolute (top row) and relative (bottom row) spatial differences in modelled groundwater recharge using different precipitation and

soil moisture datasets at 0.5° spatial resolution in relation to the base CRU/FLDAS model: CHIRPS precipitation + FLDAS soil moisture (a)/(d),

CRU precipitation + GLDAS soil moisture (b)/(e), GPCC precipitation + FLDAS soil moisture (c)/(f).



5.3. Fit of the RF models

Figure S10. Plots relating the observed groundwater recharge to the predicted values at 0.5° obtained using the linear mixed model by

MacDonald et al. (2021) (a), random forest model (b) and random forest model with residual kriging (c). Their results are compared in (d)-(f).

Figure S11. Plots relating the observed groundwater recharge to the predicted values at 0.1° spatial resolution obtained using the linear mixed

model developed in this study (a), random forest model (b) and random forest model with residual kriging (c). Their results are compared in

(d)-(f).



Figure S12. Plots relating the observed and modelled values to model residuals for the training and testing dataset of a randomly selected

model in the model series after hyperparameter tuning, at 0.5° spatial resolution. Column 1 presents the observed and modelled recharge

values in the log scale (a,g) and in the original scale (d,j). The model residuals are shown in relation to the observed recharge (column 2) and

the modelled recharge (column 3) in the log scale (row 2) and in the original scale (row 4). Residual plots leave out high recharge values for

better readability. High recharge values are mostly underestimated in both sets, as there are only a few measurements in the areas of high

precipitation and high recharge. Thus, the residuals increase with increasing recharge as evident in the segments (f) and (l) illustrating the

predicted recharge and the corresponding residuals in the training and testing set respectively. Also, some low recharge values are

overestimated on a relative scale.
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