Preprints
https://doi.org/10.5194/egusphere-2023-1152
https://doi.org/10.5194/egusphere-2023-1152
16 Jun 2023
 | 16 Jun 2023

Subgridding High Resolution Numerical Weather Forecast in the Canadian Selkirk range for local snow modelling in a remote sensing perspective

Paul Billecocq, Alexandre Langlois, and Benoit Montpetit

Abstract. Snow Water Equivalent (SWE) is a key variable in climate and hydrology studies. Current SWE products mask out high topography areas due to the coarse resolution of the satellite sensors used. The snow remote sensing community is hence pushing towards active microwaves approaches for global SWE monitoring. However, designing a SWE retrieval algorithm is not trivial, as multiple combinations of snow microstructure representations and SWE can yield the same radar signal. The community is converging towards forward modeling approaches using an educated first guess on the snowpack structure. Yet, snow highly varies in space and time, especially in mountain environments where the complex topography affects atmospheric and snowpack state variables in numerous ways. Automatic Weather Stations (AWS) are too sparse, and high-resolution Numerical Weather Predictions systems have a maximal resolution of 2.5 km × 2.5 km, which is too coarse to capture snow spatial variability in a complex topography. In this study, we designed a subgridding framework for the Canadian High Resolution Deterministic Prediction System. The native 2.5 km × 2.5 km resolution forecast was subgridded to a 100 m × 100 m resolution and used as the input for snow modeling over two winters in Glacier National Park, British Columbia, Canada. Air temperature, relative humidity, precipitation and wind speed were first parameterized regarding elevation using six Automatic Weather Stations. Alpine3D was then used to spatialize atmospheric parameters and radiation input accounting for terrain reflections and perform the snow simulations. Modeled snowpack state variables relevant for microwave remote sensing were evaluated against profiles generated with Automatic Weather Stations data and compared to raw HRDPS driven profiles. Overall, the subgridding framework improves the optical grain size (OGS) bias by 0.04 mm, the density bias by 2.7 kg · m−3 and the modelled SWE by 17 % (up to 41 % in the best case scenario). Overall, this work provides the necessary basis for SWE retrieval algorithms using forward modeling in a Bayesian framework.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

19 Jun 2024
Subgridding high-resolution numerical weather forecast in the Canadian Selkirk mountain range for local snow modeling in a remote sensing perspective
Paul Billecocq, Alexandre Langlois, and Benoit Montpetit
The Cryosphere, 18, 2765–2782, https://doi.org/10.5194/tc-18-2765-2024,https://doi.org/10.5194/tc-18-2765-2024, 2024
Short summary
Paul Billecocq, Alexandre Langlois, and Benoit Montpetit

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1152', Anonymous Referee #1, 20 Aug 2023
    • AC2: 'Reply on RC1', Paul Billecocq, 28 Nov 2023
  • RC2: 'Comment on egusphere-2023-1152', Anonymous Referee #2, 30 Aug 2023
    • AC1: 'Reply on RC2', Paul Billecocq, 28 Nov 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1152', Anonymous Referee #1, 20 Aug 2023
    • AC2: 'Reply on RC1', Paul Billecocq, 28 Nov 2023
  • RC2: 'Comment on egusphere-2023-1152', Anonymous Referee #2, 30 Aug 2023
    • AC1: 'Reply on RC2', Paul Billecocq, 28 Nov 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to revisions (further review by editor and referees) (23 Dec 2023) by Franziska Koch
AR by Paul Billecocq on behalf of the Authors (09 Jan 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (18 Jan 2024) by Franziska Koch
RR by Anonymous Referee #2 (19 Feb 2024)
ED: Publish subject to minor revisions (review by editor) (06 Mar 2024) by Franziska Koch
AR by Paul Billecocq on behalf of the Authors (02 Apr 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (14 Apr 2024) by Franziska Koch
AR by Paul Billecocq on behalf of the Authors (24 Apr 2024)

Journal article(s) based on this preprint

19 Jun 2024
Subgridding high-resolution numerical weather forecast in the Canadian Selkirk mountain range for local snow modeling in a remote sensing perspective
Paul Billecocq, Alexandre Langlois, and Benoit Montpetit
The Cryosphere, 18, 2765–2782, https://doi.org/10.5194/tc-18-2765-2024,https://doi.org/10.5194/tc-18-2765-2024, 2024
Short summary
Paul Billecocq, Alexandre Langlois, and Benoit Montpetit
Paul Billecocq, Alexandre Langlois, and Benoit Montpetit

Viewed

Total article views: 644 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
434 179 31 644 27 30
  • HTML: 434
  • PDF: 179
  • XML: 31
  • Total: 644
  • BibTeX: 27
  • EndNote: 30
Views and downloads (calculated since 16 Jun 2023)
Cumulative views and downloads (calculated since 16 Jun 2023)

Viewed (geographical distribution)

Total article views: 636 (including HTML, PDF, and XML) Thereof 636 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 19 Jun 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Snow covers a vast part of the globe, making Snow Water Equivalent (SWE) crucial for climate science and hydrology. SWE can be measured by satellite, but the snow's complex structure highly affects the signal and thus an educated first guess is mandatory. In this study, a subgridding framework was developped to model snow at the local scale from model weather data. The framework enhanced both weather parameters and snow modeling, paving the way for SWE inversion algorithms from satellite data.