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Billecocq et al. present a study introducing a subgridding method to downscale Numerical
Weather Prediction model outputs to drive a detailed snowpack model, in order to produce
spatially distributed estimates of SWE and snow microstructure properties at 100 m
resolution. These estimates are necessary to provide a first guess of the snowpack
structure to SWE retrieval algorithms in a perspective of remote sensing.

The paper covers a topic of interest for the cryospheric community and fits the scope of The
Cryosphere. It is overall concise and reads easily, with helpful figures. It is an interesting
contribution to that topic, but the following major issues need to be addressed.

Thank you for your valuable feedback and constructive comments. We have revised the
manuscript accordingly.

The research plan remains somehow unclear in the paper. I would recommend to better
define the research gap in the introduction, after a more complete literature review. What is
the exact novelty of the paper? Almost no literature review is done on existing NWP
downscaling methods and frameworks, while it seems to be identified as the main
contribution of the paper. The definition of the research gap should then be followed by a
clear exposition of the research questions that the study addresses. Discussion and
conclusion could then be better structured to answer these research questions, based on
the exposed methods and results. In the end, it could enable a better structure of the paper,
enrich introduction and discussion sections and prevent reader’s misunderstandings (which
may be the cause of some of my comments).

The introduction structure has been restructured as suggested by the reviewer. It now
features a literature review on NWP, and 3 defined research questions are formulated
subsequently. The Discussion section has been significantly altered, with clearer statements
of the achieved results, and a perspective on how these results will transfer to the field of
remote sensing, which is the application domain for the proposed framework. The
Conclusion section has been updated to feature answers to each research question, and it
summarizes how the research presented in the paper contributes to answering each of
them.

The validation of the snowpack simulations against AWS-driven snowpack simulations is
problematic. First, they provide three point comparisons which cannot be representative of
the domain. The lack of spatially distributed snowpack measurements and the absence of



more point measurements are understandable, but the comparison cannot really be
considered as validation. Indeed, because of error compensations, a better weather input
(from AWS measurements) does not necessarily provide a SWE or HS estimate by the
model closer to actual snowpack observations. Additional snowpack measurements should
be included for validation, and if not possible, the authors should be careful with the used
words (e.g., “validation”, “improve”, “perform better”, …). It also remains unclear if the HS
measurements were used or not (i.e., are the reference station curves direct measurements
or AWS driven simulations?). If so, it provides a first element of validation, but it should also
be compared to the AWS driven simulations that are considered as references otherwise.

First, the wording has been updated according to the reviewer’s comment everywhere in the
manuscript.

Second, SR50 snow depth time series have been added as a proper validation tool for HS
where available (Abbott and Fidelity). Moreover, the accuracy of the SNOWPACK model is
now extensively discussed. It gives a good perspective on where and why
AWS-SNOWPACK runs can be considered as validation, as well as a good view on where
the biases of the model lie with respect to the reality. Previous work on that matter was
conducted in our research lab, and we rely on the work of Madore et al 2018 and Madore et
al 2022

https://www.tandfonline.com/doi/abs/10.1080/02723646.2018.1472984
https://www.frontiersin.org/articles/10.3389/feart.2022.898980/full

The spatial variability study is incomplete: six arbitrary points are not representative.
Instead, pixels of the whole domain could be aggregated by topographic categories.

To complete the spatial variability, we added a new section to the results section
domain-wide results aggregated by topographic categories. Furthermore, the intra-cell
variability was assessed over the whole simulation, which is also presented in the results
section for the 2018-2019 season. However, the model is crashing for season 2019-2020.
The source of the bug is not trivial to identify, and we are still looking for a solution to this
day.
Finally, the choice of these six arbitrary points is further justified, as they are located in the
only cell of the domain that features an elevation range from below treeline to the alpine on
both the north and south aspects. This makes this cell a perfect candidate to study the
ability of the subgridding framework to provide meaningful spatial variability.

Specific comments

https://www.tandfonline.com/doi/abs/10.1080/02723646.2018.1472984
https://www.frontiersin.org/articles/10.3389/feart.2022.898980/full


In general, the captions of all figures must be edited (in particular, from Figure 3 to the end).
They need to be more descriptive of all represented variables.
Captions have been edited for every figure and table of the manuscript as recommended.

Abstract, l. 1-7: the part of the abstract about remote sensing could be shortened. It is only
a context element, so it could be mentioned in one or two short sentences in the abstract.

A few sentences on the remote sensing background have been removed from the abstract,
results have been updated, and an emphasis has been put on the perspectives and
applications. Here is the updated version of the abstract.

Snow Water Equivalent (SWE) is a key variable in climate and hydrology studies. Yet,
designing a SWE retrieval algorithm is not trivial, as multiple combinations of snow
microstructure representations and SWE can yield the same radar signal. The community is
converging towards forward modeling approaches using an educated first guess on the
snowpack structure. However, snow highly varies in space and time, especially in mountain
environments where the complex topography affects atmospheric and snowpack state
variables in numerous ways. Automatic Weather Stations (AWS) are too sparse, and
high-resolution Numerical Weather Predictions systems have a maximal resolution of 2.5
km × 2.5 km, which is too coarse to capture snow spatial variability in a complex
topography. In this study, we designed a subgridding framework for the Canadian High
Resolution Deterministic Prediction System. The native 2.5 km × 2.5 km resolution forecast
was subgridded to a 100 m × 100 m resolution and used as the input for snow modeling
over two winters in Glacier National Park, British Columbia, Canada. Air temperature,
relative humidity, precipitation and wind speed were first parameterized regarding elevation
using six Automatic Weather Stations. Alpine3D was then used to spatialize atmospheric
parameters and radiation input accounting for terrain reflections and perform the snow
simulations. Modeled snowpack state variables relevant for microwave remote sensing
were evaluated against profiles generated with Automatic Weather Stations data and
compared to raw HRDPS driven profiles. Overall, the subgridding framework improves on
average the optical grain size (OGS) bias by 18\%, and the modelled SWE by 16\% with
regards to simulations driven with raw HRDPS forecasts. This work could lead up to a 7 dB
improvement in the snowpack SAR backscattering modelling, and hence provides the
necessary basis for SWE retrieval algorithms using forward modeling in a Bayesian
framework.

Abstract, l. 8-9 and Introduction l. 52-53: “too coarse to capture snow spatial variability in a
complex topography”. It always depends on the scale of variability you need to resolve, and
so mostly depends on the modelling goal. “too coarse” should then be related to the
application. The introduction needs to justify why this scale of 100 m is chosen, and why it is
the appropriate resolution to resolve the spatial variability required by the remote sensing
application.



No further justification was provided in the Abstract, but the Introduction has been modified
as follows.

Moreover, HRDPS spatial resolution is too coarse to properly represent the spatial
variability of atmospheric parameters and SWE in complex terrain. Indeed previous work on
spatial variability of SWE and atmospheric parameters have shown that a scale break
appears for SWE in the [50, 100] meters grid resolution interval, [100 m, 250 m] for wind
exposure, [100 m, 180 m] for vegetation height, and [90 m, 100 m] for incoming solar
radiations, leaving the optimal grid resolution at a 100 m for mountain processes
\citep{grunewald2010, winstral2014, rittger2016a}. Finally, 100 m resolution ties in well with
operational SAR satellites products and their processing pipelines, such as Sentinel-1 or
TerraSAR-X, as well as future missions \citep{derksen2021}.

l. 45-46: detailed snowpack models could be a bit more extensively described. It could also
be through a more complete description of the SNOWPACK model in the methods (e.g.,
when mentioning Alpine3D).
A more thorough description of the SNOWPACK/Alpine3D models has been added to the
methodology section.

Alpine3D is a spatially distributed 3D model, which allows running the vertical 1D snow
model SNOWPACK over an area, considering the spatial processes affecting atmospheric
variables \citep{Lehning2006}. SNOWPACK is a detailed multi-layer thermodynamic
finite-element model of snow microstructure and metamorphism. In this model, the snow
microstructure is represented by four main variables: grain size, bond size, dendricity and
sphericity for each snow layer. In addition, the model simulates several metrics of interest
when monitoring the evolution of the snowpack, such as height of snow, SWE, density,
optical grain size, or snow temperature \citep{Bartelt2002, Lehning2002}. To do so, the
model is fed with three text files describing the weather parameters on the time domain of
the simulation, the initial state of the soil layers on which the snow is going to develop (and
initial snow layers if relevant), and finally the configuration of the simulation.

l. 48-50: also mention spatial representativity issues of AWS.
We agree with the reviewer, and this is what was meant behind the “local biases” in the
original sentence. It has been rephrased in order to make this idea clearer to the reader:

However, they need human maintenance, are subject to outages, local biases, and usually
undersample the spatial heterogeneity of the processes at stake, especially in complex
terrain. As a result, AWS spatial interpolation in mountainous areas is not always accurate
\citep{lundquist2019}.



l. 50-51: “high-resolution atmospheric models are known for their negative bias in
precipitation”. This statement is too generalized: is it the case for all high resolution
atmospheric models, in all regions?
We agree with the reviewer that this statement is too generalized, it has been rephrased as:

The HRDPS model is known for its negative bias in precipitation.

l. 55-57: Why should this particular downscaling be discarded, regarding snow
microstructure? It needs more justification.
These lines have been removed as part of the next comment answer. A proper literature
review on NWP downscaling has been added.

l. 58-59: Many downscaling methods exist for driving snowpack models in complex terrain.
The literature review about atmospheric downscaling could be largely extended (only one
paper is cited). Secondly, the authors should justify clearly why existing downscaling
methods are irrelevant for SWE and microstructure retrieval from snowpack models. The
authors could be clearer about their research gap, to better identify the novelty compared to
other recent studies. For example, Marsh et al. (2020) offer a modelling framework in
Canada, including meteorological downscaling and the SNOWPACK model. Sharma et al.
(2023) use dynamical downscaling of NWP with WRF within CRYOWRF (including the
SNOWPACK model). A more complete literature review should enable the authors to better
highlight the novelty of their study.

A paragraph has been added in the Introduction to present a literature review on NWP
downscaling schemes. The niche where the proposed framework fits is hence better
highlighted, and specific research questions have been added as a conclusion to the
introduction to further underline the needs that are being addressed with this work.

Several NWP downscaling schemes have already been proposed. \citet{ListonElder2006}
introduced the MicroMet model which is now widely used by the community, and is part of
several more recent models. In MicroMet, a high-resolution DEM (30 m to 1 km) is used to
generate the overlying atmospheric forcing from a coarser grid or a sparse network of
Automatic Weather Station. This allows to produce a physically sound downscaling when
compared to naive interpolation methods, but without the need to run a computationally
intensive fully dynamic atmospheric model at the local scale. In Micromet, lapse-rates are
used for air temperature, dew point temperature (for relative humidity), and precipitation.The
algorithm for wind speed takes terrain slope and curvature into account. Incoming solar
radiations are split between direct and diffuse radiation and adjusted with cloud cover and
terrain shading. \citet{FiddesGruber2014} developed the TopoSCALE model, which can be
seen as an iteration over the MicroMet model. The main difference with MicroMet lies in the
precipitation subgridding that takes into account wind redistribution by altering the
precipitation field with climatology data after applying the lapse-rate correction from
\citet{ListonElder2006}. In the Canadian Hydrology Model (CHM), \citet{Marsh2020} take



this idea one step further, adding snow modelling to the atmospheric model subgridding. In
this study, the high-resolution DEM used for subgridding is first transformed into an
unstructured triangular mesh (or Triangulated Irregular Network, TIN). This allows to reduce
the computational cost of the model, as TINs are known to be more efficient at representing
terrain than rasters \citep{Marsh2018}. The input meteorology can be either real AWSs, or
an array of “virtual stations” extracted from any atmospheric model and defined by latitude,
longitude and elevation. All virtual stations are vertically corrected to a common elevation
reference using a dedicated set of specialty modules. The virtual station array is then
spatialized over the TIN using either Inverse Distance Weighting, thin plate splines with
tension, or the nearest station with no interpolation. This parameterized atmospheric forcing
is then used to run snow simulations using either iSNOBAL, SNOWPACK, or Crocus
\citep(refs for snow models). Point-scale validation was performed for SWE using both
SNOWPACK and Snobal driven by observed atmospheric data and evaluated against SWE
field measurements for one snow season. The atmospheric data spatialization capacity was
assessed by performing a leave-one-out analysis with the array of AWS. However, the
capacity of the model to subgrid NWP was left unassed . \citet{Vionnet2021} used the CHM
with a novel wind-downscaling strategy to subgrid forecasts from the High Resolution
Deterministic Prediction System (HRDPS) and simulate snow conditions at 50 m during one
snow season using 2-layer Snobal within CHM as the snow model. The modelled snow
depth and SWE spatial variability was evaluated against a spring Airborne Laser scanning
snow depth survey.

With snow hydrology as a main application, it is natural that the evaluation for CHM in
\citet{Marsh2020} and \citet{Vionnet2021} is focused on SWE and snow depth. However, for
remote sensing applications, specifically SAR signal inversion, snow microstructure and
layering is of particular importance \citep(josh king maybe, l’algo des finlandais, tsang
review ?). Moreover, remote sensing products are written in a gridded raster format, the TIN
mesh used in CHM, although very efficient, becomes an issue when pairing the model’s
output with satellite imagery. The Alpine3D model is a spatially distributed 3D model, which
allows running the vertical 1D multi-layer snow model SNOWPACK over a gridded DEM,
considering the spatial processes affecting atmospheric variables \citep{Bartelt2002,
Lehning2002, Lehning2006}. Weather data is spatialized using the MeteoIO library
\citep{Bavay2014}. However, MeteoIO is geared towards AWS spatialization, and it does
not include an atmospheric model subgridding scheme. This highlights the fact there is
currently a need in the community for both the design and the evaluation of an atmospheric
model subgridding framework to perform snow modelling in a SAR remote sensing coupling
context. The following research should be able to answer the following questions:

1. How do subgridded HRDPS forecasts compare to reference Automatic Weather
Stations in the simulation domain ?

2. Do the resulting atmospheric forcings lead to an improvement in snowpack
modelling, especially for critical snow parameters in remote sensing applications ?



3. Which degree of spatial variability with regards to snow parameters can be reached
by such a subgridding framework ?

To try and answer these questions, we first built a subgridding module to downscale
HRDPS grids as a Virtual Weather Station array. Second, we spatialized atmospheric
parameters and performed snow simulations on the study area using the Alpine3D model
over two consecutive winters (2018–2019 and 2019–2020). Weather parameters
subgridding and snowpack state parameters were assessed at three reference weather
stations using an array of statistical criteria and a Dynamic Time Warping algorithm
\citep{Hagenmuller2016, Hagenmuller2018, Herla2021}. Finally, we assessed the spatial
variability capacity of the proposed subgridding framework over the whole simulation
domain and within one HRDPS grid cell.

l. 79: Why not also including the melt season?
The global objective of this work is to provide a realistic first guess of the snowpack
structure in the context of SAR remote sensing signal inversion algorithm development. At
relevant frequencies (Ku-band, X-band, C-band), the snowpack becomes opaque to
microwaves when wet. This is why the study focuses on the accumulation period.

l. 81 and l. 272: “round grains”, “defragmented grains”. Please stick to the official
classification of grain shapes by Fierz et al. (2009). Here, respectively: “rounded grains”,
“decomposing and fragmented precipitation particles”.

Corrections have been made directly in the manuscript.

Figure 2: I assume a typo (“VWS” for “VW”)
Wind speed is referred to as VW everywhere in the SNOWPACK / MeteoIO /Alpine3D
documentation. It stands for Velocity of Wind, as described in the official SMET format
specification (https://meteoio.slf.ch/doc-release/SMET_specifications.pdf). This acronym
was used everywhere in the manuscript out of homogeneity with the official specification.

Figure 2: please use the full word “microstructure”
The figure has been updated as requested.

l. 106: “Snow precipitation water equivalent” -> Snowfall
The wording was modified straight in the manuscript

l. 107-108: Were these precipitation boards located in areas free of wind-induced erosion or
accumulation? This is worth mentioning.
Yes, they were placed in areas sheltered from the wind. It is now mentioned in the
manuscript.



l. 112-122: This is all methods and results from Helbig and Löwe (2014), which should be
cited. I would delete all these lines and equations and simply say Fsky is computed
following Helbig and Löwe (2014).

l. 123-135: Once again, all of this is from Helbig et al. (2017), so not new. I don't see the
need to reproduce all equations here if the authors simply say they use their downscaling
method.
The equations were added for the reader to have every equation used in the subgridding
paper in the same document to ease the reproduction of the methodology. However, we
understand that it is not necessary to reproduce them here. The equations have been
removed, and Helbig and Löwe (2014) is now cited. Changes were made directly in the
manuscript.

l. 141: “ILWR was spatialized using IDW”. ILWR is strongly dependent on terrain elevation
(e.g., Marty et al. (2002) found a climatological vertical gradient of - 29 W/m²/km in the
Alps). I would assume a simple IDW is not sufficient to downscale ILWR in complex terrain,
or am I missing something?

This point has been addressed by spatializing ILWR using the IDW_lapse algorithm. We
used the same lapse-rate as reported by Marty et al. because there are not enough ILWR
measuring stations in our study area to compute our own local gradient. The Method,
Results, and corresponding figures have all been updated accordingly.

l. 141-142: “All the algorithms mentioned above are a part of the MeteoIO library, which is
integrated into the Alpine3D model”. It is a bit unclear here what is novel in this study (“We
designed a logarithmic regression (…)”, l. 98) and what is already existing in Alpine3D.
Clarification is necessary.
With the added paragraphs in the introduction we believe that the different points of
novelties introduced in this paper should now be clearer to the reader. The sentence in l.141
has been rephrased to:

All the spatial interpolation algorithms mentioned above are a part of the MeteoIO library,
which is integrated into the Alpine3D model.

This makes the point clearer that novelty with regards to NWP subgridding lies in the
parameterization of the HRDPS into the Virtual Station Array. Second point of novelty lies in
the thorough evaluation of the snowpack parameters on the point scale and on the whole
simulation domain, which had never been performed before for such a simulation
framework.

l. 143: The snowdrift scheme is probably turned off since wind-driven redistribution is
parameterized by a precipitation multiplier? It could be worth mentioning.



Yes, the snowdrift is turned off. This is now mentioned in the text.

l. 144: “considering the spatial processes affecting atmospheric variables”. Do you mean the
atmospheric downscaling already described above? Please reformulate or clarify.

Here we only meant that Alpine3D has some built-in features to consider the effect of
topography on the input array of atmospheric variables.
The sentence has been rephrased as follows:

Alpine3D is a spatially distributed 3D model, which allows running the vertical 1D snow
model SNOWPACK over an area while taking into account the spatial processes affecting
the input atmospheric variables, such as terrain shadowing (Lehning et al., 2006).

l. 147-150: Why choosing individual points? How have they been chosen? They are not
necessarily representative. Why not aggregating values by categorical topographic areas
instead? What's the model slope at the chosen points? It can have a significant impact on
ISWR differences between North and South.

A few sentences have been added to justify the choice of choosing these specific individual
points. A Table now presents topographic characteristics for each point as well.

To assess the spatial variability capacity of the subgridding framework, the model was ran
on the whole simulation domain, and we also generated outputs at six points within the
same cell for intra-cell variability assessment. The specific cell was chosen because it is the
only cell in the simulation domain that features a north and south slope with elevations
ranging from below treeline to the alpine on both aspects. No glacier is present in the area.
Table \ref{tab:spatial_variability_points} summarizes the topographic characteristics for the
chosen intra-cell spatial variability points.

Furthermore, as stated earlier, the spatial variability analysis has now been enriched with
plots showing snow parameters over the whole domain aggregated by topographic
categories.

l. 152-153 and further: as mentioned in the general comments, I would not call a
comparison of SGF-SNOWPACK vs AWS-SNOWPACK a validation of snowpack
simulations. Some studies have shown that a "better" weather input could degrade the
metrics of snowpack simulations, because of error compensations in the interplay of
weather input and modelled snowpack processes. Please be careful with the wording
“validation”, “better”, etc., to qualify the comparison. "Simulation A is closer to Simulation ref
than Simulation B" would be more accurate.
The wording has been corrected everywhere in the manuscript. A paragraph has been



added to the Discussion section where the comparison/validation of the subgridding
framework with AWS driven SNOWPACK runs is discussed and justified.

l. 186: as mentioned before, simply say “HRDPS tends to”...
The modification has been done in the manuscript.

l. 192: “a mean layer-by-layer bias for density and OGS”. This needs to be clarified a bit. Is
it a mean value for a snowpack profile where a 1 mm layer would weight the same as a 50
cm layer? Is there a weighting?

The mean layer-by-layer bias is computed between the warped (i.e. aligned) profile and the
reference profile (c.f. 3.3.). Being “aligned” on the reference, the warped profile has now the
same HS as the reference (which is the ground truth). Moreover, at this point in the
framework, the two profiles are gridded on the same elemental grid described in 3.3.. As a
result, at this stage “layers” are just vertical chunks of snow with the same thickness which
have no link to the physical layering of the snowpack. Therefore, the layer-by-layer mean
bias is actually equivalent to the bulk density bias. The wording has been changed to “mean
bias” over the whole manuscript to avoid confusion.

l. 193: “Height of Snow and SWE were visually assessed”. Why not metrics?
Height of Snow and SWE were assessed using the Nash-Sutcliffe model efficiency
coefficient \citep{NashStucliffe1970} over the two seasons. SWE was assessed against the
AWS driven SNOWPACK runs, and HS was evaluated against SR50 HS measurements at
Abbott and Fidelity station (unfortunately, there is no HS measuring device at Hermit
station).

l. 195-197: The calculation of NSE may not need to be described here.

The equation was removed from the manuscript.

l. 220-222: The bias should be computed as model - reference, so that a positive bias would
mean an overestimation, and it should be the case for all variables. It would avoid
unnecessary confusion.
Bias computation has been corrected according to this comment, and corresponding figures
and interpretations have been updated.

Figure 3: The vertical labeling is somewhat confusing. Perhaps simply write TA bias (°C),
RH MAE (%), etc.?
The vertical labelling has been updated as suggested.

l. 225-226: It could be worth mentioning it corresponds to very shallow snowpacks.



The season begins with average similarity values (around 0.5), then it plummets to low
values in mid-October (<0.5) when the snowpack is non-existent or still very shallow. By
mid-November, the similarity then improves to higher levels of similarity, and stays relatively
constant for the rest of the season (0.6 <sim <0.8).

Figure 4, green curve: I would not call it Station, since it could be confusing for the reader
assuming it's a station observation. More understandable labels could be, for example:
SGF-SNOWPACK, HRDPS-SNOWPACK, AWS-SNOWPACK. Or is it actually the HS
measurement in green? If so, the AWS driven SNOWPACK simulation should also be
represented since it is the reference for the other metrics. Moreover, in Figure 6, the green
curve is called SWE Station, even though there is no SWE measurement at the station
(according to Table 1). This is very confusing and should be clarified.
Labels have been modified as suggested.

l. 239-241: Isn’t it rather related to the fact that the metrics are computed over very shallow
snowpacks?

Yes, it is definitely the case. This is discussed in the Discussion section as we feel it is more
of an interpretation than an observation. We slightly modified the sentence to prevent any
confusion when reading the sentence.

Considering the strong fluctuations of the similarity signal in the fall for both seasons, the
first three months (September to November included) were considered as a spin-up phase
for the model to initiate a proper snowpack.

l. 241-242: “the numerical analysis of the results was carried out starting on the first of
December.” Is it also the case for the similarity metrics exposed a few sentences earlier? If
so, please clarify.

Yes, it is. This sentence is now appearing before the similarity metrics in order to clarify.

l. 242: “HRDPS and the subgridding framework are slightly overestimating OGS”. The
concision of this paper is overall appreciated, but it might be clearer to use formulations
such as HRDPS-SNOWPACK and SGF-SNOWPACK, because snowpack-related variables
are not an output of HRDPS and the subgridding framework.
We agree with the reviewer and references to snow simulations have been updated
throughout the manuscript.



l. 246-253: As far as I understand, the mean density bias is a mean of the biases of all layer
densities, i.e., not equivalent to the bulk density bias. It would deserve to be better clarified.
It would also be necessary to justify why this layer mean is chosen over a bulk density. It
seems very dependent on the layering?

The mean layer-by-layer bias is computed between the warped (i.e. aligned) profile and the
reference profile (c.f. 3.3.). Being “aligned” on the reference, the warped profile has now the
same HS as the reference (which is the ground truth). At this point in the framework, the two
profiles are gridded on the same elemental grid described in 3.3.. As a result, at this stage
“layers” are just vertical chunks of snow with the same thickness which have no link to the
physical layering of the snowpack. Therefore, the layer-by-layer mean bias is actually
equivalent to the bulk density bias. The wording has been changed to “mean bias” over the
whole manuscript to avoid confusion.

l. 255-256: "As a result (…)". This logical link is unclear. The SGF could also reduce the
PSUM bias. Please reformulate or clarify.

The paragraph was reformulated, it includes the new numbers from the new simulations,
comparisons with the snow height measured by the SR50 at Abbott and Fidelity, which
clarifies the link between the SGF, PSUM bias, and HS errors.

Finally, SGF-SNOWPACK mean error on modeled HS is 35 cm in 2018-2019 (20 cm
improvement when compared to HRDPS-SNOWPACK), and 29 cm in 2019–2020 (29 cm
improvement) when compared with the SR-50 measurement at Fidelity. For reference, the
modelled HS with AWS-SNOWPACK shows a mean error of 8 cm in 2018-2019 and 14 cm
in 2019-2020. However, SGF-SNOWPACK seem to degrade the quality of the HS modelling
with regards to HRDPS-SNOWPACK when compared to the SR50 at Abbot station,
overestimating HS for each season. Yet, the Station-SNOWPACK run at Abbott shows a
high discrepancy with the SR-50 measurements as well, overestimating HS as well
(especially in 2018-2019). Finally, HS remained relatively unchanged at Hermit for
2018–2019 as the framework did not bring a substantial improvement when compared to
the Station-SNOWPACK modelled HS.

l. 263: The observed altitudinal temperature gradient is the reflect of the lapse rate chosen
for TA downscaling (l. 137). There is no proof here it is realistic.

This line has been rephrased as :

First, the lapse-rate applied for TA downscaling and spatialization respects the general rule
of thumb that TA should get colder with elevation.

l. 264-265: “slightly lower temperatures in the north aspects”. Figure 7 shows the contrary
for TA in Alpine area (warmer TA on North slopes vs South slopes, consistently throughout
the season). Any explanation? Or is it a plotting error?



In the selected spatial validation cells, the South slope alpine pixel has an elevation of 2197
m whereas the North one has an elevation of 2079 m. With a hundred meters gap in
elevation and considering the TA lapse-rate correction, it makes sense that the South
aspect shows consistently lower temperatures. This is now clear to the reader thanks to the
included Table in the methodology section, and it is now reflected in the text and justified to
the reader:

However, the selected point on the North aspect is a 100 m lower than the South aspect
point, and as a result, the figure shows slightly warmer temperatures consistently
throughout the season on the North aspect.

l. 268-269: “the altitudinal precipitation rate gradient is also respected by the subgridding
framework, with precipitation rates getting higher with elevation”. Is there any incremental
improvement compared to the original HRDPS gradient?

The original HRDPS cells cover an area of 2.5 km x 2.5 km. Each 100 m x 100 m DEM cell
underneath would have received the same amount of snowfall, without any altitudinal rate
modifier despite a strong elevation gradient within the same HRDPS cell. Moreover, the
HRDPS precipitation gradient is only relevant at the scale of the surface model used to run
the atmospheric model, I do not think that a comparison is relevant in this case, as we are
evaluating the ability to subgrid the weather parameters within one HRDPS cell in a
physically sound way, and perform spatialized snow simulation out of these newly
generated weather inputs.

l. 270: What is the reason for simulating the snowpack in forested areas (in a remote
sensing perspective), if the forest snow processes, which have a strong impact on the
snowpack, are not represented?

We agree with the reviewer that there is limited interest in simulating the snowpack in
forested areas in a remote sensing perspective. The difficulty of accurately modelling both
the snowpack and radiative transfer under trees and snow makes for a particularly
challenging problem. However, we have chosen to tackle the entire elevation range within
our study area out of completeness, in order to assess how the subgridding framework is
performing on the entire domain of the simulation.

l. 271-272: “The wind erosion effect on the snowpack is also well represented, as dominant
winds are blowing from the South / South-West. As a result, the south aspect profiles show
more defragmented grains (dark green) on the surface”. I am not sure I understand this
cause-consequence. As far as I understood, wind-induced snow transport is represented by
a precipitation multiplier. Consequently, associated effects of snowdrift on snow
microstructure are not represented. Or am I missing something? Please clarify.



The word “erosion” here has not been used appropriately by the authors and is certainly the
cause of the misunderstanding. Lines 271 - 274 in the original manuscript have been
modified as such:

The wind effect on the snowpack is also well represented in the simulations. Indeed,
dominant winds are blowing from the South / South-West, and as a result southern slopes
are affected by stronger winds (fig. 7). In the SNOWPACK model, grain type is a function of
dendricity and sphericity, two parameters governed by the temperature gradient within the
snowpack. As the surface temperature is altered by surface winds, precipitation particles
(lime green) on the south aspects tend to metamorphose faster into decomposing and
fragmented precipitation particles (dark green) than in the northern aspects, especially in
the alpine.

l. 274: “slower settlement”. This needs to be proven, it is not obvious when looking at the
figure.

This sentence has been removed (c.f. previous comment)

l. 274-275: An extension of the simulations to Spring would be interesting to assess the
melting processes and differences between North and South slopes.

Because of the SWE remote sensing orientation of this work, we focused on the dry snow
season. Even though we agree with the reviewer that it would be interesting, we argue that
it falls out of the scope of the present paper.

l. 280: “a considerable improvement”. With respect to the results exposed in Figure 3, this
assertion could be more nuanced.
The sentence has been rephrased to “a noteworthy improvement”, which seems more
appropriate indeed.

Figure 8: Please provide the label for grain type color codes.
A colorbar has been added to Figure 8 and 10 with grain type color codes.

l. 290-295: It could be clarified.
These sentences have been modified as follows:

However, the HRDPS TA presents a negative bias at these 3 stations (i.e., HRDPS is colder
than station measurements), and all 3 stations are higher than the nominal elevation of their
overlying HRDPS cell. As a result, a naive Inverse Distance Weighting lapse-rate
spatialization scheme would introduce even more bias in the system, aggravating the



original error. The introduction of our logarithmic bias correction in the parameterization step
of the framework reduces the bias in TA before the IDW spatialization. Thus, the logarithmic
lapse-rate parameterization allows reducing the error in the subgridding scheme and keeps
it within a physically meaningful interval regarding spatial resolution.

l. 300: The discussion could explore further the reasons why and how simulated
microstructure parameters are modified, with the modified input.
The new version of the discussion gives more details on processes that affect snow
parameters. To some extent, it is also discussed in section 3.3. on the evaluation of snow
simulations:

As precipitation is usually underestimated by HRDPS, HS should be underestimated as
well, which should impact the overburden pressure on basal layers. This might result in a
small negative bias on density with regards to AWS driven SNOWPACK runs, depending on
the amount of missing snow. For OGS, the temperature gradient in this region is low and
metamorphism mainly happens through gravitational settling, leading to little variability in
OGS in the snowpack \citep{madore2018}. As a result, we do not expect much impact of
the inflation approach on this microstructure parameter, as the main discrepancies should
come from offsets in rain-on-snow modeling, and melt/percolation events.

l. 306-310: The authors could provide typical snow OGS values to give an idea of the
relative change.
A comparison with typical values of OGS in the area has been added :

Furthermore, the subgridding framework allows decreasing by 0.04 mm the OGS
overestimation compared with raw HRDPS simulations (averaged over all sites and
seasons). Optical diameter usually ranges from 0.1 mm to 0.4 mm in this region, the
subgridding framework can improve the modelled OGS by 10 to 40 percent on average.

l. 311: “wind transport in the alpine is likely exaggerated”. This statement needs to be
justified.
To account for the other comments, the discussion has been substantially modified, and this
phrase no longer appears in it.

l. 314-323: In the current state, this paragraph is more a perspective for the conclusion
section.
We agree to this comment, the paragraph has been moved to the conclusion section.

l. 325-326: See previous comments about clearer identification of the research gap.
To better underline where the contribution and novelty of the paper, this phrase has been
modified as follow:



The work presented in this study aims at solving the present need in the snow remote
sensing community for both the design and the evaluation of an atmospheric model
subgridding framework to perform snow modelling in the context of coupling with a SAR
signal inversion routine.

l. 341: The word "stabilize" may be misused, since the SNOWPACK simulations are
probably not strictly speaking "unstable"?

The word “simulation” is actually a typo here. “Similarity” was meant instead and the error
went through our correction process before submission. This sentence has been rephrased
as follows:

In this context, the first three months (September to November) of snow simulations should
be considered as a spin-up phase for the snow model, as discrepancies between reality and
simulations are critical before the snowpack is properly established and the similarity
stabilizes in December and onward.


