Preprints
https://doi.org/10.5194/egusphere-2023-1071
https://doi.org/10.5194/egusphere-2023-1071
15 Jun 2023
 | 15 Jun 2023

BoundaryLayerDynamics.jl v1.0: a modern codebase for atmospheric boundary-layer simulations

Manuel F. Schmid, Marco G. Giometto, Gregory A. Lawrence, and Marc B. Parlange

Abstract. We present BoundaryLayerDynamics.jl, a new code for turbulence-resolving simulations of atmospheric boundary-layer flows as well as canonical turbulent flows in channel geometries. The code performs direct numerical simulation as well as large-eddy simulation using a hybrid (pseudo)spectral and finite-difference approach with explicit time advancement. Written in Julia, the code strives to be flexible and adaptable without sacrificing performance, and extensive automated tests aim to ensure that the implementation is and remains correct. We show that the simulation results are in agreement with published results and that the performance is on par with an existing Fortran implementation of the same methods.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

15 Jan 2024
BoundaryLayerDynamics.jl v1.0: a modern codebase for atmospheric boundary-layer simulations
Manuel F. Schmid, Marco G. Giometto, Gregory A. Lawrence, and Marc B. Parlange
Geosci. Model Dev., 17, 321–333, https://doi.org/10.5194/gmd-17-321-2024,https://doi.org/10.5194/gmd-17-321-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Turbulence-resolving flow models have strict performance requirements, as simulations often run...
Share